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Background: Glioblastoma (GB) is themost severe form of brain cancer, with a 12-

15 month median survival. Surgical resection, temozolomide (TMZ) treatment, and

radiotherapy remain the primary therapeutic options for GB, and no new therapies

have been introduced in recent years. This therapeutic standstill is primarily due to

preclinical approaches that do not fully respect the complexity of GB cell biology

and fail to test efficiently anti-cancer treatments. Therefore, better treatment

screening approaches are needed. In this study, we have developed a novel

functional precision medicine approach to test the response to anticancer

treatments in organoids derived from the resected tumors of glioblastoma patients.

Methods: GB organoids were grown for a short period of time to prevent any

genetic and morphological evolution and divergence from the tumor of origin.
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We chose metabolic imaging by NAD(P)H fluorescence lifetime imaging

microscopy (FLIM) to predict early and non-invasively ex-vivo anti-cancer

treatment responses of GB organoids. TMZ was used as the benchmark drug

to validate the approach. Whole-transcriptome and whole-exome analyses

were performed to characterize tumor cases stratification.

Results: Our functional precision medicine approach was completed within

one week after surgery and two groups of TMZ Responder and Non-Responder

tumors were identified. FLIM-based metabolic tumor stratification was well

reflected at the molecular level, confirming the validity of our approach,

highlighting also new target genes associated with TMZ treatment and

identifying a new 17-gene molecular signature associated with survival. The

number of MGMT gene promoter methylated tumors was higher in the

responsive group, as expected, however, some non-methylated tumor cases

turned out to be nevertheless responsive to TMZ, suggesting that our

procedure could be synergistic with the classical MGMT methylation

biomarker.

Conclusions: For the first time, FLIM-basedmetabolic imaging was used on live

glioblastoma organoids. Unlike other approaches, ex-vivo patient-tailored drug

response is performed at an early stage of tumor culturing with no animal

involvement and with minimal tampering with the original tumor

cytoarchitecture. This functional precision medicine approach can be

exploited in a range of clinical and laboratory settings to improve the clinical

management of GB patients and implemented on other cancers as well.
KEYWORDS

glioblastoma, metabolic imaging, drug response assay, predictive model, FLIM
(fluorescence lifetime imaging microscopy)
Introduction

Glioblastoma (GB) is the most common malignant primary

brain tumor. Overall, the prognosis of patients with this disease

is poor, with a 12-15 month median survival (1). Because of the

diffuse aggressive nature of GB cell invasion into the brain

parenchyma, no GB patient has been cured to date (2). As

illustrated by the vast number of drugs and therapeutic strategies

under investigation for the treatment of GB, there is a major

effort to develop more effective therapies to treat this highly

malignant and therapy-insensitive disease. Unfortunately, the

success of these new therapies has been rather disappointing:

maximal resection, and temozolomide (TMZ) treatment and

radiotherapy (RT) remain the best option for quite several years

(3). GB standard-of-care TMZ is a DNA-alkylating agent

discovered in the 1970s and approved by the FDA in 2005 (3).

Responsive patients have the O6-methylguanine DNA

methyltransferase (MGMT) gene with a methylated promoter

and show higher survival rates than patients with a
02
hypomethylated MGMT gene. Despite its low specificity, the

MGMT promoter status represents the only clinical biomarker

available to predict for TMZ response (4).

In this glioblastoma context, effective treatment options and

biomarkers of drug response are a major unmet medical

requirement. For several years, conventional monolayer cell

cultures have been widely used to test drug efficiency, although

the lack of tissue architecture and complex characteristics of

these models fails to recapitulate the true biological processes in

vivo . Recent advances in organoid technology have

revolutionized in vitro culture tools for biomedical research by

creating powerful 3D-dimensional models, that better preserve

the local cytoarchitecture and native cell-cell interactions of

original tumors (5). Despite numerous ex-vivo drug testing

approaches leverage on 3d-in vitro GB models, they still have

shortcomings and none fully captures the complexity of each

individual glioblastoma cellular organization and composition

overlooking therefore the relevance of how the tumor

microenvironment affects tumor behavior and drug response
frontiersin.org
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(6–8). These drug testing approaches have several limiting

requirements such as: a) extended time of performance that

leads to a long period of in vitro tumor culturing with a

consequent molecular and morphological transformation

diverging from the parental tumor in vivo (6); b) technical

measurements requiring dissociation of the original tumoral

tissue down to a single cell suspension, losing therefore the

tumor cytoarchitecture and cell-cell interaction characteristics

(8); c) use of non-human animal models which implies

laborsome procedures and introduction of biases due to host

organism-tumor interactions (9).

To address these limitations it is necessary to have a

treatment-testing approach that doesn’t need an extended in

vitro tumor culturing, that is non-invasive to minimize tumor

tampering, that uses a biomarker of response that is precocious

and anticipates early enough tumor behavior so to be applied at

an early stage of in vitro tumor culturing and no animal

involvement. Furthermore, because of the highly aggressive

progression of the disease, an overall rapid test and selection

of the optimal drug regimen for individual glioblastoma patients

is crucial and a method to predict the drug response, early,

without wasting patients’ lifetime, before the onset of the therapy

could be transformative for GB patients.

Here in this study, to answer these requirements, we offer a

unique novel treatment-testing approach in patient-derived

glioblastoma 3D organoids. We first developed a protocol to

generate an in vitro vital patient-derived IDH1/2 wild-type GB

3D model that we termed “glioblastoma explant” (GB-EXP),

which, unlike other models (6–8), is minimally handled, briefly

grown in culture with no animal involvement, no dissociation and

passaging to preserve the parental cytoarchitecture. To build a

treatment-response predictor tool, we applied an imaging method

called FLIM that exploits the intrinsic auto-fluorescence

molecular properties of NAD(P)H, a metabolic enzymatic

cofactor, that is associated with the metabolic state of the cell/

tissue. Cancer cell metabolic status is known to be an early

predictor of cellular behavior in response to a treatment (10–

12). The intracellular metabolic cofactor NAD(P)H (reduced form

of nicotinamide adenine dinucleotide) may be protein-bound or

protein-free in the cell, and these states affect its fluorescence

decay, with bound NAD(P)H typically exhibiting longer lifetimes

than free NAD(P)H. In cancer, metabolism shifts were

investigated, and authors reported an increase in NAD(P)H

fluorescence lifetimes (increase of NAD(P)H bound/free ratio)

as cells become less proliferative (13), showing drug

responsiveness after treatment. FLIM measures NAD(P)H

lifetimes, representing a powerful non-invasive tool to monitor,

in real time, metabolic activities in living cells and tissues (10, 12).

NAD(P)H-FLIM has the advantage of being a fast and non-

invasive method that can be applied to in vitro cancer organoids at

an early stage of in vitro culturing without interfering with tumor

viability and structure, avoiding divergence from parental tumor.

