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Application progress of liquid
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Department of Medical Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Gastric cancer (GC) is one of the most common malignant tumors globally.

Guiding the individualized treatment of GC is the focus of research. Obtaining

representative biological samples to study the biological characteristics of GC

is the focus of diagnosis and treatment of GC. Liquid biopsy technology can use

high-throughput sequencing technology to detect biological genetic

information in blood. Compared with traditional tissue biopsy, liquid biopsy

can determine the dynamic changes of tumor. As a noninvasive auxiliary

diagnostic method, liquid biopsy can provide diagnostic and prognostic

information concerning the progression of the disease. Liquid biopsy

includes circulating tumor cells, circulating tumor DNA, circulating tumor

RNA, tumor educated platelets, exosomes, and cytokines. This article

describes the classification of liquid biopsy and its application value in the

occurrence, development, and therapeutic efficacy of GC.
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Introduction

Gastric cancer (GC) is one of the most common malignant tumors. It ranks fifth in

incidence globally (1) and third concerning the cancer mortality rate (1). GC is a serious

threat to health and life. In recent years, the individual diagnosis and treatment of tumors

has achieved good results and improved the prognosis of patients. However, due to the

lack of specific markers and effective treatment methods, the recurrence and metastasis

rate of GC patients is still high. Traditional methods, such as serum tumor markers,

imaging endoscopy, and histopathology, are still widely used in the screening of GC.

However, their sensitivity and specificity are relatively low. Liquid biopsy is an in vitro

diagnostic technology that uses circulating biomarkers in the body fluid of tumor patients

to provide tumor genetic information. It represents a rapid, non-invasive, and

reproducible alternative to tissue biopsy (2, 3). With the advancement of precision

treatment, liquid biopsy has greatly promoted the development of precision medicine in

clinical practice on the basis of scientific research. This article reviews the application

progress of liquid biopsy in GC.
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Liquid biopsy

Liquid biopsy is defined as the sampling and analysis of non-

solid biological tissues, such as blood, and other body fluids,

including urine, saliva, pleural fluid, and cerebrospinal fluid. The

principle of the technique is that tumor will release DNA, RNA

and other fragments into the blood circulation system or body fluid

during cell apoptosis or necrosis. These fragments often contain

the molecular information of the tumor, and their abundance is

closely related to the size and development of the tumor.

Compared with the traditional tumor tissue biopsy

technology, liquid biopsy has additional advantages of fast

sampling speed, low cost, minimal invasion, and the ability to

track tumor progression. More importantly, tumor tissue biopsy

cannot be performed without knowing the tumor in advance,

while liquid biopsy can identify unknown lesions. It can also

monitor tumor treatment by detecting minimal residual disease

and can even be used for cancer screening in healthy people.

Blood based liquid biopsy includes proteins and cytokines

detected in plasma, CTCs/circulating tumor microemboli

(CTM), exosomes, tumor induced platelets (TEPs), and tumor

derived circulating nucleic acids, such as circulating tumor DNA

(ctDNA) and circulating tumor RNA (ctRNA) (Figure 1).
CTCs/CTMs and GC

CTCs and CTMs

In 1869, Ashworth discovered the existence of CTCs in the

blood circulation. After being shed from the primary tumor or

metastatic lesion, CTCs are released into the peripheral blood

through blood vessels and lymphatics. During the development

and progression of tumors, most tumor cells entering peripheral
Frontiers in Oncology 02
blood are cleared by immune system or die due to the shear force

of blood flow. Only a small portion of tumor cells with stem cell-

like or epithelial mesenchymal transition (EMT) characteristics

can survive and migrate to distant sites (4, 5). Because there are

very few CTCs in blood, it is very difficult to detect and count

CTCs produced by malignant tumors. There are many existing

technologies for detecting CTC. These mainly include enrichment

and identification technology (6). The principle of enrichment

technology is mainly based on the different physical or biological

characteristics of CTCs from other cells in blood. CTCs are

screened out by specific proteins expressed on the cell surface or

by cell size and density. The enrichment methods mainly include

density gradient centrifugation, immunomagnetic bead sorting,

and chip enrichment technology. Among them, immunomagnetic

bead sorting method is used in most detections at present because

of its high sorting specificity and good activity in enriching CTCs

(7). CTCs enriched by immunoaffinity or physical property need

to be combined with effective analysis methods. Since the current

CTC capture technology cannot guarantee 100% purity, the

obtained cells need to be identified to further determine the

number of CTC cells, so as to reduce the false positive rate and

false negative rate of CTC number determination. In addition, in

the process of tumor development, not only the number of CTCs

is changing dynamically, but also the molecular markers carried

by CTCs are changing. Therefore, the detection of CTC surface

markers can reflect the dynamic changes of tumor occurrence and

development, and can better guide clinical treatment. At present,

the commonly used CTC identification technologies include

immunofluorescence, PCR, FISH and high-throughput

sequencing. And epithelial cell adhesion molecules and

cytokeratin (CK) are the most commonly markers in the

identification of CTCs (8). At present, there are also single-cell

analysis technologies for CTC. First, single cells are captured and

recovered by manual aspiration under the microscope and micro
FIGURE 1

Gastric cancer cells release DNA, RNA and other fragments into the blood circulation system or body fluid during cell apoptosis or necrosis.
These fragments often contain the molecular information of the tumor. Blood based liquid biopsy includes proteins and cytokines detected in
plasma, circulating tumor cells, circulating tumor DNA, circulating tumor RNA, tumor induced platelets and exosomes.
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cutting on the slide, and then whole genome amplification is

carried out. However, due to the high technical threshold of CTC

single-cell analysis, it is generally necessary to combine high-

performance microscopy to confirm cells (9). CTCs have proven

prognostic value in different tumors, including digestive system

tumors. In addition, information concerning gene mutation and

protein expression in CTCs is also another important marker of

tumor screening, treatment response assessment, and

survival prediction.

A CTM is a cell mass formed by the aggregation of at least

three cells that circulates in the blood. CTM reflects the collective

migration behavior of tumor cells. Compared with CTC, CTM

may be more likely to survive the shear pressure of blood flow. In

addition, CTM can resist anoikis and immune clearance,

overcome cytotoxic treatment, and maintain proliferation

ability, which bestows a greater survival advantage and

metastasis potential on the aggregate compared to a single

tumor cell (10–13). CTM avoid anoikis by loss of adhesion of

the tumor cells. The cells more easily metastasize through EMT

transformation and maintain the internal cell connection to

resist anoikis and apoptosis (14). CTM can be composed of

tumor cells and can also adhere to a mixture of leukocytes,

endothelial cells, parietal cells, and platelets in continuous

circular collision to form a closed microenvironment. A CTM

containing fibroblasts and endothelial cells is more likely to

avoid immune clearance and form distal metastatic lesions (10).

