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therapy response of clear cell
renal cell carcinoma
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Background: The upregulation of amino acid metabolism is an essential form

of metabolic reprogramming in cancer. Here, we developed an amino acid

metabolism signature to predict prognosis and anti-PD-1 therapy response in

clear cell renal cell carcinoma (ccRCC).

Methods: According to the amino acid metabolism-associated gene sets

contained in the Molecular Signature Database, consensus clustering was

performed to divide patients into two clusters. An amino acid metabolism-

associated signature was identified and verified. Immune cell infiltrates and

their corresponding signature risk scores were investigated. Two independent

cohorts of clinical trials were analyzed to explore the correspondence between

the signature risk score and the immune therapy response.

Results: Two clusters with different amino acid metabolic levels were identified

by consensus clustering. The patients in the two clusters differed in overall

survival, progression-free survival, amino acid metabolic status, and tumor

microenvironment. We identified a signature containing eight amino acid

metabolism-associated genes that could accurately predict the prognosis of

patients with ccRCC. The signature risk score was positively correlated with

infiltration of M1 macrophages, CD8+ T cells, and regulatory T cells, whereas it

was negatively correlated with infiltration of neutrophils, NK cells, and CD4+ T

cells. Patients with lower risk scores had better overall survival but worse

responses to nivolumab.

Conclusion: Amino acid metabolic status is closely correlated with tumor

microenvironment, response to checkpoint blockade therapy, and prognosis in

patients with ccRCC. The established amino acid metabolism-associated gene
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signature can predict both survival and anti-PD-1 therapy response in patients

with ccRCC.
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ccRCC, amino acid metabolism, signature, anti-PD-1 therapy, prognosis
Introduction

Renal cell carcinoma (RCC) refers to cancer that originates

from the renal epithelium. As one of the most common cancers

worldwide, RCC accounts for more than 140,000 cancer-related

deaths annually (1). RCC has a higher incidence in developed

countries and in men (2). It encompasses more than 10 subtypes,

among which the most common is clear-cell renal cell carcinoma

(ccRCC), contributing to the majority of kidney cancer–related

deaths (3). However, robust predictive biomarkers for prognosis

and rational treatment choices for ccRCC are lacking.

Increasing evidence has indicated a role for metabolic

reprogramming in many types of cancers (4), including ccRCC

(5). In addition to diverting glucose metabolism, amino acid

metabolic reprogramming is important in cancer development.

Amino acids are not only essential nutritional substrates and

sources of energy for tumor cells but also associated with the

metabolism of glucose, lipids, and nucleotides, making them

vital for tumor proliferation, invasion, and metastasis. Normal

cells have lower amino acid requirements than tumor cells; this

difference contributes to the metabolic vulnerability of

malignant cells and provides a principle for amino acid

depletion therapy (6). However, the efficacy of amino acid

depletion therapy is highly dependent on the tumor

microenvironment (7). Therefore, the amino acid status of

tumor cells may correlate with immune cell infiltrates and has

great potential in tumor therapy (6).

Several studies have found a close correlation between the

expression of amino acid metabolism-associated genes and

various types of cancers, including gliomas (8), breast cancer

(9), and hepatocellular carcinoma (10), supporting the

importance of amino acid metabolism in cancer. In ccRCC,

previous studies found that except for glucose and fatty acid

metabolism, the metabolism of amino acids, including

tryptophan, ornithine, arginine, citrulline, and glutamine, is

also reprogrammed (5). However, an amino acid metabolism-

associated gene set has not been systematically studied in ccRCC.

Therefore, in the current study, we aimed to conduct

systematic and comprehensive research on amino acid

metabolic features in ccRCC and establish a reliable prognostic

model to predict the clinical outcomes of ccRCC and help make

appropriate therapeutic decisions.
02
Methods

Dataset collection

The clinical, pathological, and transcriptome data of patients

with ccRCC were obtained from The Cancer Genome Atlas

(TCGA) data portal (https://portal.gdc.cancer.gov/).