To support this approach as an effective method for evaluating the
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response to anti-cancer treatments, we used TMZ as our

benchmark drug since it is the only approved drug used in GB,

and extensive knowledge has been achieved at the molecular level.

We achieved the classification of the cases into TMZ responsive

and non-responsive tumors. This stratification performed out

solely using our NAD(P)H -FLIM approach on live GB

organoids in vitro, was then correctly corroborated by

conventional drug testing assays and by next generation

sequencing analyses. The TMZ responsive and non- responsive

groups were statistically significantly distinguished at the genomic

and transcriptomic level confirming the accuracy of our approach.

This novel approach in the assessment of GB treatment

outcome, could be exploited as a tool for improving patient-

tailored therapeutic strategies by testing single of combinations

of drugs, and new treatments. It can also be used for large-scale

screening of new pharmaceutical compounds and implemented

on other tumors as well.
Materials and methods

Human glioblastoma tissue collection

The study was performed in accordance with the Declaration

of Helsinki and the sample collection protocol was approved by the

Ethics Committee of the University Hospital of Pisa (787/2015).

Tumors were obtained from patients who had undergone surgical

resection of histologically confirmed GB after obtaining informed

consent. Samples were obtained from the Neurosurgery

Department of the “Azienda Ospedaliero-Universitaria Pisana”

or from the Unit of Neurosurgery of Livorno Civil Hospital.

Sixteen male and female patients were included in the present

study. All patients were diagnosed with GB with no previous

history of brain neoplasia and did not carry R132 IDH1 or R172

IDH2 mutations. In five of the 16 patients, neurosurgeons were

able to collect the core and periphery of the tumor with the help of

neuronavigation–guidedmicrosurgical techniques. Tumor samples

at the periphery were first obtained when GB was identified during

surgery, whereas tumor samples at the core were obtained from the

resected tumor mass. When the tumor had a large area of central

necrosis, the tumor located outside the necrotic area was selected.

The patients clinical and demographic data are presented in

Supplementary Table 1. Surgically resected tumors were collected

and stored in MACS tissue storage solution (Miltenyi Biotec,

Bergisch Gladbach, Germany) at 4C for 2–4 h. All patient-

derived surgical GB tissues were de-identified before processing.

See supplementary materials for more information.
Glioblastoma cell line spheroid cultures

Spheroids were generated from T98G and U87 GBM cell

lines using the hanging drop method, as previously described
frontiersin.org
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(14). Once spheroids were formed, they were used to prepare

cultures in Matrigel and in suspension. Twenty drops per well

were transferred to a 4-well chamber coverglass (Nalge Nunc

International) and covered with 300 µL of Matrigel Growth

Factor Reduced Basement Membrane Matrix, phenol red-free

Matrigel (Corning). After gel solidification for 30’ at 37°C, cell

medium without no red phenol, containing 89% of DMEM low

glucose (for T98G) and high glucose (for U87), 10% FBS, and

1% penicillin-streptomycin was added. Cultures were placed in

a 37°C, 5% CO2, and 90% humidity sterile incubator. The

medium was replaced every 72 hours. See the supplementary

materials for more information on 2D cell lines and

3D spheroids.
Glioblastoma organoids/
explants cultures

The procedure used to produce explant cultures is shown in

Figure 1A. Fresh GB tumors or frozen samples, after a quick

defrosting in a water bath at 37°C, were washed with DPBS in a

sterile dish and cut with a scalpel into pieces <1 mm (2). Samples

were then run on a gentleMACS Dissociator (Miltenyi Biotec)

to mechanica l ly dissoc ia te them into 80–200 mm
macrosuspensions, which were filtered through a 70-micron

cell strainer to exclude smaller tissue pieces. Tissue

suspensions were placed in coverglass chamber slides (Nalge

Nunc International) and then covered with 300 µL of Matrigel or

in suspension. Cultures were placed in a 37°C, 5% CO2, and 90%

humidity sterile incubator and grown for a maximum of 10/14

days without no passaging. The GB-EXPs were cultured without

additional growth factors to reduce tampering. Drug treatment

was initiated 3 days after the GB-EXPs were cultured.
TMZ drug treatments

TMZ (Sigma, St. Louis, MI, USA) was used in this study.

TMZ was dissolved in DMSO to prepare a stock concentration

of 100 mM and then diluted to the required concentrations with

a complete cell culture medium. 2D GB U87 and T98G cell lines

were treated at 30% confluence, replacing the medium with fresh

medium containing TMZ 100 mM for treated cells or an equal

volume of DMSO for controls. Cultures were exposed to TMZ

for 24, 48, and 72 h in all experiments. Spheroids from U87 and

T98G cell lines, both in Matrigel and in suspension, were treated

the day after they were cultured, replacing the medium with

fresh medium containing 600 mM of TMZ. For FLIM

experiments, spheroids in Matrigel were exposed to TMZ for

24, 48, and 72 h, and for sizing and Ki67 expression analysis for 1

and 2 weeks. GB-EXPs, both in Matrigel and in suspension, 3

days after being cultured, were treated with TMZ three days after

culture. The medium was replaced with fresh medium
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volume of DMSO as a control. GB-EXPs in Matrigel were

exposed for 24 h, 48 h, and 72 h for FLIM experiments,

whereas GB-EXPs in suspension were treated at 1 week and 2

weeks for sizing, live/dead, and immunofluorescence

experiments. Fresh conditioned medium for both the GB-

EXPs and spheroid cultures was replaced every 72 h.
Lifetime imaging

Fluorescence lifetime imaging was performed with an

Olympus Fluoview 3000 confocal microscope using a 405 nm

LDH-P-C-375B (Picoquant) excitation laser for NAD(P)H (15,

16). For the control and treated samples, 6–12 FLIM

measurements were acquired. The phasor approach was used

to analyze NAD(P)H-FLIM data and was performed using the

SimFCS suite as previously described (17). Following the

instructions reported in “Two-component analysis of fractional

NAD(P)H distribution” (17), we extrapolated from phasor plots

the NAD(P)H free/bound fractional distribution curves of the

controls and treated samples, creating a mean distribution curve

for controls and one for treated samples (Supplementary

Figure 1). To find differences between controls and treated

NAD(P)H fractional distribution curves, for each of the 125

parts SimFCS dividing the curves, a p-value was calculated

using the parametric Student’s t-test, and fractions with p values

<0.05 were considered significant. Each of the 125 parts consists

of a number of image pixels with a specific NAD(P)H free/

bound fraction. Therefore, the curve segmentation

implemented by the system reflects different portions/pixels of

the tumor image, consequently reporting intra-sample

metabolic heterogeneity. We calculated the percentage of

response (%DR), considering only the treated distribution, as

follows: %DR = ∑SIGNIFICANT AREA/TOTAL AREA.

where:1) the SIGNIFICANT AREA is the area obtained by

adding the areas of the histograms, resulting in a p-value<0.05,

when compared with controls; and 2) the TOTAL AREA is the

area obtained by adding the areas of the 125 histograms. The

histogram area was calculated by multiplying the base

(corresponding to the unit at each x-axis point) by the height

(corresponding to the mean of the normalized pixels at each y-

axis point). The %DR was calculated after 24, 48, and 72 h of

treatment. The final percentage of DR was obtained by

calculating the weighted average. Weighted average

calculation: The weight given to the average was driven by the

time point, given a value of 3, 2, and 1 for 72, 48, and 24 h,

respectively. 72hr time had the highest weight since it is the

standard time at which cells reach metabolic adaptation (18).