RNA sequencing analysis also suggests that CTM contains key

molecules to maintain cell adhesion, and that the CTM-related

microenvironment is conducive to tumor survival. Once CTM

forms, tolerance and proliferation rate are greatly improved. In

one study, a frequency of CTMs ≥ 1 was associated with a higher

risk of disease progression and death, as well as shorter

progression-free survival (PFS) and overall survival (OS) (15).

Therefore, although the number of CTMs is less, their metastatic

tumorigenicity is 23−50 times higher than that of a single CTC.

Therefore, the formation of CTMs is generally considered to lead

to a worse prognosis.
CTCs/CTMs and occurrence,
development, and therapeutic efficacy
of GC

The positive rate of CTCs in peripheral blood of patients with

GC is significantly higher than that of patients with benign gastric

diseases (16). A meta-analysis showed that the specificity of CTC

detection for GC diagnosis was 99% (17). Cao et al. detected CTCs

in the peripheral blood of GC patients following surgery by

detecting the expression of Survivin. The authors described that

the detection rate of CTCs in advanced GC (AGC; stage III ~ IV)

was significantly higher than that in stage I~II (18). However, the

definition of a CTC-positive standard has not been unified. Kang

et al. conducted a prospective study including 116 patients with
Frontiers in Oncology 03
GC and 31 healthy subjects. The receiver operating characteristics

(ROC) curve showed that when the CTC threshold was 2 per 7.5

mL of blood, the sensitivity and specificity of CTC in

distinguishing GC from normal controls were highest (85.3%

and 90.3%, respectively) (19). These results implicate CTCs as a

potential biomarker for early diagnosis of GC.

Compared with conventional tumor markers, monitoring

CTCs is more sensitive for the assessment of disease status and

prognosis of GC. Cheng et al. found that the CTC count of AGC

patients significantly correlated with many clinicopathological

parameters, including Lauren grade, peripheral nerve infiltration,

TNM stage, and Ki-67 level (20). Several other studies have

confirmed the significant correlation of CTCs with the survival

of patients. Hiraiwa et al. used the CellSearch system to detect the

CTC level of 44 GC patients; the OS of patients with CTC < 2 was

significantly better than that of patients with CTC ≥ 2 (21). The

positive rate of CTC in metastatic GC (mGC) was as high as 61%,

which was significantly higher than that in patients with non-

mGC. Uenosono et al. detected CTCs of 251 GC patients using the

CellSearch system. The recurrence free survival (RFS) and 5-year

survival rates of CTC-positive patients were significantly lower

than those of CTC-negative patients (22). In addition, in a study

involving 41 patients with newly diagnosed mGC, Zheng et al.

tested the prognostic significance of CTM in peripheral blood

samples. In multivariate analysis, detectable CTM in blood was an

independent prognostic factor for shortened OS (23). The

collective evidence supports the view that CTCs/CTMs could be

used as indicators to judge the prognosis and recurrence of GC.

CTC is also important in monitoring the efficacy of GC. Lee et

al. found that among patients with mGC, patients with CTC-

positive (≥ 5 CTCs per 7.5 mL) had lower chemotherapy efficacy

and reactivity than patients with CTC-negative (< 5 CTCs per 7.5

mL) (24). Li et al. monitored the dynamic changes of CTCs during

treatment of 15 AGC patients. Patients with sustained low level

CTC (< 3 CTCs per 7.5 mL) or patients who changed to low-level

CTC early after treatment had a better prognosis. In contrast,

patients with sustained high-level CTC (≥ 3 CTCs per 7.5 mL) or

patients who changed to high level CTC after treatment had a

worse prognosis (25). Matsusaka et al. found that the number of

CTCs in peripheral blood of AGC patients decreased significantly

after 2 and 4 weeks of treatment with tegafur, gimeracil, and

oteracil potassium capsules, especially after 2 weeks of

chemotherapy (26). Therefore, regular detection of CTCs may

guide the clinical use of chemotherapeutic drugs. The reduction of

CTCs is an early indicator of effective treatment.
The ctDNA and GC

The ctDNA

Circulating free DNA (cfDNA) is a kind of extracellular

DNA that can be present in blood, cerebrospinal fluid, and other
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body fluids in the form of single stranded or double stranded

DNA, and as a complex of DNA and protein. The cfDNA

fragments are released by cells into the blood. The term

cfDNA refers to DNA released by tumor cells into the blood.

Because ctDNA contains different fragments of tumor genes,

which may contain cancer specific genes or epigenetic variations,

such as methylation or mutation. The average length of ctDNA

is approximately 134bp, which is shorter than that of non-tumor

cfDNA (approximately 166bp) (27). The difference in length can

separate ctDNA from non-tumor cfDNA. Compared with CTC,

ctDNA has a relatively long half-life, which confers an advantage

in reflecting tumor heterogeneity.
The ctDNA and GC occurrence,
development, and therapeutic efficacy

The ctDNA can be used as a tumor marker for early diagnosis of

GC.Kim et al. confirmed that the ctDNA level ofGCpatients was higher

than that of healthy controls. Thediagnostic sensitivity and specificitywas

96.67% and 94.11% respectively (28). Park et al. studied 54 GC patients

and 59 healthy controls, and found that the concentration of ctDNA in

the GC patients was 2.4 times higher than that in the healthy controls

(29). Sai et al. detected the ctDNA concentration of 53 GC patients by

real-time fluorescence quantitative PCR (RTQ-PCR). The ctDNA

concentration of GC patients was significantly higher than that of

healthy controls, and that of patients with AGC was higher than that

of patients with early GC (EGC), indicating that the ctDNA

concentration was related to the occurrence and development of GC

(30). The methylation level of BARHL2 appears to be helpful in

distinguishing GC and non-GC individuals. Another study detected

TFPI2 methylation of tumor cells in the plasma of 73 GC patients. Real-

time fluorescence quantitative methylation specific PCR detected TFPI2

methylation in 7 patients, but not detected in the healthy controls.

Analysis of the samples by RTQ-MSP revealed that the degree of TFPI2

methylation was higher in patients with lymph node and distant

metastases. These findings suggest that TFPI2 methylation is related to

the occurrence and metastasis of GC (31). A meta-analysis of 1193 GC

patients showed that the detection of ctDNA had significant advantages

in the specificity of diagnosis of GC, andwas significantly correlated with

tumor size, TNM stage and infection with Helicobacter pylori (32).

The effect of ctDNA on the prognosis and treatment of GC

patients has been gradually confirmed. Gao et al. showed that the

detection of ctDNA was significantly correlated with the TNM

stage of GC. PFS and OS of patients with detectable ctDNA were

significantly shorter than those without detectable ctDNA (32).

