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Non-melanoma skin cancer has recently seen an increase in prevalence, and it

is estimated that this grow will continue in the coming years. In this sense, the

importance of therapy effectiveness has increased, especially photodynamic

therapy. Photodynamic therapy has attracted much attention as a minimally

invasive, selective and repeatable approach for skin cancer treatment and

prevention. Although its high efficiency, this strategy has also faced problems

related to tumor resistance, where the tumor microenvironment has gained a

well-deserved role in recent years. Tumor microenvironment denotes a wide

variety of elements, such as cancer-associated fibroblasts, immune cells,

endothelial cells or the extracellular matrix, where their interaction and the

secretion of a wide diversity of cytokines. Therefore, the need of designing new

strategies targeting elements of the tumor microenvironment to overcome the

observed resistance has become evident. To this end, in this review we focus

on the role of cancer-associated fibroblasts and tumor-associated

macrophages in the resistance to photodynamic therapy. We are also

exploring new approaches consisting in the combination of new and old

drugs targeting these cells with photodynamic therapy to enhance treatment

outcomes of non-melanoma skin cancer.
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Introduction

According to the Global Cancer Observatory, non-melanoma

skin cancer (NMSC) has an annual incidence of 5.8% of the world

population. In addition, in the last few years it has been observed an

increase in its prevalence (between 3% and 7%) and it is estimated

that it will continue in the coming years. The most common types

include basal cell carcinoma (BCC) and squamous cell carcinoma

(SCC) (1–3). The standard treatment options for NMSC include

surgery, radiotherapy, chemotherapy as well as their combination

(4, 5). However, within non-invasive treatments, photodynamic

therapy (PDT) stands out, since it has become one of the

therapeutic modalities that has grown the most in recent years,

presenting numerous advantages over other treatments. PDT is a

light-based therapeutic modality that involves administration of a

tumor-localizing photosensitizing agent, which may require

metabolic synthesis, followed by its activation with light of a

specific wavelength. The mechanisms of action depend on the

generation of singlet oxygen (1O2), through the excitation of the

photosensitizer (PS), which transfers its excitation energy to the

molecular oxygen in tumor tissues via triplet state. The necrotic,

autophagy or apoptotic destruction of the tumor cells is induced by

cytotoxic singlet oxygen and other secondary molecules such as

reactive oxygen species (ROS) (4, 6) (Figure 1).

Moving on to other issues, despite the fact that the concept

of tumor microenvironment (TME) has existed for more than a

hundred years now, it has not been until recently that it has

gained prominence (7). In this sense, tumors are not only

constituted by cancer cells, but for a more complex intricate of

diverse components (8). These TME constituents have been

proved to be implicated in cancer cell survival, tumor

development and therapeutic efficacy. Thereby, this tumoral

stroma is composed by different cell types that fulfills their

own role in these processes (9). Among them, fibroblasts,

immune cells and endothelial cells are immersed in

extracellular components, interacting with tumor cells.

Moreover, a vascular network keeps nourished this amalgam

of cells, where their crosstalk results in environment mediated

drug resistance (10). These interactions proved to be involved in

the effect of resistance of many tumors against different

therapeutic strategies, specifically in PDT, are the object of the

present review (Figure 1).
Tumor microenvironment
components

Cancer-associated fibroblasts
and cytokines

Fibroblasts are the main cell type present in the dermis.

Because the dermis provides strength and flexibility to the skin,
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some of the principal functions of dermal fibroblasts are directly

related to these abilities. Among others, wound healing and

deposition of collagen and elastic fibers of the extracellular

matrix (ECM) in connective tissue can be pointed out (11–13).

In the TME, normal fibroblasts suffer an activation process,

acquiring specific characteristics and expressing differential

markers such as vimentin, smooth muscle actin alpha (a-sma)

and fibroblast activation protein (FAP) (14) (Figure 2). At this

point, they receive the name of cancer-associated fibroblasts

(CAFs) (15). Nevertheless, CAF populations have turned out to

be heterogeneous, coexisting within the same tumor (such as

inflammatory or myofibroblastic phenotypes) (16, 17). Because

of this diversity, recent investigations have focused their efforts

to study the broad amount of cytokines implicated in these

changes (such as transforming growth factor beta (TGFb),
Interleukin-1 (IL-1) or integrins), as they are not only

morphological, but also functional (18–21).