Stratification of samples was performed using %DR as follows:

Non Responder (Non-Resp/NR): %DR<5% Low Responder

(LR):5≤%DR<20, Medium Responder (MR):20≤%DR<50,

High Responder (HR): %DR>50.
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GB-EXPs size analysis

The growth of explants was studied using brightfield images

acquired at 0 day, after 1 and 2 weeks after TMZ treatment, using
Frontiers in Oncology 05
an Olympus Fluoview 3000 microscope and at 20X

magnification. A minimum of 14 to a maximum of 81

untreated and control GB-EXPs were imaged at each time

point. Different wells were used for GB-EXPs sizing and FLIM.
A

B D

E F G

I

H

J
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L

C

FIGURE 1

GB-EXPs cultures (A) Experimental design. (B) A surgery tumor sample. (C) GB-EXP embedded in matrigel. (D) H&E staining of a surgery GB
tissue. (E) Live/dead staining of a GB-EXP at 2 weeks after culturing. (F, G) Ki67 immunostaining of GB-EXPs in suspension at 0 week and 2
weeks. (H) Ki67 mRNA expression analysis of 13 GB case-derived GB-EXPs at 0 and 2 weeks. Graph represents mean ± s.d. of triplicated
measures. (I) Representative brightfield and area size images of a GB-EXP in matrigel at 0 week, 1 week and 2 weeks. (J) Size analysis 20 GB
case-derived GB-EXPs at 0, 1 and 2 weeks. (K, L) Immunofluorescence assays of surgery GB tissue (K) and GB-EXPs (L). GFAP (astrocytes), IBA1
(microglia), SOX2 (stem cells), CD105 (endothelial cells) and CD3 (lymphocytes). WTA, Whole Transcriptome Analysis; WEA, Whole Exome
Analysis; FC, Flow Cytometry; H&E, Hematoxylin, and Eosin; MGMT, MGMT promoter methylation analysis.
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GB-EXPs growth over time was measured using OrganoSeg

Software, kindly donated by the Department of Biomedical

Engineering, University of Virginia, USA (19).
Histology and stainings

The tissues and explants were fixed for 24 h in 10% neutral-

buffered formalin (Sigma-Aldrich) at room temperature. For

immunofluorescence, CD105 polyclonal (Thermo Fisher, PA5-

94980), CD3 monoclonal (F7.2.38) (Thermo Fisher, MA5-

12577), Sox2 polyclonal (Thermo Fisher, 48-1400), GFAP

monoclonal (ASTRO6) (Thermo Fisher, MA5-12023), GFAP

polyclonal (Abcam, ab7260), Iba1 polyclonal (Wako 091-19741)

primary antibodies were then applied at dilutions of 1:400, 1:20,

1:100, 1:100, 1:250, 1:1000, respectively, overnight at 4°C, and

visualized using Olympus Fluoview 3000 confocal microscope at

a magnification of 60X. See supplementary materials for

more information.
Next-generation sequencing analyses

The RNA-seq library was prepared using Illumina Stranded Total

RNA Prep with a Ribo-Zero Plus kit (Illumina).Whole exome library

preparation was performed using Illumina DNA Prep with

Enrichment (Illumina, San Diego, CA, USA) following the

manufacturer’s instructions, starting with 500 ng of DNA.

Sequencing was performed on a NextSeq 500 (Illumina, San Diego,

CA, USA) with a reading length of 101 bp (SupplementaryMaterials).
Statistical analyses

All summary data are presented as means ± s.d. All statistical

analyses were performed using R and GraphPad Prism software

(GraphPad 7.0). The sample size (n) values used for statistical

analyses are provided in the text and supplementary materials.

Individual data points are graphed or can be found in the source

data. Tests for differences between two groups were performed

using the Student’s two-tailed unpaired t-test, as specified in the

figure legends. No data points were excluded from the statistical

analyses. Statistical significance was set at p < 0.05. Linear

discriminant analysis was performed using JMP10 software

(SAS Institute).
Results

Tumor samples

The dataset included 21 patient-derived surgery GB tissues,

five of which consisted of the core and periphery of the tumor
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neuronavigation–guided microsurgical techniques. The

patients included 10 men (62%) and six (38%) women in the

age group of 30–80 years. All tumor samples were derived from

primary IDH1/2 wild-type glioblastoma samples. Each resected

sample was labeled with information on cerebral localization

and molecularly characterized for IDH1/2 mutation and MGMT

methylation status, as shown in Supplementary Table 1.

Furthermore, MGMT methylation analysis revealed MGMT

methylation discordance between the core (c) and peripheral

(p) portions of samples GB3, GB4, GB6, and GB7, highlighting

intra-tumor heterogeneity (Supplementary Table 1).

Supplementary Table 2 reports the pathological diagnosis and

information about the patients’ therapeutic administrations. The

samples were subjected to several analyses, as shown in

Supplementary Table 3.
In vitro culturing of patient-derived
glioblastoma explants (GB-EXPs)

We created a vital human GB-patient-derived 3D tumor

culture in vitro (GB-EXPs) (Figure 1A). Twenty-one tumor

pieces were first washed with PBS and a specific lysis buffer to

remove debris and red blood cells, respectively (Figure 1B).

Mechanical dissociation and filtration produced a suspension of

tumor pieces ranging in size from 70µm to 200µm (Figure 1C).

Tumor fragments were rapidly processed to maximize their

viability and ensure good explant quality. GB-EXPs were

cultured immediately after resection, but also after short time

storage at -140°, confirming that viable cultures can be grown

either from fresh or flash-frozen DMSO supplemented media,

thus facilitating the whole procedure (20). GB-EXPs were

cultured by embedding them into Matrigel or suspension (no

single-cell dissociation was performed) (Figure 1C). To reduce

clonal selection and maintain tumor heterogeneity and parental

cytoarchitecture, explant cultures were not grown for more than

2 weeks. In vitro these GB-EXPs represent the actual

pathological conditions in vivo as closely as possible. Before

culturing, GB tissues were subjected to H&E staining and

histological analysis, which was performed by an expert

pathologist to confirm the GB features (Figure 1D,

Supplementary Figure 2). GB-EXPs still showed active

proliferation within 2 weeks of culture (Supplementary

Figure 3). Moreover, the vitality of GB-EXPs cultured in

Matrigel was determined by setting up overnight live-imaging

analyses, which revealed an intensive cell activity particularly

evident at the surface of the explant in contact with the

surrounding cells and neighboring explants, as shown in

Supplementary Video 1. To evaluate the viability of GB-EXPs,

we performed a live/dead cell viability assay (Figure 1E) and

Ki67 immunohistochemistry (Figures 1F, G). In GB-EXPs, Ki67

expression analysis by immunohistochemistry showed positivity
frontiersin.org

https://doi.org/10.3389/fonc.2022.969812
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Morelli et al. 10.3389/fonc.2022.969812
at either 0 or 2 weeks of culture, as shown in Figures 1F, G.