Another study associated ctDNA levels with tumor recurrence in

GC patients undergoing therapeutic surgery (28). Kim et al.

monitored the ctDNA in GC patients postoperatively and

detected ctDNA was detected in 19 samples. The average time

from the detection of ctDNA to the recurrence of GC was 4.05

months. These authors reported that the presence of postoperative

ctDNA was significantly correlated with the recurrence of GC
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within 12 months after operation, indicating the clinical

significance of postoperative ctDNA monitoring for the

recurrence of GC in patients (33). Yang et al. observed 46

patients with stage I-III GC postoperatively; relapse eventually

occurred in all patients with detectable ctDNA immediately after

surgery (34). Sakakura et al. used RTQ-MSP to detect RUNX3

methylation of ctDNA in GC patients. RUNX3 hypermethylation

was detected in 29% (19/65) GC patients. The postoperative level

of RUNX3 methylation was 12-times lower than the preoperative

level. A prospective study of the RUNX3 methylation level in all

preoperative and postoperative GC patients found that the

postoperative level decreased by 83% compared with the

preoperative level, and that the degree of RUNX3 methylation

was related to tumor stage, lymph node metastasis, and vascular

invasion, with a sensitivity higher than that of carcinoembryonic

antigen (CEA) (35). In addition, the research results of Wu et al.

concerning the chromosomal instability and treatment response

of ctDNA in GC showed that 93% of patients sensitive to drug

treatment had stable chromosomes, while 52% of patients

resistant to treatment had no stable chromosomes. These

findings indicate that the detection of chromosomal instability

of ctDNA may be helpful to monitor the treatment response of

GC patients (36).

Recent studies have also highlighted more advantages of

ctDNA. Maron et al. showed that, compared with tissue-next

generation sequencing (NGS), ctDNA-NGS can overcome

heterogeneity and identify a higher frequency of gene mutations

(37). Gao et al. analyzed the amplification of HER2 in ctDNA-

NGS of 70 GC patients. The total coincidence rate between the

results and immunohistochemistry/fluorescence in situ

hybridization in tissues was 91.43%. This finding indicated a

high consistency between ctDNA and tissue biopsy for the

detection of HER2 amplification. Gao et al. further compared

the detection of ctDNA and tumor tissue in 30 patients with AGC.

They considered that the evaluation of ctDNA could partially

overcome the heterogeneity of tumor and might become a

substitute for HER2 analysis in GC (38). The collective findings

indicate that the detection of ctDNA can be used for the early

diagnosis, treatment, and prognostic evaluation of GC (Table 1).
The ctRNA and GC

The ctRNA

The ctRNA is present in the blood circulation and has some

potential as a cancer biomarker. Compared with ctDNA, ctRNA is

unstable and has a short half-life, and its wide classification and

distribution in peripheral blood and other body fluids make it a

superior biomarker for liquid biopsy. At present, mRNA

fragments and microRNAs (miRNAs) are usually the main

detection targets of ctRNA. In addition, long noncoding RNA

(lncRNA), circular RNA (circRNA), and transfer RNA (tRNA)
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derived fragment (tRF) are also new biomarkers in cancer

diagnosis and treatment monitoring (39–41).
The ctRNA and GC occurrence,
development, and therapeutic effect

Studies of several tumor species, including GC, have

confirmed the role of ctRNA in tumor diagnosis and prognosis.

Due to their abundance, stability, tissue-specific expression and

wide circulation in different body fluids and exosomes, ctRNA

may become a new diagnostic biomarker. MiRNAs are currently

considered as promising GC biomarkers. These RNAs are

abnormally expressed in precancerous events of gastric tissue,
Frontiers in Oncology 05
such as H. pylori infection and precancerous lesions, including

chronic atrophic gastritis and intestinal metaplasia, and in early

and advanced GC (42). The expression of miR-21 and mIR-19

increased, and the expression of let-7, miR-146, and miR-375

decreased in GC patients infected with H. pylori, indicating the

potential of miRNA as a biomarker for early diagnosis of GC (43).

Up-regulation of miR-10b-5p, miR-20a-3p, miR-132-3p, miR-

185-5p, miR-195-5p, and miR-296-5p in the serum of patients

with GC has been demonstrated (44). Up-regulation of miR-16,

miR-25, miR-92a, miR-451, and miR-486-5p in the plasma of

patients with GC can diagnose GC in the early stage (45). Shao et

al. demonstrated the significantly lower expression of miR-212 in

GC patients than that in healthy controls, and was negatively

correlated with tumor stage (46). Another study showed that miR-
TABLE 1 Biological functions of liquid biopsy in GC.

Liquid biopsy Tendency Downstream signal/target Function

BARHL2 methylation up NA Tumor population differentiation

TFPI2 methylation up NA Promote invasion and metastasis of GC

RUNX3 methylation up NA Promote metastasis and vascular invasion of GC

HER2 amplification up NA Replacement of tissue biopsy

miR-10b-5p up NA Early diagnosis of GC

miR-20a-3p up NA Early diagnosis of GC

miR-132-3p up NA Early diagnosis of GC

miR-185-5p up NA Early diagnosis of GC

miR-195-5p up NA Early diagnosis of GC

miR-296-5p up NA Early diagnosis of GC

miR-16 up NA Early diagnosis of GC

miR-25 up NA Early diagnosis of GC

miR-92a up NA Early diagnosis of GC

miR-451 up NA Early diagnosis of GC

miR-486-5p up NA Early diagnosis of GC

miR-212 down NA Inhibit invasion and metastasis of GC

miR-196a up NA Early diagnosis of GC

miR-30a-5p up NA Poor prognosis

miR-659-3p up NA Poor prognosis

miR-3917 up NA Poor prognosis

miR-203 up NA Promote invasion and metastasis of GC

lncRNA H19 up NA Promote GC cell growth and inhibit apoptosis

lncRNA MALAT1 up NA Independent risk factors for OS

circNRIP1 up AKT1/mTOR Promote invasion and metastasis of GC

tRF-3017A up Silencing NELL2 Promote invasion and metastasis of GC

tRF-5026a down PTEN/PI3K/AKT Inhibit occurrence and development of GC

tRF-Glu-TTC-027 down MAPK signaling Inhibit occurrence and development of GC

Exosomal lncUEGC1 up NA Early diagnosis of GC

Exosomal circRanGAP1 up VEGFA Promote invasion of GC

Exosomal miR-1246 up NA Early diagnosis of GC

Exosomal miR-21 up NA Early diagnosis of GC

Exosomal miR-92a down NA Better OS和PRFS

Exosomal miR-23b up NA Independent risk factors for DFS and OS

Exosomal PD-L1 up CD69 T cell dysfunction
NA, not applicable.
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196a had higher diagnostic ability than miR-196b or miR-196a/b

combination, which also confirmed its potential value as a

biomarker of GC (47). In addition, Shimura et al. reported the

overexpression of miR-30a-5p, miR-659-3p, and miR-3917 in GC

patients with peritoneal metastasis, and demonstrated that the

high expression of these miRNAs was significantly correlated with

poor prognosis (48). Imaoka et al. showed that the low level of

serum miR-203 in GC patients was related to lymph nodes,

peritoneum, and distant metastasis, which eventually led to a

poor prognosis (49).

The expression of circulating lncRNAs is also related to the

diagnosis, prognosis, and treatment monitoring of GC patients.