Additionally, according to the cBioPortal online database

(http://www.cbioportal.org/), a validation cohort (n=446) was

established and confirmed the results (11).
Consensus clustering and
enrichment analysis

Three amino acid metabolism-associated gene sets (amino acid

metabolic process, modified amino acid metabolic process, and

amino acid and derivative metabolic process) were obtained from

the Molecular Signature Database (http://www.broad.mit.edu/gsea/

msigdb/) (12). After removing overlapping genes, we retrieved an

amino acid metabolism-associated gene set of 460 genes

(Supplementary Material 1). We conducted a consensus clustering

algorithm using the R package “ConsensusClusterPlus” (13). The

most differentially expressed genes (DEGs) between the two clusters

were visualized by the “pheatmap” R package. Moreover, to better

understand the underlying functions of the potential targets, the R

package “ClusterProfiler” was utilized for enrichment analysis. Using

the R packages “survival,” survival curves were generated. Using chi-

square tests or Fisher’s exact tests for categorical variables according

to the theoretical frequency and Student’s t-tests for continuous

variables, clinical and pathological characteristics were compared.
Gene signature identification

To identify the key amino acid metabolic genes associated

with ccRCC, we first screened the genes correlated with tumor

prognosis using univariate COX methods. Then, using the

“glmnet” R package, the least absolute shrinkage and selection

operator (LASSO) Cox regression algorithm was performed and

finally followed by multivariate COX proportional hazards

regression analysis, resulting in an identification of eight genes.
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https://portal.gdc.cancer.gov/
http://www.cbioportal.org/
http://www.broad.mit.edu/gsea/msigdb/
http://www.broad.mit.edu/gsea/msigdb/
https://doi.org/10.3389/fonc.2022.970208
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.970208
A nomogram was then established through the “rms” and

“survival” R packages. Furthermore, we verified the signature

using the data from the cBioPortal datasets (14). The web server

GEPIA was employed to analyze the Kaplan–Meier curves of the

eight signature genes (15).
Amino acid signature predicted tumor
response to nivolumab

RNA-seq and survival data were obtained and analyzed from

previous clinical trials, including NCT01668784 (a phase III

clinical study comparing everolimus and nivolumab in patients

with previously treated metastatic ccRCC, CheckMate025) and

NCT01354431 (a phase II study of nivolumab in patients with

metastatic ccRCC, CheckMate 010) (16). Based on tumor

shrinkage after therapy, patients were divided into clinical

benefit (CB), intermediate clinical benefit (ICB), and no

clinical benefit (NCB) groups. Subsequent analyses of patients

with ICB in the CB group were conducted. We investigated the

CB/NCB ratio in patients with high- or low-risk score and the

prognos i s o f pa t i en t s who underwent an t i -PD-1

therapy (nivolumab).
Results

Patient information collection and
consensus clustering

We established a cohort of 530 patients according to TCGA-

ccRCC data, which included RNA sequencing data and clinical

and pathological information, for the following analysis. Three

amino acid metabolism-associated gene sets were retrieved, and

460 genes were identified after removing the overlapping genes

(Supplementary Material 1).

A consensus clustering algorithm was utilized to classify

patients with ccRCC into clusters with isolated amino acid

metabolic status. Two different clusters (cluster 1 and cluster

2) were identified using the optimal grouping method, according

to the empirical cumulative distribution function (CDF) plot

(Supplementary Material 2), consensus clustering matrix

(Figure 1A; Supplementary Material 3), and principal

component analysis (Figure 1B). The overall survival (OS) of

patients from cluster 1 was significantly longer (hazard ratio

[HR]: 0.448, 95% confidence interval [CI]:0.331–0.607, P<0.001,

Figure 1C), and similar better progression-free survival (PFS)

was also observed in cluster 1 (HR: 0.441, 95% CI: 0.3–0.564,

P<0.001, Figure 1D). A heatmap of amino acid metabolic gene

expression between the two clusters is shown in Supplementary

Material 4A, indicating that the two clusters were significantly

different in amino acid metabolic status.
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To investigate the differences between the clusters, their

clinical and pathological characteristics were explored

(Table 1). The two clusters differed in survival status

(P<0.001), sex (P=0.025), lymph node metastasis (P=0.007),

tumor stage (P<0.001), and histological grade (P<0.001),

implying that amino acid metabolism may correlate with these

clinicopathological features.
Enrichment analysis

We identified DEGs in the two clusters and conducted

enrichment analysis to investigate the underlying mechanism

and pathway difference-correlated amino acid metabolism. The

top DEGs between the two clusters were analyzed using a

heatmap (Supplementary Material 4B). The most upregulated

genes were SLC27A2, LRP2, and DDC, whereas the most

downregulated genes were TRNP1 , TMEM158 , and

BDKRB1 (Figure 1E).

Setting the adjusted P-value and fold-change threshold at

0.05 and 1.5, we then performed Gene Ontology (GO)/Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis.