Furthermore, the rate of proliferation was explored using Ki67

mRNA expression analysis (Figure 1H) and size analysis (19)

(Figures 1I, J), which showed a slight gradual increase in the

proliferation rate over time, specifically from week 0 to week 2,

confirming the results of other culturing approaches reported in

the literature (6). To assess whether GB-EXPs maintain the cyto-

composition of parental tumors, we further characterized and

explored cellular diversity among surgical GB tissues and GB-

EXPs by choosing a panel of GB markers including GFAP

(astrocytes), IBA1 (microglia), SOX2 (stem cells), CD105

(endothelial cells), and CD3 (lymphocytes). The presence of

these cell types was confirmed by immunofluorescence assays on

GB-EXPs, indicating retention of vasculature features and

lymphocytes after two weeks of in vitro culturing (Figures 1K, L).
FLIM metabolic-imaging approach
validation in known glioblastoma
in vitro systems

Initially, to validate the efficacy of our FLIM-based metabolic

imaging approach, we evaluated it using GB U87 and T98G cell

lines, known to be TMZ-responsive and non-responsive,

respectively (21),. The two cell lines were tested in the 2D and

3D systems.

2D glioblastoma cell lines system
We investigated two different glioblastoma commercial cell

lines that are sensitive and resistant to TMZ treatment, U87, and

T98G (21–23). To monitor intracellular molecular changes

associated with drug treatment, FLIM image data were

recorded from 12 fields of view for each slide of both cell lines

72hr post treatment, targeting the autofluorescence of the

intracellular metabolic cofactor NAD(P)H.

Figures 2A–C shows representative images of a cellular field

of 2D-U87 and 2D-T98G cells, including brightfield images (top

row) and phasor-FLIM NAD(P)H lifetime map (on the bottom)

colored in accordance with the color bar defined on the side. The

color bar defines the metabolic pathway from NAD(P)H in the

bound state (red/magenta) to NAD(P)H in the free state (green/

white), as explained in the Materials and Methods section

(Supplementary Figures 1A, B). Based on phasor-based FLIM

data analysis, we obtained a fractional NAD(P)H distribution

curve of free and bound NAD(P)Hmolecules for each image (see

Materials and Methods and Supplementary Figures 1A, B),

which identifies a metabolic signature that goes from an

oxidative phosphorylation phenotype with low free/bound

NAD(P)H fractions to a glycolytic phenotype with high free/

bound NAD(P)H (17). In Figures 2B, D, we report the fractional

NAD(P)H mean distribution curves of the control and TMZ-

treated 2D-U87 (Figure 2B) and 2D-T98G cell lines (Figure 2D).
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The average distribution curves were broken down into different

histograms, representing each specific fraction of free-state NAD

(P)H and consequently of protein-bound molecules (see

Materials and Methods). Differences between fractional NAD

(P)H mean distribution curves were evaluated by statistically

comparing each histogram of the treated group against the same

one in the control group using Student’s t-test (Figures 2B, D)

(see Materials and Methods). Therefore, the difference between

the two curves was expressed as a percentage of drug response

(%DR) calculated considering the area of the significant

histograms (in green, Figures 2B, D) out of the total histogram

area under the treated GB-EXPs curve (see Materials

and Methods).

In TMZ-treated sensitive 2D-U87 cells, distinctive FLIM

signatures were observed with a statistically significant left-

bound shift (red curve) towards a higher fraction of bound

NAD(P)H compared with TMZ-treated cells to control cells,

with 92%DR (Figure 2B). The 2D-T98G cell lines showed no

changes in FLIM signatures, as represented by the overlapping of

the control and treated distributions (0%DR) (Figure 2D).

The percentages of differences between the NAD(P)H

fractional distribution curves of the control and treated

samples for both cell lines were well reflected, as well as in the

phasor maps obtained for each cellular field, as shown in

Figures 2A, C.

We linked these shifts in FLIM data distribution curves after

treatment to changes in NAD(P)H lifetimes, as reported in

several studies in the literature (12). The observed shift

towards higher fractions of bound NAD(P)H is often

associated with a more oxidative-oriented metabolism, which

is characteristic of less proliferative cells (11, 12, 24, 25). This is

consistent with the results of the proliferation assay shown in

Figure 2E. Figures 2E, F show the proliferation assay for both cell

lines 72 h post-treatment with 100µM and 500µM µM TMZ. The

drug doses were chosen based on previous reports (21–23). 2D-

U87 cells showed a statistically significant decrease in

proliferation with both TMZ dosages (Figure 2E), while 2D-

T98G cells showed no statistical difference between treated and

control cells (Figures 2F).

As an indicator of cell proliferation, we also measured by real

time PCR the expression level of Ki67 at 72 h in TMZ-treated

and control 2D-U87 and 2D-T98G cell lines (Figure 2G). 2D-

U87 TMZ-treated cell lines showed a statistically significant

reduction in Ki67 mRNA expression compared to control cells,

consistent with the observed lower rate of cell proliferation,

while no difference was detected in 2D-T98G cells (Figure 2G).

3D glioblastoma spheroids system
To mimic the 3D structures of GB-EXPs, TMZ responder

3D-U87 and TMZ Non Responder 3D-T98G spheroids were

used to measure the impact of TMZ drug response on FLIM

metabolic imaging data. In the literature, several TMZ dilutions
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ranging from 1µM to 1mM have been studied on GB organoids

(26) with the most effective doses between 250µM and 1mM. In

line with these results, we selected 600µM. FLIM data were

acquired at 72 h for a total of 10 spheroids with characteristic

dimensions in the 70-200 µm range for each experimental

condition. In Figures 3A, C, representative images of a

spheroid are shown, including brightfield images (top row)

and NAD(P)H-FLIM phasor map (bottom) colored in

accordance with the color bar defined on the side. As reported

for the 2D cell line system, in Figures 3B, D, we obtained the

fractional NAD(P)H mean distribution curves of the control and

TMZ-treated 3D-U87 (Figures 3B) and 3D-T98G spheroids

(Figure 3D). After 72 h of TMZ exposure in responsive 3D-

U87 spheroids, the treated fractional NAD(P)H mean curve

showed a statistically significant shift towards higher fractions of

NAD(P) H-bound molecules when compared to controls (see

Figures 3B), as demonstrated by a 55%DR. As previously
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discussed, this indicates an increase in the oxidative

metabolism typical of a less proliferative state (10, 12, 27). The

%DR is shown by green histograms in Figures 3B and is reflected

in the phasor map of a representative spheroid, as shown in

Figures 3A, C.