The authors described that plasma lncRNA H19 in GC patients

was higher than that in non-GC patients (50, 51). LncRNA H19

can promote the growth of GC cells and inhibit apoptosis (52).

Dai et al. found that lncRNA MALAT1 was highly expressed in

GC; high expression of MALAT1 was an independent risk factor

for OS in GC patients (53). In addition, MALAT1 can promote

the malignant progression of GC and resistance of GC cells to

cisplatin, implicating MALAT1 as a potential biomarker for

predicting the prognosis of GC. Advantages of circRNA include

richness, stability, and tissue specificity, and they is widely

circulated in a variety of body fluids and exosomes. Therefore,

circRNA may become a new GC diagnostic biomarker and

therapeutic target (54). RNA sequencing analysis has shown

that circRNA was highly specifically expressed in GC, and its

expression level was closely related to the malignant biological

behavior of GC. Zhang et al. confirmed by qRT-PCR that the

expression of circNRIP1 in GC cells was significantly higher than

that in normal gastric mucosal epithelial cells. The expression of

circNRIP1 can activate protein kinase B (AKT)1/mammalian

target of rapamycin signaling pathway by binding miR-149-5p

to promote the proliferation, invasion, and migration of GC cells

(55). In addition, different derived fragments of tRNA have

different roles in the occurrence and development of GC. Tong

et al. showed that tRF-3017A could promote the migration and

invasion of GC cells by silencing tumor suppressor NELL2 (56).

The tRF-5026A and tRF-Glu-TTC-027 can inhibit the occurrence

and development of GC through the phosphatase and tensin

homolog (PTEN), phosphoinositide 3-kinase (PI3K), AKT, and

mitogen-activated protein kinase (MAPK) signaling pathways,

respectively (57, 58) (Table 1).
Exosomes and GC

Exosomes

Exosomes are the most widely studied of the three major

subgroups of extracellular vesicles (EV) released from

mammalian cells (the others are microcysts and apoptotic

vesicles) (59). Almost all cells in the body, including tumor

cells, can produce exosomes. These EVs can carry a variety of
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proteins, mRNA, miRNA, lncRNA, DNA, and lipids. The

surface molecules are composed of integrin and the

Tetraspanins family. CD9, CD63, and CD81 are often used as

specific markers of exosomes (60, 61). Exosomes are widely

prevalent in urine, blood, pleural and peritoneal effusion, saliva,

bile, and semen. In particular, they are secreted by tumor cells,

which may be related to Rab3D overexpression, Wnt signal

pathway activation, and an acidic microenvironment (62–64).

Recent studies have shown that tumor derived exosomes carry a

large number of functional molecules and have become a new

model of intercellular signal transduction media. They initiate

intercellular information communication by fusing with the

target cell membrane and transmit functional molecules,

including miRNA and protein. In addition, exosomes

participate in a series of processes that include immune

response, cell migration, cell proliferation, cell differentiation,

and tumor invasion. Exosomes promote tumor growth and

metastasis by immunosuppression, inducing EMT in tumor

cel ls , promote angiogenesis , and enhance vascular

permeability, which establishes the microenvironment before

tumor metastasis and transmission of drug resistance.
Exosomes and GC occurrence,
development, and therapeutic effect

GC derived exosomes usually promote proliferation in an

autocrine manner or by activating MAPK, extracellular signal-

regulated kinase (ERK), PI3K, and AKT signaling pathways (65,

66). GC derived exosomes are further involved in the

dissemination of tumors in the abdominal wall and diaphragm

(67). A variety of exosomal proteins have been identified as new

biomarkers for the diagnosis and prognosis of GC. In addition,

omentum may play a positive role in promoting the invasion of

GC cells through secreted proteins such as interleukin (IL)-6, IL-

8, intercellular adhesion molecule 1 (ICAM-1), C-C motif

chemokine ligand 2 (CCL2), and oncostatin M (OSM) (68).

Ding et al. reported that the exosomal proteasome 20S subunit

alpha 3 (PSMA3) and PSMA6 in mGC were significantly

enriched in serum compared with primary GC, and could be

potential biomarkers of mGC (69). The exosomal tripartite motif

containing 3 (TRIM3) was found to be an anti-EMT factor (70).

The authors described that, compared with the healthy controls,

the level of TRIM3 in serum of GC patients decreased.

Knockdown of TRIM3 promoted the growth and metastasis of

GC by regulating stem cell factor and EMT regulatory factor. In

addition, overexpression of TRIM3 inhibited the growth and

metastasis of GC in vitro and in vivo (70). Because the vesicles of

exosomes can stabilize the existence of genetic material,

exosomes can help screen for specific genes to judge the

prognosis of patients with GC.

The role of ctRNA in the occurrence and development of GC

was described above. In GC, substantial RNA is released by
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exosomes. This released RNA is important in the diagnosis and

prognosis of GC. Two specific exosomal lncRNAs, lncUEGC1

and lncUEGC2, were reportedly significantly up-regulated in the

exosomes of EGC patients. In a study that addressed the

differentiation of EGC from precancerous chronic atrophic

gastritis, the area under the ROC curve value of lncUEGC1

was higher than that of CEA, suggesting that the diagnostic

accuracy of lncUEGC1 was higher than CEA (71). Exosomal

circ-RanGAP1 was elevated in plasma of GC patients and

promoted GC invasion by up-regulating vascular endothelial

growth factor A expression (72). Shi et al. confirmed that the

increased expression of serum exosomal miR-1246 could

distinguish patients with GC from healthy controls and

patients with benign diseases, highlighting the use of this

molecule as a biomarker for early diagnosis of GC (73). Soeda

et al. explored the potential value of miR-21 and miR-92a as

biomarkers from 129 patients with stage II and III GC.

Compared with the healthy controls, the level of miR-21 in

GC patients increased significantly, while the level of miR-92a

decreased significantly. OS and peritoneal RFS of stage II and III

patients with high miR-21 levels were worse than those with low

miR-21 levels. The OS and peritoneal RFS of stage II and III

patients with low miR-92a levels were significantly worse than

those with high miR-92a levels (74). Kumata et al. considered

that miR-23b was an independent prognostic factor of OS and

disease free survival in each stage of GC (75).