Related to these functional changes, the crosstalk between

different CAF populations and tumoral cells has been long

associated with resistance to therapies in different cancer types.

In this sense, chemotherapy resistance (with compounds such as

cisplatin, tamoxifen or gemcitabine) is the most studied one (22–

25). One of the main mediators related to these resistance effects is

TGFb. This cytokine, in combination with many other molecules,

plays a key role in CAF heterogeneity (26–30). In this sense, TGFb
modulates tumor progression and therapy response through CAF

activation status, shape and invasiveness (31–33).

Within tumor progression, CAFs promote migration and

invasion of tumor cells through a well-known process: the

epithelial-mesenchymal transition (EMT) (34). In this regard,

CAFs secrete a variety of activators that initiate the TGFb
cascade in epithelial tumor cells leading to a change in

morphology and response, acquiring quasi-mesenchymal

characteristics (35–40). On the other hand, not only CAFs

modulate EMT but also tumor cells themselves through the

expression of EMT factors that interact with the TGFb signaling,

such as FOXF2 or SOX9 (41–43) (Figure 2). Thus, the presence

of these ones and similar markers constitutes an indubitable

signal of malignant progression in several types of carcinomas

(44, 45). Moreover, TGFb secreted by CAFs also participates in

the formation of vascular-like channels not only by endothelial

cells, but also by tumor cells (46) (Figure 2).

On the other hand and as stated before, CAFs are able to

modulate the response of tumoral cells to different therapies,

generating resistance effects (47–53). Specifically, the main

mechanism that prompts this phenomenon is the TGFb-
SMAD pathway, which can be modulated by different MAPKs

(19, 54–58) More extensively, translocation of the SMAD

complex to the nucleus targets specific genes such as p21 and

p15, which are two potent inhibitors of the cyclin dependent

kinases (CDKs), main regulators of the cell cycle (59–63). Thus,

this provokes cell cycle arrest in the G1 phase as a consequence

of the dysregulation of the G1/S checkpoint (57, 61, 64, 65).
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Consequently, this cell cycle arrest induces a dormant or

quiescent state of tumoral cells which prevents their effective

response to therapy, constituting an underlying mechanism of

therapy resistance and tumor recurrence (66) (Figure 2).

Moreover, p21 also stimulates the glutathione metabolism,
Frontiers in Oncology 03
which triggers an antioxidant response related to a drop in

ROS levels (main effector in most conventional therapies) (53,

67). In this sense, the combination of therapies with compounds

able to interrupt the TGFb pathway could abrogate this cell cycle

arrest, and hence, the resistance effect (66, 68).
FIGURE 2

Role of CAFs, TAMs and TILs in the resistance to therapies. CAFs (cancer-associated fibroblast), TAMs (tumor-associated macrophages) and TILs
(tumor infiltrated lymphocytes) produce cytokines that are taken up by tumor cells, producing changes in them. Epithelial mesenchymal
transition (EMT), angiogenesis, quiescence and immune evasion, all factors that favor resistance to different treatments. CD8, cluster of
differentiation 8; FAP, fibroblast activation protein; Foxp3, forkhead box P3; IL, interleukin; MCH-2, major histocompatibility complex 2; MMP,
matrix metalloproteinases; PD-L1, programmed death-ligand 1; TGFb, tumor growth factor; TNFa, tumor necrosis factor; VEGF, endothelial
growth factor; a-SMA, smooth muscle actin alpha.
FIGURE 1

Mechanism of action on tumors in photodynamic therapy. The photosensitizer (PS) absorbs light and an electron moves to the first short-lived
excited singlet state. This is followed by intersystem crossing, in which the excited electron changes its spin and produces a longer-lived triplet
state. The PS triplet transfers energy to oxygen producing reactive singlet oxygen (1O2) and reactive oxygen species (ROS), which kill tumor cells.
However, the tumor microenvironment protects the cancer cells against PDT through the interaction of its different constituents.
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Tumor associated macrophages

Macrophages are one of the principal types of immune cells

in innate immunity. They display different roles in pathogen

phagocytosis antigen presentation and tissue regeneration.