Signaling pathway enrichment verified the different amino acid

metabolism statuses between the two clusters, and the amino

acid metabolism of cluster 1 was activated (Supplementary

Material 5A). GO enrichment analysis showed similar results,

with upregulated genes in cluster 1 being strongly associated

with amino acid metabolism. Other relevant signaling pathways

were mainly enriched in carboxylic acid transport, organic acid

transport, and small-molecule catabolic processes (Figure 1F).

DEGs upregulated in cluster 2 were majorly enriched in

extracellular structure organization, negative regulation of

hydrolase activity, and several immune terms, including

positive regulation of granulocyte chemotaxis, positive

regulation of neutrophil migration, positive regulation of

neutrophil chemotaxis, and acute inflammatory response

(Figure 1G). In the KEGG pathway analysis, we found that the

DEGs were mainly enriched in human papillomavirus infection,

cytokine–cytokine receptor interactions, and immune-

associated pathways, which involve the IL-17 signaling

pathway and phagosomes (Supplementary Material 5B). These

results revealed that the activation of amino acid metabolic

processes was a feature of cluster 1, whereas the upregulation

of tumor-related immunogenicity may be an important

characteristic of cluster 2.

Next, drug sensitivity between the two clusters was

estimated. Patients with different amino acid metabolic status

also exhibited different IC50 scores of pazopanib, sunitinib, and

sorafenib (Supplementary Material 6) for ccRCC, implying that

amino acid metabolism may affect the efficacy of these targeted

drugs. However, these conclusions require further verification

with clinical drug trials.
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Signature development

After revealing that amino acid metabolism was correlated

with prognosis of patients with ccRCC, an amino acid

metabolism-associated gene signature was developed to

identify key amino acid metabolic genes and better predict

prognosis. Using the univariate Cox regression method, we

identified 166 of the 460 genes that were significantly

correlated with ccRCC prognosis (P<0.001). The LASSO
Frontiers in Oncology 04
algorithm was used, and 25 amino acid metabolism-correlated

genes were identified, namely ASNS, CARS1, SLC7A5, ACADSB,

DMGDH, GFPT2, CRAT, PYCR1, RIMKLA, HMGCLL1,

BCKDHA, MARS1, LARS2, ILVBL, SARS2, ACADL, FOXE1,

CARS2, GCNT4, IYD, COLQ, MCCC2, VNN3, DPEP1, and

NOS3 (Figure 2A, B). Finally, the Cox coefficient was

calculated using a multivariate Cox regression analysis

(Figure 2C). We obtained the following signature with eight

amino acid metabolic genes: risk score= (-0.151 × RIMKLA
A B

D E

F G

C

FIGURE 1

Consensus clustering analysis to identify the genomic subtype of ccRCC based on an amino acid metabolism-associated gene set. (A) Consensus
clustering matrix of 530 samples from TCGA dataset for k=2. (B) PCA distinguishing patients’ risk groups. Kaplan–Meier curve of overall survival (C)
and progression free survival (D) of patients with ccRCC in two clusters. (E) Volcano plot of DEGs between two clusters with different metabolic
statuses. The red and blue points represent up- and downregulated genes with statistical significance, respectively. (F) GO analysis of DEGs that
were upregulated in cluster 1. (G) GO analysis of DEGs that were downregulated in cluster 1. PCA, principal component analysis; DEG, differentially
expressed genes.
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level) + (-0.378× HMGCLL1 level) + (1.032× MARS1 level) +

(-0.398× LARS2 level) + (0.284× FOXE1 level) + (-0.227×

GCNT4 level) + (-0.324× IYD level) + (0.277× COLQ level).

According to the risk score calculated using the developed

signature, patients with ccRCC could be classified as high or low

risk (Figure 2D). Survival curves showed that the OS was

significantly different between patients with high- and low-risk

scores (Figure 2E, P<0.001), with 1-, 3-, and 5-year OS AUCs of

0.801, 0.760, and 0.772, respectively (Figure 2F). Moreover, we

used an independent cBioPortal cohort as a validation set to

validate the predictive value of the amino acid metabolic

signature. Risk score-based survival curves showed similar

trends, and a significantly worse OS was observed in the high-

risk group than in the low-risk group (Figure 3F, P<0.001). In

the validation cohort, the AUCs for the 1-, 3-, and 5-year OS

were 0.763, 0.720, and 0.725, respectively (Figure 3G).