In addition, studies on exosomes have increasingly focused

on regulation of tumor immunity. Exosomal programmed

death-ligand 1 (PD-L1) has been proven to be an independent

prognostic factor of GC. The expression of PD-L1 is related to

the immunosuppressive state and the decline of CD4 + and CD8

+ T cell counts and granzyme B in GC patients (76, 77). In

addition, exosomal PD-L1 reduces CD69 on the surface of T

cells and causes T cell dysfunction by binding to PD-1 positive

tumor associated macrophages (TAMs) (76). The collective

findings indicate that exosomes participate in the immune

regulation of GC by regulating cellular signaling pathways in

the tumor microenvironment (Table 1).
TEPs and GC

In normal individuals, platelets are the second most

abundant cells after red blood cells (78). Platelets also play

important roles in tumor growth and migration. Heeke et al.

found that platelets could assist the immune escape of tumor

cells and ultimately enhanced tumor escape and angiogenesis

(79). In addition, platelets can release many cytokines, including

transforming growth factor-beta (TGF-b). Platelets promote

EMT and enhance the invasiveness of tumor cells. Radziwon

et al. confirmed that platelets could enhance the activation and

expression of matrix metalloproteinase-9 (MMP-9) through the

p38 MAPK pathway, in turn enhancing the invasiveness of
Frontiers in Oncology 07
tumor cells (80). In 2015, Best et al. proposed the concept of

TEPs (81). Platelets are rich in RNA. During the occurrence and

development of cancer, tumor cells and tumor microenvironment

interact with platelets indirectly through different signal molecules

or directly through different receptors, such as P-selectin. The

interaction changes the information of RNA and protein of

platelets. Platelets whose RNA expression is changed due to the

influence of tumors are termed TEPs. Although the biological

mechanism leading to the change of RNA expression of TEPs is

still unclear, the RNA expression of TEPs is dynamically affected

by pathophysiological conditions in tumor patients, and TEPs can

promote the invasion and metastasis of tumor cells and

encapsulate CTC to escape the immune mechanism. Thus,

TEPs can enhance the early diagnosis of tumors and are a good

biomarker for tumor surveillance (82). Saito et al. showed that the

platelets of GC patients can promote the malignant behavior of

GC cells through EMT related signaling or direct contact with

tumor cells (83). Other studies have shown that the activity and

quantity of platelets can be increased in patients with GC.

Activated platelets express CD40L and CD62P on the

cytoplasmic membrane and interact with vascular endothelium

to induce the production and metastasis of tumor growth factor

(84, 85). This may all be related to the effect of TEPs. At present,

there are few studies on TEPs in GC. However, because the unique

miRNA expression profile of TEPs is conducive to the diagnosis of

tumors, TEPs may well become a detection marker of tumors,

including GC.
Cytokines and GC

The chronic inflammatory response is important in the

occurrence and development of GC. This involves cell

transformation, survival, proliferation, invasion, angiogenesis,

and metastasis. Because H. pylori can specifically survive in

acidic environment, adhesion of these bacteria to gastric mucosa

can induce an immune response, with the successive recruitment

of concentrated granulocytes, B lymphocytes, T lymphocytes,

and macrophages (86, 87). The release of inflammatory factors,

including IL-1b, IL-1 receptor antagonist, IL-8, IL-10, and tumor

necrosis factor-alpha (TNF-a) changes the adhesion of gastric

mucosal cells, which leads to the migration and diffusion of

tumor cells without mutations of tumor suppressor genes.
TNF-a

TNF-a is an inflammatory mediator produced by leukocytes,

tumor cells, and other cells in the tumor microenvironment. It is

involved in regulating the growth and differentiation of a variety

of cells, and is also related to the occurrence and development of

tumors. The biological effects of TNF-a are mediated by two

transmembrane TNF receptors (TNFR) on the cell surface.
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TNFR1 is expressed in a variety of cells, while TNFR2 is mainly

expressed in epithelial cells and immune cells. The affinity of

TNFR2 for TNF-a is much higher than that of TNFR1, but

TNFR1 is the main functional receptor (88).

The activation of Wnt/b-catenin signaling pathway plays a

very important role in the occurrence of gastrointestinal

malignant tumors. Song et al. reported that TNF-a induced

the expression of Wnt10a and Wnt10b in GC cells and further

activated the Wnt/b-catenin/T cell factor signaling pathway,

which induced GC (89). Oshima et al. found that TNF-a/
TNFR1 signaling promoted the occurrence of GC by inducing

the expression of Noxo1 and Gna14 in tumor cells. In addition,

TNF-a can promote the migration and invasion of GC cells (90).

Guo et al. found that TNF-a was an independent risk factor for

peritoneal metastasis, which was positively correlated with

tumor size and depth of invasion, and negatively correlated

with the degree of tumor cell differentiation (91). Oku et al.

showed that TNF-a up-regulated the secretion of MMP-9 by GC

cells and peritoneal mesothelial cells, which promoted the

peritoneal dissemination of cancer cells (92). Bigatto et al.

confirmed that TNF-a induced MET transcription through

nuclear factor-kappa B (NF-kB) and maintained MEK/ERK

activation and snail accumulation through MET, resulting in

the down-regulation of E-cadherin and cell migration (93).

Claudin 1 is a tightly connected component with a variety of

biological functions that include promotion of cell proliferation,

migration, and invasion. MNK-28 cells exposed to TNF-a are

induced to express claudin 1 expression and cell migration is

promoted. Knock-out of claudin 1 significantly weakens the

ability of TNF-a to enhance MNK-28 cell migration. This

finding indicates that the migration ability of GC cells may be

changed by claudin 1, downstream signal molecule of TNF-a
(94). Since TNF-a is closely related to the formation of GC,

TNF-amay be one of the markers for its diagnosis, efficacy, and

survival (Table 2).
TGF-b

TGF-b is a multidirectional and pleiotropic cytokine, which is

involved in regulating cell proliferation, differentiation, and

apoptosis. It plays a dual role in tumor development. On the

one hand, in the precancerous stage, it can inhibit cell

proliferation and induce apoptosis through various signal

pathways, so as to inhibit the occurrence of tumor. On the

other hand, in advanced tumors, it can promote the invasion

and metastasis of tumor cells by regulating the immune system

and tumor microenvironment (95). TGF-b can promote EMT by

mediating the Smad4 inactivation signal, so as to transform polar

epithelial cells into active mesenchymal cells. This enables

epithelial cells to acquire the capacity for invasion and

migration (96). In addition, the high expression of TGF-b in the

tumor microenvironment can promote tumor immune escape,
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strengthen the adhesion and invasion of cancer cells, and affect the

prognosis of patients (97).

TGF-b1 is the most widely distributed subtype of TGF-b and
one of the cytokines most closely related to tumors. Activation of

TGF-b signal transduction can enhance the motility of

fibroblasts and induce invasiveness of GC cells (98). Serum

TGF-b1 level was reportedly significantly up-regulated in GC

patients. These levels were significantly higher the levels in

patients with EGC, and was positively correlated with disease

severity (99) (Table 2).
IL-1

IL-1 is a very important growth factor. It is often abnormally

expressed in the pathological processes of inflammation, tumors,

transplantation rejection, and immune diseases, and directly

affects the occurrence, development, and prognosis of disease.

IL-1 is located on human chromosome 2q13-21. Various types

of tumor cells can produce IL-1. IL-1 is important in the growth

of tumors. It can promote tumorigenesis by regulating the

proliferation and differentiation of cells, and promotes the

metastasis of cancer cells by regulating the expression of

glycoproteins on the surface of tumor cells and conduction

pathways. In addition, IL-1 promotes the occurrence of

inflammation-related GC in mice by up-regulating mirRNA-

135b (100). IL-1a and IL-1b are two forms of IL-1. IL-1a was

reportedly up-regulated during hypoxia and was positively

correlated with GC stage, lymph node metastasis, and cisplatin

resistance (101). The IL-1a/hypoxia axis may be a valuable

target for the diagnosis and treatment of GC.