Despite its multiple beneficial functions, in a carcinogenic

environment its recruitment could be detrimental. Tumoral

context could induce a polarization in these cells, towards M1

antitumoral macrophages or towards M2 protumoral

macrophages (69). These specific macrophages are defined as

tumor associated macrophages (TAMs), which interact,

modulate and influence tumor progression, invasion and

metastasis. The main difference between them two is that

antitumor agents act by releasing cytokines that promote

adaptive immunity (IL-1, IL-6, TNF-a, NO, etc.) and have a

high expression of MCH-2 (major histocompatibility complex 2)

molecules, allowing the presentation of tumor antigens to cells of

the immune system. In contrast, pro-oncogenic macrophages act

by releasing anti-inflammatory cytokines (IL-4, IL-13, IL-10,

TGFb etc.), overexpressing PD-L1 (Programmed death-ligand

1), and expressing few MCH-2 molecules (70) (Figure 2).

Tumor associated macrophages influence tumor progression

through secretion of cytokines such as IL-10, INF-g and CCL5.

These cytokines trigger the activation of JAK1/STAT1/NF-kB/
Notch1, JAK/STAT3 b-catenin/STAT3 and PI3K/AKT signaling

pathways, modulating tumor progression, stemness and metastasis

(58, 71, 72) (Figure 2). However, TAMs do not always contribute to

tumor progression. The balance between M1 and M2 polarization

of them is critical to predict the prognosis of the patient (73–75).

Apart from being predictor of poor prognostic, TAMs are

related to poor response to chemotherapy generating a resistance

effect in colorectal cancer and glioblastoma models (76, 77) and

to immune checkpoint inhibitors in prostate cancer (78). The

modulation of this kind of cells may lead to a better response and

tumor remission. However, it is hard to understand how they

produce this effect. The blockade of molecules as PD-L1 and

Stat6 with different antibodies leads to TAMs reprogramming,

enhancing antitumor activity (79–81). mTOR inhibitors like

Rapamycin and Metformin show the ability to modulate

TAMs, boosting other therapies and controlling tumor

progression (82, 83). Other compounds such as Chloroquine

and its derivatives are, as well, modulators of TAMs polarization

through an antitumoral phenotype, sensitizing tumor cells to

chemotherapy (84, 85).
Other immune cells present in the
tumor microenvironment

Lymphocytes are the principal type of cell in adaptive

immunity, they recognize specific antigens and produce a

specific immune response. These cells are subdivided
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according to the expression of different markers such as CD3

(cluster of differentiation 3), CD25, CD4, CD8 or Foxp3

(forkhead box P3) exerting different responses against the

pathogens (86). In a tumoral context, those tumor-interacting

lymphocytes are defined as tumor infiltrated lymphocytes

(TILs). TILs can modulate the development of the tumor

depending on its features, which could be affected by the

tumor at the same time. Specifically, high levels of cytotoxic

CD8+ TILs infiltration tend to present antitumor activity and

better outcomes for the patient (71, 87, 88). On the contrary,

high levels of Foxp3+ regulatory T cells are strictly correlated

with immunosuppression and pro-tumor activity triggering

poor outcomes (89–91) (Figure 2).

B lymphocytes could also be part of the TME. It has been

demonstrated that its presence is related with a higher CD8+

cells infiltration and, therefore, with a better prognosis (92, 93).

However, this B cell appearance is not always beneficial, since

these cells can also adopt a regulatory phenotype under the

influence of myeloid-derived suppressor cells (MDSCs). Once

with the regulatory phenotype, those cells produce cytokines

with immunosuppressive effect, depleting CD8+ cells antitumor

activity (94).