We then established a nomogram containing the available

clinical and pathological characteristics and calculated the

signature risk score (Figure 3A). The accuracy of this
Frontiers in Oncology 05
nomogram was verified using calibration curves of the 1-

(Figure 3B), 3- (Figure 3C), and 5-year survival rates

(Figure 3D). The correlation between signature risk scores and

clinicopathological characteristics was determined using a

Sankey diagram (Figure 3E). Multivariate Cox regression

analyses were also conducted, and the predictive signature

served as an independent prognostic risk factor (HR: 2.581;

95% CI: 1.786–3.732, P<0.001).
High-risk patients are correlated
with increased response to
anti-PD-1 immunotherapy

Based on the sequencing and prognostic data of 156 patients

with advanced ccRCC, we found that patients with a higher risk

score of the amino acid metabolic signature had a higher

proportion of CB to anti-PD-1 immunotherapy (nivolumab)

than patients with lower risk scores (Figure 4A, P=0.035). We

found that patients in the high-risk score group tended to have a

worse OS and PFS. However, when they received anti-PD-1

immunotherapy, the high-risk score group had a similar OS

(HR: 0.77, 95% CI: 0.54–1.10, P=0.147, Figure 4B) and longer

PFS (HR: 0.63, 95% CI: 0.46–0.87, P=0.005, Figure 4C)

compared with the low-risk score group. We also found a

strong correlation between the signature risk score and

immune microenvironment according to TCGA datasets

(Figure 5A) and data from clinical trials of 156 patients with

advanced ccRCC (Figure 5B). The signature risk score was

positively correlated with the infiltration of M1 macrophages,

CD8+ T cells, and T-cell regulatory cells, whereas it was

negatively correlated with neutrophils, NK cells, and T-cell

CD4+ cells based on TCGA data. In the 156 patients with

advanced ccRCC, the signature risk score was significantly

correlated with the infiltration of CD8+ T cells (Cor: 0.185,

P=0.013), resting memory of CD4+ T cells (Cor: –0.264,

P<0.001), follicular helper T cells (Cor: 0.214, P=0.004),

gamma delta T cells (Cor: 0.219, P=0.003), activated NK cells

(Cor: 0.331, P<0.001), resting dendritic cells (Cor: –0.271,

P<0.001), resting mast cells (Cor: –0.354, P<0.001), and

leukocytes (Cor: 0.164, P=0.028).
Differences in gene expression

The different expression patterns between normal and tumor

tissues of the eight genes involved in the signature were explored

at the mRNA (Figure 4D) and protein levels (Figure 4E). Based

on the Human Protein Atlas (HPA) cohort, among the eight

amino acid metabolism-associated genes, we found that the

expression of RIMKLA, MARS1, LARS2, GCNT4, and IYD was

different between normal tissue and ccRCC at the protein level.
TABLE 1 Clinicopathological feathers between the two clusters.

Characteristics Cluster 1 Cluster2 P value

Survival status <0.001

Alive 276 81

Dead 101 72

Sex 0.025

Female 144 42

Male 233 111

Race 0.519

Asian 6 2

Black 36 20

White 328 131

Lymph node metastasis 0.007

N0 168 71

N1 6 10

NX 203 72

Metastasis <0.001

M0 329 111

M1 43 37

MX 5 5

Tumor stage <0.001

I 211 54

II 40 17

III 81 42

IV 44 38

Pathological grade <0.001

G1 13 1

G2 179 48

G3 153 53

G4 29 46

GX 0 5
frontiersin.org

https://doi.org/10.3389/fonc.2022.970208
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.970208
Survival analysis of the eight genes was performed

(Supplementary Material 7).
Discussion

Metabolic reprogramming is a hallmark of cancer (17). In

addition to the well-described Warburg effect, namely enhanced

glycolysis (18), the regulation of amino acid metabolism is

another crucial reprogrammed metabolic pathway in cancer
Frontiers in Oncology 06
(4). For example, glutamine upregulation is crucial for cancer