IL-1b is a proinflammatory cytokine encoded by IL-1B. In

GC patients, the expression of IL-1b is significantly up-

regulated. IL-1b promotes the development of GC by

participating in precancerous lesions and hypogastric acid

secretion after H. pylori infection (102). Zhang et al. found

that the expression of IL-1b was significantly increased in GC

cells, which induced ERK pathway activation and EMT in GC

cells (103). IL-1b can mediate the decrease of gastric acid

secretion caused by H. pylori infection and can lead to the

redistribution of H. pylori in the gastric body. The ensuing

development of gastric atrophy further aggravates the

colonization of H. pylori and other bacterial infections,

resulting in the continuous accumulation of toxins and

inflammatory products produced by bacteria (104). Therefore,

Il-1 b may play a leading role in the pathogenesis model of

“chronic gastritis-gastric mucosal atrophy-atypical hyperplasia

gastric cancer”. Yu et al. confirmed that IL-1b could promote the

nuclear translocation of S100A4 in MGC803 GC cells through

the PI3K pathway, so as to enhance the stem cell properties of

these cells (105). In addition, the occurrence of GC is a multi-

gene, multi-factor, multi-stage and multi-path process resulting

from the combined action of genetics and epigenetics. Epigenetic
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TABLE 2 Biological functions of cytokines in GC.

Author Cytokine Signal/target Function Tendency

Song [85] TNF-a Activate the Wnt/b-catenin signaling pathway Induce the generation of GC stem cells up

Oshima [86] TNF-a TNF-a/TNFR1 ! Noxo1/Gna14 Maintain tumor cells in undifferentiated state up

Oku [88] TNF-a Induce MMP-9 expression Promote GC invasion and metastasis up

Bigatto [89] TNF-a Activate NF-kB ! EMT! MEK/ ERK activation ! E-cadherin
down-regulated

Promote GC invasion up

Shiozaki [90] TNF-a Activate NF-kB ! Induce Claudin 1 expression Induce gene expression and promote migration of GC
cells

up

David [92] TGF-b Mediate Smad4 inactivation signal ! EMT Promote GC invasion and metastasis up

Tauriello [93] TGF-b Promote immune escape Promote GC invasion and metastasis up

Ishimoto
[994]

TGF-b1 Enhance the motor capacity of fibroblasts Promotes GC cells migration up

Han [95] IL-1 Up-regulate mirRNA-135b ! Down-regulate mRNA of FOXN3
and RECK

Increase cell invasiveness and stem cell properties up

Xuan [97] IL-1a Activate IL-1a/hypoxia signaling pathway Promote tumor metastasis and cisplatin resistance up

Zhang [999] IL-1b Activate ERK pathway, Induce EMT Promote GC invasion and metastasis up

Yu [101] IL-1b Activate PI3K/S100A4 pathway Promote tumor metastasis, increase stem cell activity up

Wu [105] IL-6 Activate JAK2/STAT3 pathway Promote GC cells migration up

Zhao [106] IL-6 Activate JAK-STAT3-VEGF-C signaling pathway Promote GC cells growth and invasion, promote
lymphangiogenesis

up

Sánchez-
Zauco [104]

IL-10 – Diagnostic biomarker up

Chen [1110] IL-10 Activate c-Met/STAT3 pathway Promote GC cells proliferation and migration up

Zou [114] IL-10 – Predict GC occurrence up

Wang [143] IL-11 Activate STAT3/ERKsignaling pathway ! Up-regulate MUC1 Promote GC invasion and metastasis up

Li [115] IL-12 – Anti-tumor immune effect down

Xing [117] IL-12 Activate NKp30/MAPK ! NK cells recruitment Slow tumor development down

Zhang [119] IL-17 Gene polymorphisms have a synergistic effect on chronic Hp
infection

Increased risk of GC up

Meng [120] IL-17 – Promote tumor angiogenesis up

Wu [121] IL-17 Activate STAT3 mediated signaling pathway ! Up-regulate VEGF Promote intratumor vessels formation, increase
intratumor microvessels density

up

Gunjigake
[123]

IL-17A – Promote peritoneal metastasis and fibrosis formation up

Kim [124] IL-18 Activate JNK pathway ! Increase TSP-1 expression Promote intratumor angiogenesis up

Tomita [127] IL-18 Promote IFN-g secretion ! Increase Th1 response Induce a persistent inflammatory response up

Chen [128] IL-18 Promote the secretion of TNF-a and IFN-g ! Enhance cytotoxicity
and synergistic effect with IL-12

Anti-tumor effect down

Ji [144] IL-22 Activate IL-22R1/AKT/MMP-9 signaling pathway Promote GC invasion and metastasis up

Tsai [145] IL-32 Activate related signaling pathway of AKT, b-cateninand HIF-1a Promote GC invasion and metastasis up

Yu [146] IL-33 Activate ST2-ERK1/2 pathway ! Up-regulate MMP-3 and IL-6 Promote GC invasion and metastasis up

Kuai [130] CXCL8 Activate NF-kB and Akt signaling pathway ! Increase the
expression of ICAM-1, VCAM-1 and CD44

Promote GC cells adhesion, migration and invasion,
promote oxaliplatin resistance

up

Lin [134] CXCL8 Induce PD-L1 + macrophages Formation of immunosuppressive microenvironment
in GC

up

Park [135] CXCL5 – – up

Yasumoto
[136]

CXCL12 Activate CXCL12/CXCR4 axis Promote GC peritoneal metastasis up

He [137] CXCL13 – – up

Wang [139] CCL5 – Promote GC peritoneal metastasis up

Tao [140] CCL2 – – up

Hwang [141] CCL7 – Promote lymph node metastasis up

Hwang [141] CCL21 – Promote lymph node metastasis up

Wei [142] CCL22 Recruit Treg cells ! Suppress immune response Promote GC peritoneal metastasis up
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changes are heritable changes that do not depend on DNA

sequence changes. These changes have a major role in the

initiation and progression of tumors. Hmadcha et al. found

that IL-1b activated a new gene silencing pathway through nitric

oxide that was modified by DNA methylase and CpG island

methylation (106). Qian et al. found that IL-1b could induce

methylation of E-cadherin gene promoter in gastric mucosal

cells (107) (Table 2).
IL-6

IL-6 is encoded by a gene located on chromosome 7. The

region contains 5 exons and 4 introns. IL-6 is a pleiotropic

cytokine that is important in inflammation, bone metabolism,

and the occurrence and development of tumors. Sánchez-Zauco

et al. significantly correlated the level of serum IL-6 with the

occurrence of GC (108). Wu et al. described that IL-6 can

enhance the migration of GC cells by activating the Janus

kinase 2/signal transducer and activator of transcription 3

(JAK2/STAT3) pathway (109). Zhao et al. confirmed that IL-6

could increase the expression levels of JAK, STAT3,

phosphorylated-STAT3 and VEGF-C in GC cells, and can

promote the growth, invasion, and lymphangiogenesis of GC

through the JAK/STAT3/VEGF-C signaling pathway (110).