To support the FLIM results, we performed spheroid size

measurements over time using dedicated software (OrganoSeg)

(19). Control and TMZ-treated spheroids for both cell lines were

followed up for two weeks after treatment and photographed at

0, 1, and 2 weeks. A representative bright-field image of 3D-U87

and 3D-T98G spheroids at each time point is shown in

Figures 3E, F together with the matched area size image for

both experimental conditions (control and treated). The area

size measurement of the 3D-U87 images at each time point

revealed a statistically significant increase in size for the control

spheroids (n=12) (p-value=0.03, Student’s t-test), and as

expected, a statistically significant decrease was detected for
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FIGURE 2

2D glioblastoma cell lines system: FLIM-based metabolic imaging in GB commercial cell lines TMZ responder 2D-U87 and TMZ non responder 2D-
T98G. (A, C) Representative images of 2D-U87 (A) and 2D-T98G (C) subdivided in brightfield images and the corresponding phasor maps. Scale bar, 30
mm. (B, D) NAD (P)H fractional mean distribution curves of control (blue) and treated cells (red) for 2D-U87 (B) and 2D-T98G cells (D), 72 hrs post TMZ
treatment. (E, F) Proliferation curves of 2D-U87 (E) and 2D-T98G cell lines (F) after 72 hrs (p<0.001, Student’s t test). (G) Ki67 mRNA expression using
real-time PCR in control and treated cells, 72hrs after treatment (p=0,002, Student’s t-test). Asterisks indicate level of statistical significance.
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FIGURE 3

FLIM-based metabolic imaging in 3D-U87 and 3D-T98G. (A, C) Representative images of 3D-U87 (A) and 3D-T98G (C) controls and treated
cells, subdivided in brightfield images of a spheroid and the corresponding phasor map displayed in a false color scale with the coding shown by
the bar on the side of the figure. Scale bar, 30 mm. (B, D) NAD(P)H fractional mean distribution curves of controls (blue) and treated cells (red) of
3D-U87 (B) and 3D-T98G cells (D). (B) 3D-U87 cells show a statistically significant higher fraction of bound-state NAD(P)H in the treated group
compared to the ctrl group (55%DR). (D) In 3D-T98G no difference was found between ctrl and treated cells in fractions of NAD(P)H bound
molecules (0%DR). (E, F) Representative brightfield, and area size images of a 3D-U87 (E) and a 3D-T98G (F) control and TMZ 600 µM treated
sample at 0 week, 1 week and 2 weeks. Scale bar, 100 mm. (G) Size analysis of 3D-U87 cells reveals at 1 and 2 weeks a significant increased area
for controls (n=12) (p-value=0.03, Student’s t test), and a significant decreased area for TMZ treated samples (n=12) (p-value=0.003 and p-
value<0.00002, respectively, Student’s t test). (H) Size analysis of 3D-T98G cells reveals at 1 and 2 weeks a significant increased area for controls
(n=12) (p-value=0.0001, Student’s t-test), and a significant increased area for TMZ treated samples (n=12) (p-value=0.001, p-value<0.00002,
respectively, Student’s t test). 1 and 2 week areas are normalized to spheroids area at 0 week. (I) Ki67 mRNA expression at 72hrs shows a
statistical decrease in rate of proliferation in 3D-U87 TMZ treated compared to controls (p-value=0.002. Student’s t test), unlike 3D-T98G.
Asterisks indicate level of statistical significance.
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the TMZ-treated spheroids (n=12) (1week, p-value=0.003 and 2

weeks p-value<0.00002, respectively, Student’s t-test)

(Figure 3G). In 3D-T98G cells, a statistically significant

increase in size was recorded at 1 and 2 weeks for both control

(n=12) (p =0.0001, Student’s t-test) and TMZ-treated spheroids

(n=12) (p =0.001, p <0.00002, respectively, Student’s t-test),

confirming their resistance to TMZ treatment (Figure 3H). Ki67

real-time expression analysis at 2 weeks after TMZ treatment

confirmed the FLIM readouts and size results (p =0.002.

Student’s t-test) (Figure 3I).
FLIM metabolic imaging of TMZ treated
patient-derived GB-EXPs

Using the methodological criteria set by the supporting

technical experiments on GB cell lines, we assessed the TMZ

response in 21 glioblastoma patient-derived tumors. For each

patient, GB-EXPs with similar dimensions between 70 and

200µm for drug testing, and a minimum of 14 to a maximum

of 33 explants were analyzed (Supplementary Table 4). The GB-

EXPs of the tumor case in Figure 4A show overlapping fractional

NAD(P)H mean distribution curves between the treated (red)

and control (blue) explants, which is indicative of an identical

distribution of bound and free NAD(P)H (12) (Figure 4B) with a

0%DR. In Figures 4C, D, we report examples of GB-EXPs

derived from the GB15 case, resulting in distinctive phasor

maps. NAD(P)H fractional mean distribution curves were also

distinguishable between the control and treated cases. The

distribution curves (Figures 4E, F) showed a statistically

significant shift of the red curves towards more abundant

bound NAD(P)H molecular species in TMZ-treated explants

compared to the control ones, with 59.3%DR (Figure 4E) and

90.9%DR (Figure 4F), corresponding to 24 and 72 h TMZ

treatment, respectively (Supplementary Table 5). Larger

amounts of bound-state NAD(P)H reflect oxidative

metabolism, which is typical of less proliferative cells (10, 13)

and therefore a responsive tumor.

Overall, to assess the final annotation of TMZ Responder

(Resp) or Non Responder (Non-Resp), we calculated for each

case a Final %DR to TMZ treatment (see Materials and

Methods), as shown in Figure 4G (green-red color scale),

leading us to stratify our tumor samples into 11 Non-Resp (%

DR<5) and 10 Resp. The Resp group was further subdivided into

several categories: Low Responders (LR) (5≤%DR<20), Medium

Responders (MR) (20≤%DR<50), and High Responders (HR)

(%DR≥50) (Figure 4G). It is noteworthy to point out that

between core and peripheral portions of the 5 GB tumor cases

included in the dataset, we observed a different drug response

behavior (Supplementary Figure 4). As expected, GB2, GB3, and

GB4 core regions showed a more drug-resistant behavior

compared to peripheral tumor portions (28) in particular,

GB2c was assessed as MR and GB2p as HR, while GB3c/4c
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were NR and GB3p/4p were LR. GB6c/p and GB7c/p were both

assessed as Non-Resp (Figure 4G).