Myeloid-derived suppressor cells comprises a heterogeneous

group of cells which have in common its derivation from

immature myeloid cells and play an important role in cancer

development, progression, invasion and setting of the pre-

metastatic niche in different types of cancer (95). The

protumoral activity derived from MDSCs is driven by several

molecules present in the tumor as the macrophage migration

inhibitory factor, B7 homolog 3 protein, also known as CD276,

or signal transducer and activator of transcription 3 (STAT3)

(96, 97). MDSCs could be modulated by different molecules and

drugs in order to suppress their effects. Metformin, STAT 1 or

the blockade of IL-6 and NLRP3 (NLR family pyrin domain

containing 3) inflammasome can improve the clinical outcome

and the prognosis of the patient (98–100).

Mast cell (MC) infiltration has been reported in a wide range

of human and animal tumors particularly malignant melanoma

and breast and colorectal cancer. The consequences of their

presence in the TME remain unclear. Within the tumor, MC

interactions occur with infiltrated immune cells, tumor cells, and

ECM through direct cell-to-cell interactions or release of a broad

range of mediators capable of remodeling the TME. MCs actively

contribute to angiogenesis and induce neovascularization by

releasing the classical proangiogenic factors including VEGF

(vascular endothelial growth factor), FGF-2 (fibroblast growth

factor), and IL-6, and nonclassical proangiogenic factors mainly

proteases including tryptase and chymase (Figure 2). MCs may

support tumor invasiveness by releasing a broad range of matrix

metalloproteinases (MMPs) (101). 5-ALA-mediated PDT was

associated with degranulation of MC and angiogenesis in oral

premalignat lesions induced in rats (102).
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Finally, the neutrophils also are associated with tumor

progression. They are capable of establishing a pro-tumor

microenvironment, being correlated to poor prognosis in some

tumors such as lung cancer (103–105).
Extracellular matrix

The extracellular matrix is a key factor in carcinogenesis,

which offers structural and biochemical support for cellular

components lowing it to influence cell communication,

adhesion and proliferation (106). It consists of a network of

macromolecules, including collagen, fibronectin, laminin and

glycosaminoglycans (107, 108). Alteration in ECM components

may be the basis for the tumor progression. For example, the

laminin receptor expression plays an important role in SCC

progression (109, 110); the loss of type IV collagen correlates

with the poorly differentiated SCC (111) and fibronectin

mediates cellular interactions with the ECM and it is

important in cell migration (112). Matrix metalloproteinases

(MMPs) are critical molecules for the EMT process because they

degrade cell adhesion molecules and cell-ECM interactions,

which are produced by both tumor and immune cells (106,

107). Finally, the ECM is also modulated by the action of CAFs

through the secretion of soluble factors such as cytokines (113).

It should be noted that there is an interconnection between

the different components of the EMT. TAMs are capable of

producing differential responses in TILs depending on their

polarization (114, 115). These TAMs could also be influenced

by regulatory T cells, promoting a protumoral phenotype via

repression of CD8+ secreted INF-g (116). Also, CAFs have

demonstrated marked effects on macrophages, attracting them

and polarizing them to protumoral TAMs (117–119). In addition,

CAFs, TAMs and TILs are providers of pro-angiogenic factors

such as VEGF for the formation of a complex vascular network to

meet the metabolic and nutritional needs of tumors (120–122).
The tumor microenviroment as
mediator of photodynamic
resistance in non-melanoma skin
cancer – Therapeutic opportunities

Photodynamic therapy not only targets neoplastic cells and

tumor blood vessels, but also activates the immune system to

induce inflammation and immune response to tumor cells (123).