Furthermore, IL-6 can stimulate GC cells to produce a large

amount of VEGF, which promotes the formation of new blood

vessels and affects tumor invasion and progression. In addition,

IL-6 can promote the invasiveness of GC cells, which may be

related to omental metastasis of GC. Wu et al. further found that

CAF activates the JAK2/STAT3 pathway of GC cells by secreting

IL-6, which promotes the migration and EMT of GC cells.

Silencing the expression of IL-6 in CAF can inhibit the

peritoneal metastasis of tumors induced by CAF in vivo (109).

IL-6 is highly expressed in the serum and cancer tissues of GC

patients and is related to the depth of cancer invasion and degree

of differentiation. These findings indicate the potential of IL-6 as

a marker for GC and an indicator of poor prognosis (Table 2).
IL-10

IL-10 is an inflammatory cytokine located on chromosome

1q31-32. It has the dual abilities of regulating immune

suppression and immune stimulation. It mainly has an

immunosuppressive role in the inflammatory response (111).

IL-10 inhibits Th1 cells, Th2 cells, and B lymphocytes. This

actions inhibit the production of proinflammatory cytokines

and down-regulate the inflammatory response (112). In

addition, IL-10 is considered to be a protective factor in H.

pylori associated gastritis (113). As well, in the occurrence and

development of cancer, IL-10 promotes the growth and

proliferation of cancer cells. Sánchez-Zauco et al. found that the
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level of IL-10 in EGC patients was significantly increased,

indicating that it may be a diagnostic biomarker of GC (108).

Chen et al. found that IL-10 promoted the occurrence and

development of GC by activating the C-MET/STAT3 signaling

pathway (114). Most studies to date have been concerned with the

promoter region of IL-10. This region mainly includes three

polymorphic loci: -108 (A-G), -819 (T-C), and -592 (A-C).

Zhuang et al. demonstrated the close relationship between gene

polymorphism of IL-10 and the incidence rate of GC in Asian

carriers (115). Sugimoto et al. studied the relationship between

Japanese GC patients and the three polymorphic loci mentioned

above. IL-10-819 and IL-10-592 increased the risk of GC (116).

However, in Latin American GC patients, only the IL-10-592C/A

single nucleotide polymorphism was associated with the incidence

of GC (117). In addition, the expression level of IL-10 in AGC

patients was significantly increased. Zou et al. also pointed out that

the increase of IL-10 may be a risk factor for tumor enlargement,

and may help to predict the occurrence and development of GC

(118). However, the increased expression of IL-10 in EGC may be

due to the secretion by cancer cells themselves or the product of

anti-tumor immune effect. At present, there is a lack of research

on IL-10 in GC patients. The mechanism of IL-10 in promoting

the development of GC in patients is not clear (Table 2).
IL-12

IL-12 is secreted by dendritic cells, macrophages, neutrophils,

and B lymphocytes. It can stimulate the growth and differentiation

of T cells, which identify allogeneic cells in the immune response

of the body. The level of IL-12 was reportedly significantly

increased in EGC patients and had an anti-tumor effect (119).

However, another study documented a significant decrease in IL-

12 during the progression of GC. The potential mechanism

involved the significant increase in the level of GOLPH2 and

the ensuing down-regulated expression of IL-12A and inhibited

expression of TNF-a and interferon-gamma (IFN-g).
Simultaneously, the effect of Th1 was inhibited and the anti-

tumor effect lessened (120). In a mouse GC cell line model, IL-12

sensitized the cells to natural killer (NK) cell lysis by activating the

NKp30/MAPK/IL-12 pathway. Systemic administration of IL-12

combined with intratumoral injection of anti-HLA-I in tumor-

bearing mice reportedly increased the recruitment of NK cells in

transplanted tumors, made them sensitive to NK killing, and

slowed down the progression of GC (121). Therefore, early

identification of IL-12 changes may provide a target for GC

prevention and treatment (Table 2).
IL-17

IL-17 is a proinflammatory cytokine mainly produced by

Th17 cells. IL-17 induces the secretion of early immune mediators
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that stimulate the accumulation of inflammatory response cells at

the injury site. IL-17 is significantly expressed in a variety of solid

tumors. The level of IL-17 in GC patients is significantly higher

than that in healthy individuals (122). IL-17A rs2275913 G > A

and IL-17F rs763780 T > C polymorphisms increase the risk of

GC and act synergistically with H. pylori infection (123). Meng et

al. reported the participation of IL-17 in the occurrence and

development of GC by promoting the angiogenesis of the tumor

microenvironment (124). Wu et al. confirmed that IL-17 was

usually overexpressed in patients with GC and up-regulated the

expression of VEGF to promote angiogenesis and increase the

microvessel density in the tumor, which was conducive to early

metastasis of the tumor (125). IL-17 can also promote the

occurrence and development of tumors by inhibiting apoptosis

and regulating the immune response. In addition, IL-17

participates in the occurrence and development of GC, but also

predicts the prognosis of GC patients. The high expression of IL-

17 in GC patients has been associated with lower 5-year survival

rate (126). IL-17A mainly comes from Th17 cells and is related to

tumor occurrence, proliferation, and angiogenesis. IL-17A can

promote the peritoneal dissemination of GC and the formation of

fibrosis (127). Therefore, IL-17, as a specific tumor marker, can

provide a good basis for clinical early diagnosis of occurrence and

development of GC, and is very important for early treatment of

GC (Table 2).
IL-18

IL-18, encoded by a gene located in 11q2 2-q2, is derived

mainly from the monocyte macrophage system, small intestinal

epithelial cells, and spleen. IL-18 plays a role by binding to its

receptor and is an important immune regulatory factor. The many

biological functions of IL-8 include promoting the production of

IFN-g, IL-2 and granulocytemacrophage-colony stimulating factor

by T cells and NK cells, enhancing the expression of Fas ligand in

Th1 cells and NK cells, promoting the development of Th1 cells,

and activating activator protein 1, nuclear factor of activated T

cells, and signal transduction and transcription activating factors.

IL-18 plays a dual role in the occurrence and development of GC.