cells. Glutamine is not only an essential nutritional resource for

cancer cells but also provides nitrogen atoms to synthesize

hexosamines, nucleotides, and amino acids, promoting the

survival and growth of cancer cells (19). Another example is

the expression of asparagine synthetase, which is correlated with

worse prognosis in glioma and neuroblastoma, mainly because

of the increasing need for protein synthesis in rapidly

proliferating cancer cells (20). L-Asparaginase has been used

in cancer therapy (21). Therefore, the selective inhibition of
A B

D E

F

C

FIGURE 2

The prognostic signature was established based on eight prognostic amino acid metabolism-associated genes. (A) LASSO coefficient profiles of
the genes associated with the amino acid metabolism of ccRCC. (B) Partial likelihood deviance is plotted versus log (l). (C) Forest plot of
multivariate COX analysis of eight genes involved in the signature. (D) The risk score of each sample based on the amino acid metabolism-
associated signature. Patients were divided into low- and high-risk groups according to the median value of the risk score. The high/low
expression of eight genes that were involved in the prognostic signature are shown in red/blue in each sample. (E) Kaplan–Meier curve of
overall survival differences stratified by signature risk score. (F) The ROC curves of the signature for overall survival at 1, 3, and 5 years. LASSO,
least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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amino acid metabolism has shown promising potential in cancer

therapy (7).

In ccRCC, in addition to the well-established Warburg effect,

a glutamine-dependent pathway, namely reductive

carboxylation, has been observed (22). Additionally, the

metabol ism of tryptophan and arginine has been

reprogrammed in ccRCC (5). In the current study, according

to TCGA and cBioPortal sequencing and clinicopathological

data, we revealed, for the first time, that the expression of amino
Frontiers in Oncology 07
acid metabolism-associated genes was significantly associated

with the progression and prognosis of ccRCC, similar to findings

in other types of cancer, including gliomas, breast cancer, and

hepatocellular carcinoma, as reported previously (8–10). Our

findings confirm the vital role of amino acid metabolism

in ccRCC.

GO/KEGG enrichment analysis demonstrated that amino

acid metabolism may have an impact on immune and

inflammatory responses, suggesting a crosstalk between the
A B

D

EF

G

C

FIGURE 3

Construction of a nomogram and independent signature validation. (A) Nomogram for predicting 1-, 3-, or 5-year OS in patients with ccRCC.
(B) The calibration plots for predicting 1-year OS. (C) The calibration plots for predicting 3-year OS. (D) The calibration plots for predicting 5-
year OS. E Sankey diagram showing the association between signature risk scores and clinicopathological characteristics. (F) Validation of the
signature in overall survival based on data from the cBioPortal online database. (G) The ROC curves of the signature validation for overall
survival at 1, 3, and 5 years. OS, overall survival; ROC, receiver operating characteristic.
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amino acid metabolic status and the tumor immune

microenvironment. Emerging evidence suggests that amino

acid metabolism is associated with immune regulation in

patients with ccRCC. For instance, a previous study found that

the level of tryptophan is decreased in ccRCC, while the levels of

kynurenine and quinolinate are increased, indicating an

enhanced utilization of tryptophan (23). Considering the

immunosuppressive effects of kynurenine and quinolinate, the

regulation of tryptophan leads to the suppression of the immune

system and facilitates cancer growth. Further analyses revealed

that the signature risk score was significantly correlated with

CD8+ T-cell infiltration. A high level of tumor CD8+ T-cell

infiltration reportedly correlates with worse prognosis in
Frontiers in Oncology 08
patients with ccRCC (24), possibly explaining the worse

prognosis observed in patients with higher risk scores.

ccRCC is one of the most highly immune-infiltrated solid

tumors (25). Rich leukocyte infiltration is a key characteristic of

ccRCC, including CD8+ T, CD4+ T, NK, and myeloid cells with

characteristics of macrophages and neutrophils (26). Despite

robust T-cell infiltration, ccRCC continues to progress. In

addition, high T-cell levels were not associated with a good

prognosis for ccRCC. One rational explanation for this

phenomenon is that many T cells are immunosuppressed

phenotypes (27).

Another important finding of the current study was that the

amino acid metabolism-associated gene signature can also
A B

D

E

C

FIGURE 4

Increased response to anti-PD-1 immunotherapy in high-risk patients with ccRCC and differences in the expression of the signature genes.
(A) Proportion of CB versus NCB in patients with high- or low-risk scores. (B) OS in high- and low-risk patients who underwent anti-PD-1
immunotherapy. (C) PFS in high- and low-risk patients who underwent anti-PD-1 immunotherapy. (D) Box plot of the difference in expression of
signature genes between normal and ccRCC tissues, according to TCGA sequencing data. (E) The expression difference of RIMKLA, MARS1, LARS2,
GCNT4, and IYD between tumor and normal tissues at the protein level, according to Human Protein Atlas (HPA) cohort. OS, overall survival; PFS,
progress free survival. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.970208
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.970208
predict the response to checkpoint blockade therapy; specifically,