Although the intrinsic cellular mechanisms of resistance to PDT

have been characterized, the emerging importance of the TME

and the inflammatory/immune antitumor response is currently

under investigation (123, 124). The specific role of CAFs and

TAMs as an extrinsic mechanism of PDT resistance is attracting

the attention for of researchers and is summarized in Table 1.
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Furthermore, although PDT has been extensively evaluated,

both preclinically and clinically for the treatment of cancer

cells, it has not been fully examined the concept of leveraging

PDT to attack the tumor stroma in order to counteract

therapeutic resistance induced by stromal signalling (149).
CAFs and PDT

Studies on the role of fibroblasts in the effectiveness of PDT

in neoplastic cells are infrequent, and most of them have been

evaluated in pancreatic cancer. Glidden et al. observed greater

resistance to PDT when pancreatic ductal adenocarcinoma cells

were co-cultured with normal fibroblasts for 7 days in 3D

models (150), while Celli et al. did not observe effects from

normal fibroblasts in the effectiveness of PDT in pancreatic

cancer cells (149). Also, Chen et al. did not appreciate significant

differences using conditioned culture medium of CAFs in 2D

and 3D cultures (151). The role of CAF-derived TGFb-1 as an

extrinsic factor has been identified in different cancers, including

cutaneous squamous cell carcinoma (cSCC) and basal cell

carcinoma (BCC), the two main types of NMSC, in which it

can induce resistance to different therapies (47, 132–134).

Recently, our group investigated the role of TGFb-1 in the

resistance process to PDT in NMSC cells, showed that the

TGFb-1 secreted by CAFs of SCC is capable of conferring

resistance to PDT with methyl aminolevulinate (MAL)

through the induction of a quiescence state, postulating TGFb-
1 as a target for PDT optimization (47) (Figure 3A).

Furthermore, although the selectivity of PDT for tumor cells

has been widely reported, the effect of ALA-PDT on CAFs is not

well understood. However, it has been shown that alterations in the

TME, such as the emergence of CAFs, are necessary for tumor

progression to invasive and metastatic SCC, stages resistant to PDT

(135). Li et al. indicated the effect of PDT with 5-aminolevulinic

(ALA) on SCC-CAFs, showing a revers of the activation of CAFs (a

reduction in a-SMA, FAP expression and migratory capacity of

these cell types) (138) (Figure 3B). An interesting field of study is the

effect of CAFs on genodermatoses that predispose to skin cancer

such as Gorlin-Golz syndrome (GS) and Xeroderma pigmentosum

(XP). Zamarron et al. investigated the overexpression of a-SMA

and vinculin in fibroblast from GS and XP patients, observing an

increase in the expression of both markers as compared to healthy

fibroblasts and thus considering that primary fibroblasts obtained

from these patients could be potential CAFs (152). PDT is an

interesting treatment option in these two genodermatoses that

achieves high clearance rates and excellent cosmetic outcomes

probably due to the susceptibility of GS and XP fibroblasts to

PDT (153). The fact that these fibroblasts behave as CAFs is likely

contributing to malignancy in this genodermatoses. On the other

hand, since they are highly susceptible toMAL-PDT, it suggests that

this approach could not only be relevant to treat the epithelial
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component of tumors or premalignant lesions but also the activated

stromal cells. One mechanism that Zamarron et al. have proposed

to improve the efficacy of PDT is a priming response elicited by

UVA light (the one with the capacity to reach the dermis) that may

enhance the effect of MAL-PDT (152) (Figure 3C).
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On the other hand, there are several investigations showing that

CAFs are mediators of inflammation in squamous cell

carcinogenesis through the IL1b secretion. This cytokine has a

dual role of tumor promotion and suppression. In this sense, Nie

et al. preliminarily demonstrated that the NLRP3 inflammasome
B

C

D

E

A

FIGURE 3

Strategies for outcome PDT resistance generated by CAFs. (A) To inhibit TGFb secretion; (B) To revert the CAFs phenotype by PDT; (C) To boost
PDT at dermal level by UVA light; (D) To activate NLRP3 inflammasomes by PDT to induce an inflammation response by IL1b; (E) To direct PDT
to CAFs using their components as targets, such as FAPs. FAP, fibroblast activation protein; IL1b, Interleukin 1b; NLRP3, NLR family pyrin domain
containing 3; TGFb, tumor growth factor beta.
TABLE 1 Mechanisms of resistance to PDT caused by TME in NMSC and strategies to avoid it.