On the one hand, IL-18 can promote the occurrence and

development of GC. IL-18 can increase the expression of

thrombospondin 1 by activating the JNK pathway, which

increases tumor angiogenesis (128). IL-18 can also promote the

invasion andmetastasis of GC cells by inhibiting the production of

anti-tumor factors (129). Clinical evidence indicates an association

between lower IL-18 levels in patients with GC and higher rates of

postoperative survival (130). On the other hand, IL-18 has anti-

tumor effects. A study described significantly higher levels of IL-18

mRNA in patients with H. pylori infection than in noninfected

patients. IL-18 promoted secretion of IFN-g by gastric mucosal

cells, thereby promoting the Th1 response (131). Another study

confirmed that IL-18 promoted the secretion of TNF-a and IFN-g,
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which synergistically enhanced the cytotoxic function of tumor-

infiltrating lymphocytes with IL-12 in GC, and produced an anti-

tumor effect (132) (Table 2).
Chemokines

Chemokines are proteins secreted by cells under pathological

conditions. Endothelial cells, fibroblasts, epithelial cells, leukocytes

and tumor cells can secrete chemokines. These include C-C motif,

X-C motif, C-X-C motif, and C-X3-C motif chemokines. The

CXCL chemokine family is important in the pathogenesis of GC

and can be used as a marker of the occurrence and development of

GC. CXCL8, also known as IL-8, is mainly produced by monocyte

macrophages, lymphoid cells, and endothelial cells. It is an

endogenous and multi-source cytokine that functions in

chemotaxis and activation of leukocytes, and is involved in the

occurrence and development of tumors. CXCL8 is highly

expressed in GC patients (133). CXCL8 can increase the

activities of NF-kB and AKT, increase expression of adhesion

molecules ICAM-1, VCAM-1, and CD44, promote adhesion,

migration, and invasion of GC cells, and is involved in the

development of resistance to oxaliplatin (134). In addition,

CXCL8 is closely related to the adhesion and migration of GC

cells. When these cells are exposed to H. pylori, they produce

CXCL8, which in turn promotes the progression of GC through

autocrine and paracrine mechanisms (135, 136). Therefore,

inhibiting the expression of CXCL8 may reduce the adhesion,

migration, and invasion of GC cells. Wu et al. confirmed that the

level of CXCL8 was significantly correlated with the depth of

venous invasion and lymphatic invasion, which may be an

independent prognostic factor of GC (137). Li et al. confirmed

the participation of CXCL8 in the formation of the

immunosuppressive microenvironment of GC by inducing PD-

L1 positive macrophages (138). Therefore, CXCL8 inhibitors may

drive an anti-tumor response and could be a novel approach in

treating GC patients. CXCL5 is mainly expressed on the surface of

lymphocytes, macrophages, and renal tubular epithelial cells. It is

also expressed in GC. The gene for CXCL5 is located in 17q12.

Park et al. reported the higher concentration of CXCL5 in AGC

patients than in patients with benign tumors (139). The

overexpression of CXCL5 was positively correlated with the

stage of GC, especially N stage. These results suggest a role for

CXCL5 in the progression of GC, especially in lymph node

metastasis. CXCL12, also known as matrix derived factor 1,

exhibits strong chemotaxis to lymphocytes and is found in GC

with lymph node metastasis. CXCR4 is a specific receptor of

CXCL12. Yasumoto et al. found that the expression of CXCR4

was significantly correlated with the occurrence of peritoneal

metastasis of GC, with the CXCL12/CXCR4 axis having an

important role in peritoneal metastasis of GC (140). In addition,

high expression of CXCR4 predicts a poor prognosis in GC

patients. He et al. confirmed that the up-regulation of CXCR4
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expression in tumors was associated with poor OS in patients with

GC (141). In addition, CXCL13 is also considered to be an

effective index to judge the prognosis of GC patients (142).

The CCL chemokine family also plays an important role in

the pathogenesis of GC. Wang et al. showed that CCL5 is a good

biomarker of occult GC peritoneal metastasis and has diagnostic

value for GC peritoneal metastasis (143). Tao et al. described the

elevated expression of CCL2 in GC specimens. The OS rate of

GC patients with elevated CCL2 expression was lower than that

of individuals with low CCL2 expression. The study findings

suggest that CCL2 can be used as an independent prognostic

marker of GC (144). Hwang et al. found that CCL7 and CCL21

were overexpressed in GC and were related to lymph node

metastasis and poor prognosis (145). Wei et al. found that the

level of CCL22 in patients with peritoneal metastasis of GC was

significantly higher than that in patients without metastasis

(146). Highly expressed CCL22 can recruit T regulatory cells

in the tumor microenvironment, inhibit an immune response,

and participate in mediating peritoneal metastasis of GC.

The collective evidence indicates that chemokines are

important in the occurrence and development of GC.

Comprehensive studies of chemokines and their receptors will

further the early diagnosis and prognosis of GC (Table 2).
Others

IL-11 is a member of glycoprotein-130 (gp-130) cytokines.

Wang et al. reported the up-regulated expression of mucin 1

protein cancer-associated fibroblasts via the IL-11-STAT3/ERK

signaling pathway, and the important role of IL-11 in the

progression of the GC microenvironment (147). Targeted

treatment of IL-11 can be indirectly effective in the treatment of

GC by affecting interstitial fibroblasts. IL-22 is an important

inflammatory cytokine in the IL-10 family, with a role through

the IL-22 receptor. The expression of IL-22 was reportedly

increased significantly in GC patients, suggesting that it may be

related to the occurrence of GC. The authors also described that

IL-22 could regulate the IL-22R1/AKT/MMP-9 signaling pathway

and enhanced the migration and invasion of GC cells by binding

to its receptor (148). IL-32 is a proinflammatory cytokine

characterized by induction of NF-kB activation. Tsai et al.

confirmed that the expression of IL-32 was enhanced in patients

with GC and positively correlated IL-32 with the severity of GC.

Furthermore, IL-32 can promote tumor migration and invasion by

increasing the activation of AKT, b-catenin, and hypoxia-

inducible factor 1-alpha related signaling pathways (149). IL-33

is a member of the IL-1 superfamily and is a multifunctional

cytokine released during inflammatory response, biomechanical

stress, or necrotic cell death. The significant increase of IL-33 in

GC patients has been described, with a close relationship to the

depth of invasion and distantmetastasis of GC. Yu et al. found that

IL-33 could stimulate the secretion of MMP-3 and IL-6 through
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the ST2-ERK1/2 pathway, thereby promoting the invasion and

migration of GC cells (150). IL-35 is an anti-inflammatory

cytokine produced by T regulatory cells, with a unique

immunomodulatory function. IL-35 is highly expressed in GC and

is a potential biomarker for clinical diagnosis of GC (151) (Table 2).
Outlook

Guiding individual therapy of GC is an important goal and

active area of research. Liquid biopsy is minimally invasive,

economical, and time-saving. As a valuable alternative to tissue

biopsy, liquid biopsy has gradually attracted the attention of

researchers. Due to its use for relatively personalized diagnosis

and treatment, liquid biopsy is important in precision medicine.

However, the low concentration of relevant biomarkers in the

blood hinders the detection sensitivity of this method. Also, the

separation technology is not yet widely applicable, with

consensus not yet reached for some standards. More rigorous

studies must explore the promising potential of liquid biopsy

technology. These data will inform the increasingly accurate and

rapid diagnosis and treatment of various tumors, including GC.
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