patients with a higher risk score for the amino acid metabolic

signature had a better response to anti-PD-1 immunotherapy,

except for an increased infiltration of CD8+ T cells. The response

to checkpoint blockade therapy has been widely reported to

correlate with microenvironment features, especially increased

T-cell infiltration (28). A previous study demonstrated that
Frontiers in Oncology 09
sufficient T-cell infiltration in tumor tissues is a prerequisite

for the response to PD-L1 blockade (29). A previous study on

ccRCC found that the interplay between somatic alterations and

immune infiltration could regulate the response to PD-1

blockade therapy (16). This finding further confirms the

observed close correlation between amino acid metabolism

and immune regulation. Although checkpoint blockade
A

B

FIGURE 5

Signature and immune cell infiltrates. (A) Correlation of immune cell infiltrates with risk score according to TCGA datasets. (B) Immune cell
infiltration in patients receiving nivolumab therapy of two clinical trials.
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therapy is beneficial for many patients with ccRCC (30), a large

proportion of patients still respond poorly to checkpoint

blockade therapy (31). To date, reliable biomarkers for

responses to checkpoint blockade in patients with ccRCC are

lacking. Therefore, the signature established in the current study

offers a potential tool for predicting the patient response to

checkpoint blockade therapy.

Owing to the strong correlation between the amino acid

metabolic status and clinical and pathological characteristics in

patients with ccRCC, we developed an amino acid metabolism-

associated signature to identify high- or low-risk groups with

different amino acid metabolic status. In the current study, a

signature involving eight genes showed potent efficiency in

predicting prognosis. Among these eight genes, we found that

the expression of RIMKLA, MARS1, LARS2, GCNT4, and IYD

was significantly different between ccRCC and normal tissues.

RIMKLA, the ribosomal modification protein rimK-like family

member A gene, encodes an N-acetylaspartylglutamate

synthetase that synthesizes the N-acetylated tripeptide N-

acetylaspartylglutamylglutamate (32). MARS1 encodes

methionyl-transfer RNA synthetase 1, which is an essential

translation factor. Pathogenic mutations in MARS1 can cause

trichothiodystrophy, a rare hereditary neurodevelopmental

disorder characterized by sulfur-deficient brittle hair, nails,

and scaly skin (33). High expression of methionyl-transfer

RNA synthetase reportedly has a poor prognosis in breast

cancer (34). LARS2 encodes mitochondrial leucyl-transfer

RNA synthetase, which attaches leucine to its cognate tRNA.

Biallelic pathogenic variants of LARS2 can cause a wide

phenotypic spectrum, including deafness, ovarian failure,

leukodystrophy, and lactic acidosis due to mitochondrial

function impairment (35, 36). Variants in LARS2 have also

been found to correlate with the risk of type 2 diabetes (37).

Previous studies have indicated that LARS2 plays a role in

various types of cancer, including non-small cell lung cancer

(38), gastric cancer (39), and acute myelocytic leukemia (40).

GCNT4 encodes subunit 4 of glucosaminyl N-acetyl

transferase. Previous studies have reported decreased

expression of GCNT4 in gastric cancer tissues (41). Further

studies have revealed that overexpression of GCNT4 can

prevent the growth of gastric cancer cells by regulating the

TGF-b1/SMAD3 pathway (42). IYD encodes iodotyrosine

deiodinase, which reportedly has a suppressive effect on

hepatocellular carcinoma cells by inhibiting cell glycolysis

(43). Further studies are needed to determine the exact

mechanisms by which these genes affect ccRCC.

The current study had some limitations. First, few patients

with higher tumor grades and pathologic stages were included in

the clinical trial cohort, which may have resulted in the limited

prognostic value of the signature in these patients. Second, we

conducted most analyses at the transcriptomic level, and further

protein-level analysis that is crucial needs to be conducted.

Third, our findings were mainly based on data from the
Frontiers in Oncology 10
cBioPortal and TCGA datasets. Other independent cohorts

having great value need to be validated.

In conclusion, our study revealed that the amino acid

metabolic status is closely correlated with the immune

microenvironment, response to checkpoint blockade therapy,

and prognosis of patients with ccRCC. The amino acid

metabolism-associated gene signature established in the

current study can be used to predict not only the survival of

patients with ccRCC but also the potential response to

checkpoint blockade therapy, which can benefit patients in

making an appropriate management choice.
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