Effects of TME in PDT resistance Strategies to improve PDT

Physical barrier for photosensitizers and intra-tumoral infiltration of immune cells Disrupting the tumor extracellular matrix with hyaluronidase using dextran as a
carrier (125)

Tumor hypoxia (126):
• Immunosuppressive effect by MDSC (123, 127)

Reduction of HIF-1a with curcumin (128)
Delivering O2 to hypoxic tumors (129–131)

Responses of CAFs after PDT:
• Production of TGFb-1 induces a quiescent in tumor cells after PDT (47, 132–

134)
• Induction of tumor progression (135)
• Secretion of IL1b, which induces tumor promotion (136)
• Production of CXCL12, which avoids the contact between T cells and cancer

cells (137)

Targeting CAFs:
• Reversion of CAFs phenotype by ALA (138)
• MAL + TGFb inhibitor (47)
• Metformin + MAL inhibits TGFb (139)
• ZnF16Pc-loaded ferritin nanoparticles eliminate CAFs (140, 141)

Suppression of tumor cell phagocytosis by M1 TAM (142, 143)
M2 TAM exhibit pro-oncogenic properties (70):
• Releasing anti-inflammatory cytokines (IL4, IL13, IL10, TGFb)
• Overexpressing PD-L1
• Downregulation of MCH-2 molecules

Combination of PDT with drugs to promote M1 TAM polarization:
• Rapamycin (82)
• Metformin (83)
• Chloroquine (84, 85)

Designing new PS for TAM, promoting M1 TAM over M2 TAM:
• Chloroaluminum sulfonated phthalocyanine (142, 144)
• Photofrin (143, 145, 146)
• Alginate-zinc (II) phthalocyanine conjugates (147)
• Mannose conjugated-chlorin (148)

Increase of degranulation of MC and angiogenesis (102) Antihistamines (102)
ALA, aminolevulinic acid; CAFs, cancer-associated fibroblasts; CXCL12, C-X-C motif chemokine ligand 12; EMT, epithelial-mesenchymal transition; IL1b, Interleukin 1b; MAL, methyl
aminolevulinate; MC, mast cell; MMP, metalloproteinases; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells; PDT, photodynamic therapy; PS, photosensitizer; TAM,
tumor associated macrophages; TGFb, tumor growth factor beta; TME, tumor microenvironment.
frontiersin.org

https://doi.org/10.3389/fonc.2022.970279
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cerro et al. 10.3389/fonc.2022.970279
mediating IL1b production in CAFs contributes to the PDT effect

with ALA on SCC (136) (Figure 3D). Thus, modulating the

inflammatory response and knowing well the expression of

cytokines produced by CAFs could be a mechanism to avoid

tumor resistance to PDT.

Besides the differentmechanisms previously described to combat

extrinsic resistance to PDT induced by the tumor stroma, other

possible strategies have been investigated. Among the different

mechanisms proposed, highlights the use of nanomedicine. Li

et al. found that a single chain viable fragment (scFv, sequence

specific to FAP) and the PS ZnF16Pc-loaded ferritin nanoparticles

(scFv-Z@FRT) can mediate efficient and selective PDT, leading to

eradication of CAFs in tumors (140) (Figure 3E). This strategy has

proven to be a new and safe CAF-targeted therapy and a novel way

tomodulate TME in order to enhance immunity against cancer. This

is due to CAFs regulate C-X-Cmotif chemokine ligand 12 (CXCL12)

secretion and ECM deposition, preventing physical contact between

T cells and cancer cells (137, 141).. Finally, another strategy to

combat resistance to PDT is the use of drugs that have a synergistic

and adjuvant effect, such as the combination of PDT and the multi-

kinase inhibitor cabozantinib for extensive desmoplasia in pancreatic

ductal adenocarcinoma, which frequently associates with treatment

resistance. Blocking EMT phosphorylation with adjuvant

cabozantinib caused a significant improvement in PDT efficacy

with benzoporphyrin derivative, most notably by elevating

spheroid necrosis at low radiant exposures (154). Even drugs with

other therapeutic purposes such as metformin with promising effects

in SCC cells resistant to MAL PDT, could increase the response to

this treatment (139). Since metformin inhibits TGFb-1-mediated

EMT in breast cancer (155) and in carcinoma cells of the cervix

through the inhibition of mTOR/p70s6k signalling (156). In non-

small cell lung cancer, a recent study has shown that metformin

exerts antitumor effects such as inhibition of proliferation and

invasion as well as control of EMT through inhibition of NF-kB
(Nuclear factor kappa-light-chain-enhancer of activated B cells)