To corroborate the FLIM-based metabolic imaging drug

efficacy predictions in stratifying samples in Resp and Non-

Resp, we performed a size analysis on all 21 sample-derived GB-

EXPs. Images were acquired at 0, 1, and 2 weeks for both control

and TMZ-treated cases for a minimum of 15 to a maximum of

81 GB-EXPs per sample (Supplementary Table 4). The examples

reported in Figure 3H show a clear reduction in size for the Resp

GB-EXP compared to the Non-Resp. Overall, the area

measurement of the GB-EXPs Resp group revealed a

statistically significant decrease at 1 and 2 weeks after TMZ

treatment (p=0.0002 and p<0.0001, respectively; Student’s t-

test), thus supporting the FLIM-based metabolic imaging

predictions (Figure 4I).

To further support our results, we measured the changes in

Ki67 mRNA expression 2 weeks after TMZ treatment.

Differential analysis of Ki67 expression was performed on

seven Non-Resp and eight Resp samples. Ki67 mRNA

expression was significantly reduced in the Resp group after

TMZ treatment compared to that in the controls, indicating a

lower proliferation rate (p=0.003, Student’s t-test). (Figure 4J).

No significant difference was found in the Non-Resp group.

In accordance with what has been reported in the clinic and

in the literature (29), we observed a higher percentage of

methylated cases (77%) in the Resp tumor group than in the

Non-resp tumor group (45%) (Figure 4K).
Genome-wide analyses

We performed next-generation sequencing analyses to

characterize the genetic background of the Resp and Non-Resp

tumors to establish a correlation between the TMZ response

phenotype identified by our FLIM approach and the underlying

molecular profile.

Whole transcriptome analysis (WTA)
WTA was performed on nine Resp and nine Non-Resp

samples, including the cases provided with a core and a

peripheral portion. Differential expression analysis identified

42 statistically significant genes between the two experimental

groups (Supplementary Table 6). In Figure 5A, a heatmap

analysis was initially run excluding the peripheral tumor

portions to avoid repeated measures derived from similar

genetic backgrounds with their core counterparts. Results

showed that seven Resp and seven Non-Resp samples

perfectly clustered on the basis of the 42 gene expression

levels, supporting that distinct TMZ responsive and non-

responsive phenotypes are well reflected at the molecular

level. Among the 42 genes (Supplementary Table 6), we

identified several genes involved in the TMZ response that are

worth mentioning. The EGFR gene, which showed a significant
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downregulation in Non-Resp samples, is consistent with

literature data showing that glioblastoma TMZ-resistant cell

lines lack EGFR activation and expression (30). Our results are,

as well, confirmed for the upregulation of the CA9 gene in the

Non-Resp group, the inhibition of which enhances the

sensitivity of glioma cells to TMZ treatment, and highlights
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the value of developing small molecules or antibodies against

the CA9 pathway, for combination therapy with TMZ (31)

(Supplementary Table 9; Figure 5A). In the Non-Resp group, we

identified downregulation of the FGFR3 gene, which is

associated with a poor response to TMZ treatment (32). The

same authors reported that a combination treatment of
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FIGURE 4

FLIM-based metabolic imaging on GB-EXPs. (A, C, D) 72 hr post-treatment one Non-Resp and two Resp tumor derived GB-EXPs are shown
including a brightfield image and the corresponding phasor map. (B) In the Non-Resp case (A) NAD(P)H fractional mean distribution curves
(72hrs) overlap between control (blue) and treated GB-EXPs (red) (B). (E, F) NAD(P)H fractional mean distribution curves show a left-bound shift
of the red curves (treated GB-EXPs). (G) %DR at 24, 48, and 72 hr, represented by a grey scale is shown for each GB case. The annotation of
Resp and Non-Resp was assigned on the basis of the Final %DR, obtained from the weighted average of the 3 time points (shown with a green-
red color bar for each GB case). Samples are further subdivided based on Final %DR into several categories. (H) Representative brightfield and
area size images of a Resp and of a Non-Resp case-derived GB-EXP in matrigel at 0, 1 and 2 weeks. (I) Size analysis of Controls, Resp and Non-
Resp patients-derived GB-EXPs (n=215, n=130, n=124 respectively) at 1 and 2 weeks. A statistically significant decrease at 1 and 2 weeks
(p=0.0002; p<0.0001, respectively; Student’s t test) is shown for the Resp group. (J) Ki67 mRNA expression using ddPCR in Resp (n=8) and Non
Resp (n=7) cases after 2 weeks of TMZ treatment (*p=0.003, Student’s t test). (K) MGMT promoter methylation status in Resp (n=9) and Non
Resp (n=11) cases. Asterisks indicate level of statistical significance.
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FIGURE 5

Gene expression profiling of GB-EXPs. (A) Heatmap of 42 genes from RNAseq data differentially expressed (DE) between Resp (n=7) and Non-
Resp (n=7 (tumor peripheral portions were excluded). (B) Expression levels of 4 genes subdivided in HR (n=2), MR (n=4), LR (n=3) and NR (n=9)
groups (peripheral portions were included). (C) Stepwise discriminant analysis identifies a combination of 17 DE genes that discriminates the
Resp (n=9) and Non-Resp (n=9) cases with 100% accuracy (peripheral portions were included). (D) PCA showing RNAseq data of 17 DE genes in
7 Resp and 7 Non-Resp (tumor peripheral portions were excluded. (E) The 17 gene panel Kaplan-Meier plot that identifies a TCGA Low-Risk and
High-Risk survival group. Concordance Index = 64.34, Log−Rank Equal Curves p=0.001853, R^2 = 0.192/0.998 Risk Groups Hazard Ratio = 1.79
(conf. int. 1.23 ~ 2.6), p=0.002172. (F) Expression levels of the 17 discriminant genes in TCGA database (in the top) and in GB tumors (9 Resp and
9 Non-Resp. in the bottom). (G) Molecular subtypes of GB samples in Resp (n=7) and Non-Resp (n=7) groups. Asterisks indicate level of
statistical significance.
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vinblastine (VBL) and mebendazole (MBZ) with TMZ was

more effective in reducing the cell number when glioblastoma

cells had low expression levels of FGFR3. Most noteworthy are

the genes that we report in Figure 5B, BIRC3 and NDRG2,

which show differential gene expression that varies gradually

according to %DR, supporting phasor-NAD(P)H FLIM drug

response stratification. Some studies in 2016 and 2021 (33, 34)

report that BIRC3 gene was found expressed at a higher level in

recurrent GB than in newly diagnosed GB and emerged as a

novel driver of TMZ therapeutic resistance, suggesting that,

during TMZ therapy, concurrent BIRC3-specific inhibition

could be exploited for enhanced benefit. NDRG2 showed an

opposite trend compared to BIRC3 (Figure 5B). The main

mechanism underlying NDRG2 silencing in gliomas remains

unknown. There is also debate on whether NDRG2 gene activity

reflects the survival of glioma patient (35). Furthermore, we

identified two genes that were completely silenced in all samples

of the Non-Resp group, ANKRD28 and PTPRD (Figures 5A, B).