(157). Finally, CAFs have been reported to play a role in inhibiting

apoptosis, among other factors (158). However, to date, there are no

data on the part of these proteins and PDT resistance.
TAMs and PDT

Tumor associated macrophages also play complex but principal

roles in the outcomes of PDT in malignant lesions Haga clic aquı ́
para escribir texto.. The infiltration of M2 type TAMs to the

neoplasm is associated with an increased risk of metastasis and

tumor progression, due to the induction of angiogenesis and cell

proliferation (159). The plasticity of TAMs can be used from a

therapeutic point of view to generate more antitumor macrophages

and destroy the neoplasm (70). TAMs have been shown to have a

great capacity for the uptake of systemically administered PSs. Chan

et al. used flow cytometry analysis and cell sorting to determine the

content of a photosensitizer in the cellular fraction of a mouse
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colorectal carcinoma. Upon separating tumor-derived populations of

high and low PS content, they identified macrophages among the

cells with a high content (144). Korbelik et al. even showed that the

amount of PS was greater in macrophages than in cells from the

tumoral parenchyma (145). Macrophages M2 are selectively

destroyed with PDT, and during the ensuing inflammatory

reaction they are replaced with newly invading macrophages of

M1 phenotype. Macrophages M1 have a principal role in the effect of

PDT since they mediate in the removal of killed cancer cells and in

the processing/presenting tumor antigens to T lymphocytes (160).

The behavior of macrophages treated with PDT has been the subject

of various studies. Macrophages treated with low doses of PDT seem

to be activated and have greater activity, while those treated with

higher doses lose their functionality (142). In addition, the

macrophages treated with PDT generate a high amount of TNF-a,
which entails the cytotoxic effect associated to this cytokine (146).

Other mediators that are generated during PDT in the presence of

TAMs and neoplastic cells are complement proteins (C3, C5 and

C9), pentraxin, sphingolipids or toll-like receptors (TLR2, TLR4 and

C3aR). All these molecules opsonize damaged tumor cells and

facilitate phagocytosis by M1 TAMs (143).

The use of nanoparticles has become a strategy for the treatment

of neoplasms. The development nanoparticles-based PDT against

TAMs opens up new and more selective therapeutic pathways that

can avoid resistance (161). TAMs express several receptors, including

scavenger receptor A (SR-A), which can bind a variety of polyanionic

ligands. Therefore, the conjugation of a PS with a polyanionic

compound can act more selectively on them (162) (Figure 4A).

Furthermore, alginate is a natural anionic polymer that has been

combined with a PS known as phthalocyanine (1-[4-(2-aminoethyl)

phenoxy]zinc(II) phthalocyanine) in a 0.1% gel presentation. The

result is a low-cost photosensitizing molecule that is effective in vivo

and in vitro against tumors of murine lines. Side effects wereminimal

and local, and the effectiveness over TAMs was high (147).

Tumor associated macrophages overexpress CD206, a mannose

receptor that is crucial for the role of macrophages in engulf,

invasion and degradation of organism by endocytosis and

phagocytosis (163). The use of mannose-conjugated chlorin (m-

chlorin, photosensitizing substance) to target mannose receptors in

TAMs has also been studied (Figure 4B). This PDT approach is a

targeted therapy of TME TAMs to avoid their resistance, which

induced a greater cell death in TAMs M2 (with mannose receptor)

than TAMSM1 in cancer cells from the digestive tract (148). Finally,

another strategy used to reduce TAMs-induced resistance is the use

of curcumin as PS. Curcumin is a natural bioactive compound

isolated from the rhizomes of Curcuma longa L., that exhibits great

anti-tumor activity through the reduction of the levels of hypoxia

factor 1 (HIF-1a) generated during PDT. HIF-1a promotes the M2

phenotype of macrophages and tumor survival, thus limiting the

effectiveness of PDT (128) (Figure 4C). In the TME, uncontrolled

cell proliferation avoid the ability to satisfy the oxygen demand from

the preexisting blood vessels. Hypoxia has been found to directly

regulate the expression of not only macrophages but also of other
frontiersin.org

https://doi.org/10.3389/fonc.2022.970279
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cerro et al. 10.3389/fonc.2022.970279
immune cells such asMDSCs (123, 127). In PDT, molecular oxygen

is necessary, as a microenvironment of hypoxia could lead to

treatment failure and drug resistance (126). Therefore, multiple

nanomedicine-based strategies are being developed to circumvent

hypoxia, such as hemoglobin oxygen carriers and cellular

respiration inhibitions (129–131).

Conclusion

Cancer not only has a malignant epithelial component but

also a stromal with various components, such as fibroblasts,

endothelial and inflammatory cells, which form an appropriate

TME to promote tumorigenesis, progression, and metastasis.

TME components have been found to influence the processes of

resistance to various treatments, and photodynamic therapy is

not spared. Several studies have linked resistance to this

treatment to the presence of cancer and/or macrophages-

associated fibroblasts, the two major components of the tumor

microenvironment. To date, the importance of TGFb-1 in the

resistance process to PDT in NMSC cells has been demonstrated,

as CAFs induce tumor progression and tumor promotion by

IL1b after PDT, avoiding physical contact between T cells and

cancer cells by CXCL12 after PDT, or showing how high dose of

PDT suppress macrophages activity.

Although different mechanisms to prevent resistance to PDT

have already been studied (Table 1), more strategies are needed to

target this component to inhibit the tumor growth and prevent

resistance to PDT in NMSC. In this sense, strategies based on
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nanomedicine to enhance PDT, as well as new photosensitizers or

nano-sized photosensitizer, and the use of combined treatments

could contribute to the development of future perspectives.

Furthermore, the mechanism by which photodynamic therapy

may produce an inflammatory response that favors tumor

remission and thus future recurrences should be extensively studied.
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Glossary

1O2 singlet oxygen

ALA aminolevulinic acid

BCC Basal cell carcinoma

CAFs cancer-associated fibroblasts

CCL5 Chemokine (C-C motif) ligand 5

CD cluster of differentiation

CDK cyclin-dependent kinase

CF control fibroblastas

CTLA-4 cytotoxic T-lymphocyte-associated protein 4

CXCL12 C-X-C motif chemokine ligand 12

ECM extracellular matrix

EMT epithelial-mesenchymal transition

FAP fibroblast activation protein

FGF fibroblast growth factor

FOX Forkhead box protein

GS Gorlin Syndrome

HIF-1alpha hypoxia factor 1 alpha

IFN-g Interferon gamma

IL interleukin

MAL methyl aminolevulinate

MAPK mitogen-activated protein kinase

MC mast cell

MCH-2 major histocompatibility complex 2

MDSCs myeloid-derived suppressor cells

MMP matrix metalloproteinases

mTOR mammalian Target of Rapamycin

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells

NMSC non-melanoma skin cancer

NO nitric oxide

PDFG Platelet derived growth factor

PD-L1 programmed death-ligand 1

PS photosensitizer

ROS reactive oxygen species

SCC squamous cell carcinoma

scFv sequence specific to FAP

SR-A scavenger receptor A

STAT signal transducer and activator of transcription

TAMs tumor associated macrophages

TGFb transforming growth factor beta

TILs tumor infiltrated lymphocytes

TLR Toll like receptor

TME tumor microenvironment

TNFa Tumor necrosis factor

UVA Ultraviolet A

VEGF vascular endothelial growth factor

XF xeroderma fibroblasts

XP xeroderma pigmentosum

a-SMA smooth muscle actin alpha.
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