In the GB3c,p and 4c,p composed of a core and peripheral

portion with different response to TMZ treatment (Figure 4G),

both genes resulted differentially expressed always in

accordance with their phenotype. Non-responsive tumor

portions had consistently complete loss of ANKRD28 and

PTPRD expression unlike their responsive counterparts

(Figures 4G, 5B). While the ANKRD28 gene has an unknown

role in GB, the tyrosine phosphatase PTPRD is a tumor

suppressor that is frequently inactivated and mutated in GB

and other human cancers (36).

Finally, on the 42 significant genes, we performed a stepwise

discriminant analysis that enabled the identification of a 17 gene

signature (Supplementary Table 6), which could discriminate

the Resp and Non-Resp tumor samples with 100% accuracy

(Figures 5C, D). To investigate the potential disease course of

patients whose tumors we had predicted to respond to TMZ, we

queried the TCGA database of hundreds of clinically and

molecularly characterized GB patients. Therefore, the 17 gene

profile was used in the “SurvExpress Biomarker Validation of

Cancer Gene Expression” tool, to interrogate an extended

TCGA-derived GB patient population (n=146). non-

parametric statistics, used to estimate the survival function

from lifetime data of the 146 cases, produced a Kaplan-Meier

plot identifying a low- and high-risk survival group, as shown in

Figures 4E, F, whose molecular profile corresponded to the Resp

and Non-Resp tumor groups, respectively (Figure 5F). As shown

in Figure 5E, it is noteworthy that the Resp gene expression

profile was associated exclusively with patients that belonged to

the group of the longest survivors (>50 months).

To establish the type of GB molecular subtype to which our

samples belong, we exploited a TCGA 490 gene expression

profile deposited by the Anderson Cancer Center and created

a classifier that allowed the assignment of each sample to one of

the mesenchymal, classical, proneural, neural, and G-CIMP

categories. As shown in Figure 5G, the Non-Resp group was
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mostly composed of samples of the mesenchymal type, which

represents the most aggressive subtype (37) (Supplementary

Table 7).

Whole exome analysis (WEA)
WEA was evaluated in 16 GB tumors divided into nine Non-

Resp and seven Resp cases. The mutational landscape of Resp vs.

Non-Resp is shown in Figures 6A, B. In Non-Resp samples, the

mutational load was higher for any type of variant than in Resp

cases (Figure 6A), as widely described in more aggressive and

less TMZ-responsive tumor phenotypes (38). The distribution of

base substitutions revealed a prevalence of T>G and C>T

transversions in Non-Resp versus Resp tumors (Figure 6B).

We analyzed mutations in genes known to be altered in

IDH1-WT GB by referring to the My Cancer Genome-MCG

(mycancergenome.org database). We found 14 mutated genes in

the 16 GB cases, for a total of 28 different variants (Figure 6C;

Supplementary Figure 5, Supplementary Table 8). The analysis

confirmed a higher mutational burden in the Non-Resp group

with more deleterious alterations in the PTEN, RB1, and NF1

genes, which are well-known tumor suppressor genes in GB,

indicating a more aggressive phenotype in accordance with our

previous results (39).

Using Maftools forestPlot, we identified seven genes that

significantly distinguished between the two groups of tumors

(Figure 5D, Supplementary Figure 6, and Supplementary

Table 9). Each variant is shown in detail in Supplementary

Table 9. Two variants of FBN3, FBN3E492K in GB14 and

FBN3R2688Q in GB16, have already been described

and annotated in COSMIC with the IDs COSM9337963 and

COSM3541504, respectively. The impact on protein function

and thus clinical significance has not yet been annotated for

most of these variants, resulting in “unknown significance” for

the Varsome classification. Only the two splicing variants in

DNAH5 in samples GB6c and in DENND6B in sample GB13

were predicted to be pathogenic. Three genes (ZNF713,

DNAH5, and SLC7A4) were mutated only in the Non-Resp

group (67% (6/9), 56% (5/9), and 56% (5/9), respectively).

GALNTL5, FBN3, and DENND6B were shared only by the

Resp group at a frequency of 56%. The OTOR gene was common

between the groups of tumors, but with a higher mutation rate in

Resp cases. To the best of our knowledge, none of the identified

genes have been associated with glioblastoma.

CNApp (40) analysis was used to analyze chromosomal

abnormalities in the 16 GB samples to uncover similarities and

differences in copy number changes between tumors in the same

group and between the two groups (Figures 6E, F). The most

prominent chromosomal alteration, present in more than 50% of

the samples in both the Resp and Non-Resp groups, involves

both p and q arms of chromosomes 7, 9 and 10, specifically

characteristic of IDH-WT GBs (41). Non-Resp tumors showed

loss of chromosomes 13 and 14, while, interestingly, the Resp

group shows complete chromosomal conservation (Figures 6E,
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FIGURE 6

Mutational profiling of GB-EXPs. (A, B) The mutation landscape of the GB cohort (n=16). Counts of each variant classification (a) and counts of
each single-nucleotide variant (SNV) classification (B). (C) Co-bar plot of the most frequent gene mutations in GB. (D) Co-bar plot of the genes
significantly discriminating Non-Resp and Resp groups. (E) CNApp frequencies for the p and q arms of each chromosome in Resp and Non-
Resp groups. Alteration frequency is expressed as the percentage of altered samples out of the total within each group (red for gains and blue
for losses). (F) Heatmap of individual copy number region profiles shows changes in copy number of chromosome regions between Resp (n=7)
and Non.Resp (n=9) groups (red for chromosome gains and blue for losses).
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F). Chromosome 14 has been described in GB patients as a

carrier of several tumor suppressor genes (42). A gain of

chromosomes 19 and 20 was observed in a higher percentage

of tumors of the Resp group than in the Non-Resp group.

Amplification of chromosome 19 has been identified as a

favorable prognostic marker for GB (43). These results are

indicative of a differential genetic background associated with

the NAD(P)H FLIM-based TMZ response assessment, further

confirming the validity of our approach.
Discussion

Glioblastoma is the most aggressive malignant tumor of

the central nervous system and has a highly unfavorable

prognosis. Despite the hardworking search for therapeutic

strategies to reverse the highly unfavorable prognoses of GB

patients, maximal surgery resection, standard temozolomide

chemotherapy (TMZ) and radiotherapy (RT), while not

resolutive, currently remain the best treatment option,

unchanged since 2005 (3). This therapeutic standstill in the

GB field is because, novel experimental approaches have

shown limited success in improving patient survival (44).

To date, preclinical ex vivo drug testing approaches have

failed mainly because they do not respect the complexity of

each individual glioblastoma cellular organization and

composition (5). In this study, we have developed a novel

approach to test the response to an anticancer treatment in

patient-derived glioblastoma 3D organoids that we term GB-

EXPs. The uniqueness of our approach is to avoid keeping the

organoids in culture for extended time to prevent it from

undergoing the usual genetic and morphological evolution

and divergence from the tumor of origin. Many other in vitro

glioblastoma organoid models (6, 8) consist of several weeks

of culturing, wasting the patients’ precious time who in the

meantime progress in their short-term fatal clinical course.

This long culture period is also due to the fact that

conventional in vitro drug testing assays require very long

application settings and readout times with various

biological, molecular, genetic, and chemical assays (45), that

inevitably lead to prolongation of in vitro tumor growth,

which in the long term alters an already formed 3D tumor

structure, such as a GB-EXP example.

Here we applied a metabolic imaging method that exploits

the intrinsic auto-fluorescence molecular properties of NAD

(P)H, a metabolic enzyme cofactor, that is associated with the

metabolic state of the tissue. Studying intracellular metabolic

shifts allows a precocious assessement of cellular response to

treatment because anticipates any actual cellular behavior (11).

In several recent studies, measurement of cancer cell

metabolism by live imaging using intrinsic fluorescence from

metabolic enzymatic cofactors such as NAD(P)H has shown

promise as a sensitive non-invasive method for the early
Frontiers in Oncology 15
prediction of drug response (10, 27). Therefore, FLIM NAD

(P)H, that does not require any type of staining, is perfectly

suitable for GB-EXPs because it identifies, at an early stage of

culturing, metabolic changes rapidly and non-invasively on the

biological material used, leaving it vital (10) without interfering

with its internal structure (27, 46). Our approach, therefore,

overcomes the limitations of other in vivo drug testing tools

since it allows to give a response to treatment after 72hr at the

latest from initial treatment and within one week after surgery,

allowing the tumor to remain viable and not diverge excessively

from how it was structured in vivo in the patient, as shown in

Figures 1K, L.

Skala et al. in 2017 implemented for the first time FLIM-

based metabolic imaging as an ex-vivo drug testing tool on

breast cancer organoids leveraging on NAD(P)H and FAD as

metabolic intracellular biomarkers (27). Here we applied the

same approach for the first time on glioblastoma organoids and

unlike these authors we analyzed the FLIM measurements using

the phasor data analysis approach, a mathematical method that

is more suitable for a complex in vitro system such as cancer

organoids (17). The phasor analysis approach allowed, through

the segmentation of the mean distribution curves of the free/

bound NAD(P)H fractions operated by the FLIM computational

analysis system, the analysis of each tumor in its part and the

evaluation of the different internal metabolic states. In such a

way, we could calculate the percentage of drug response for each

sample and refine the stratification of the tested tumor samples.

We used TMZ to validate the whole procedure. TMZ

treatment was the first and only drug to which each GB

tumor sample was exposed after first diagnosis. Each patient-

derived tumor was classified as a TMZ Resp or Non-Resp

sample. We could successfully corroborate our FLIM-based

results using conventional drug testing methods and genomic

and transcriptomic characterization analyses. In this validation

process, a specific molecular status significantly distinguished

the two TMZ Resp and Non-Resp tumor populations, stratified

phenotypically solely by the NAD(P)H-FLIM based readouts.

This distinction at the molecular level strengthens the accuracy

of this approach. In fact, between the two groups of patient-

derived tumors, which share many common characteristics of

GB, we have been able to highlight, quite strikingly, markers

already described in the literature, but also new potential

targets associated with the response to TMZ, such as

ANKRD28, PTPRD, ZNF713, DNAH5, SLC7A4, GALNTL5,

FBN3, DENND6B, and OTOR. In particular, the accuracy of

the NAD(P)H FLIM-based stratification could solve intra-

tumor heterogeneity, confirmed by the different TMZ

responses of GB3 and GB4 c and p portions (Figure 4G),

which according to their phenotype had differential gene

expression levels for several of the genes listed above,

especially ANKRD28 and PTPRD that completely lost gene

expression in the TMZ NR portions (Figure 5B). Furthermore,

a unique new 17-gene expression signature significantly
frontiersin.org

https://doi.org/10.3389/fonc.2022.969812
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Morelli et al. 10.3389/fonc.2022.969812
discriminating the Resp and Non-Resp groups emerged. Since

our tumor cases derived from patients for whom the clinical

course was not yet available, we could not have a clinical

confirmation of what was predicted in vitro. Therefore, in the

meantime, we decided to test the tumor molecular profiles on a

series of 150 patients of the glioblastoma TCGA dataset

completely clinically characterized. This investigation

revealed that the molecular profile that characterized our

TMZ responsive and non-responsive tumor populations were

highly significantly associated with the long-surviving and

short surviving groups of the TCGA dataset, as we would

predict. In depth studies are required to investigate the

potential role of the 17 genes signature in glioblastoma.

Furthermore although MGMT methylation status is

accepted as the only molecular prognostic biomarker for

predicting patient response to TMZ treatment, inconsistencies

do occur and currently challenge the efficacy of this biomarker in

clinical practice, raising the question of its value (47). Here the

number of methylated tumors for MGMT was higher in the

responsive group than in the non-responsive group, as expected.

However, following our procedure, some non-methylated tumor

cases turned out to be nevertheless responsive to TMZ,

suggesting that our approach could be synergistic with the

classical MGMT methylation biomarker.

This study is the first to apply FLIM-based metabolic

imaging to in vitro vital patient-derived GB tumors to

perform an ex vivo treatment tumor response assessment

early before losing the parental tumor architecture. The lack

of predictive biomarkers is a major limitation in GB clinical

oncology, and today, clinicians urgently need step-changing

informative tools to support their decision-making therapy

approaches. A method to predict a patient’s tumor-specific

drug response before the onset of therapy can be useful for

managing patients with GB. This innovative approach in the

field of glioblastoma can be transformative for the clinical

management of the patients with glioblastoma, especially at the

time of disease progression when the guidelines are less

stringent and when the patient can receive more therapeutic

options. The performance of such a functional precision

medicine approach can provide additional information

regarding a patient’s tumor vulnerabilities. These functional

approaches open the door to new discoveries and generate

further knowledge of the disease, which in turn will increase

the likelihood of producing useful therapeutic solutions (48). It

is important to point out that the full promise of precision

medicine in oncology is yet to be realized, as more individuals

may benefit from functional approaches. In the glioblastoma

clinical field, we envision an increasing implementation of

functional precision medicine protocols and a transition

from therapeutic approaches followed by watchful waiting to

informed decisions based on specific patient-derived GB tumor
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treatment-response predictions. This approach can also be

used to test new FDA-approved anti-cancer drugs in vitro

directly on the tumor, could also be seen as a springboard for

new drugs that need to be transferred to more advanced stages

of clinical trials and be implemented for other cancers.
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