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Epigenetics and environment in
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for anti-cancer therapies
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Breast cancer remains the most frequently diagnosed cancer in women

worldwide. Delayed presentation of the disease, late stage at diagnosis,

limited therapeutic options, metastasis, and relapse are the major factors

contributing to breast cancer mortality. The development and progression of

breast cancer is a complex and multi-step process that incorporates an

accumulation of several genetic and epigenetic alterations. External

environmental factors and internal cellular microenvironmental cues

influence the occurrence of these alterations that drives tumorigenesis. Here,

we discuss state-of-the-art information on the epigenetics of breast cancer

and how environmental risk factors orchestrate major epigenetic events,

emphasizing the necessity for a multidisciplinary approach toward a better

understanding of the gene-environment interactions implicated in breast

cancer. Since epigenetic modifications are reversible and are susceptible to

extrinsic and intrinsic stimuli, they offer potential avenues that can be targeted

for designing robust breast cancer therapies.

KEYWORDS
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Breast cancer overview

Cancers of the breast are the most prevalent malignancy observed in women

worldwide. In the year 2022 alone, it is estimated that in the United States, nearly

287,850 new cases of invasive breast cancer and 51,400 new cases of ductal carcinoma in

situ (DCIS) would be diagnosed, while 43,250 breast cancer deaths would occur (1).

Breast cancers if diagnosed at an early stage, can significantly enhance the effective

treatment strategies and improve the survival. The five-year survival rate for early

detection is more than 90%, whereas it is reduced to 25% for patients diagnosed at the

advanced stages (2).
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Breast cancer is a highly heterogeneous disease and research

is still ongoing to clearly understand its origin and the

underlying mechanisms. The breast consists of milk producing

glands and the connective tissues comprising the fibrous and

fatty tissues. Lobules are the milk producing glands, and ducts

carry the milk to the nipples, Figures 1A, B. Most breast cancers

begin in the ducts or the lobules and based on the metastatic

spread, they can either be benign or invasive. Ductal carcinoma

in situ (DCIS) is considered as non-invasive and early-stage

breast cancer confined to the milk ducts. If cancer originates in

the ducts or lobules and metastasizes, they are considered

invasive ductal carcinoma (IDC) and invasive lobular

carcinoma (ILC) respectively. Almost, 80% of breast cancers

belong to the IDC category (4, 5).

With the emergence of new high-throughput technologies

and gene expression profiling, breast cancer has been

molecularly characterized into distinct subtypes based on the

expression of hormone receptors and proliferation statuses.

Activation of human epidermal growth factor receptor 2

(HER2), estrogen receptor (ER), progesterone receptor (PR),

proliferation marker Ki67, and/or mutations in the Breast

Cancer (BRCA) gene, has been utilized in the histological and

molecular characterization of breast cancer. These molecular

subtypes are clinically divided into major forms that include

Luminal A, Luminal B, HER2-enriched, and basal/triple negative

breast cancer (TNBC). Luminal A cancer can either be ER and/

or PR positive (+) or HER2 negative (-). Luminal B tumor can

either be ER+ and/or PR+ or PR- and/or HER2+/-. HER2

overexpressed tumors constitute the HER2 enriched group,

while TNBC lacks the ER, PR, and HER2 statuses. Luminal A

tumors have low Ki 67 levels, are of low grade, and have the best

prognosis, compared to Luminal B which have high Ki 67 levels

and are usually high grade. Among all, TNBCs, have the worst

prognosis and are aggressive due to high metastatic behavior (6–

8). Such an existence of multiple subtypes of breast cancer is

associated with distinct clinical behaviors/responses and has

significant implications in breast cancer therapies (9,

10), Figure 1C.

Genetic predisposition or family history constitutes almost

10% of all breast cancer cases. Mutations in the BRCA gene,

BRCA1 and BRCA2 is the most common germline aberrations

associated with breast cancer having a collective 70% lifetime

risk of developing breast cancer (11, 12). In fact, 15 to 20% of all

TNBC cases are linked with the germline mutations in BRCA1 or

BRCA2 (13) and in US, 12% of breast cancers are contributed by

TNBCs with a 5 year survival rate of 8 to 16 percent only (14).

Studying a series of early breast cancers revealed that the most

frequently amplified genes in the tumors are the p53, Myc,

PTEN, PIK3CA, ERBB2, CCND1, GATA 3 and FGFR1 (15).

The risk of developing breast cancer is high in patients harboring

mutations in the BRCA1, BRCA2, TP53, and PTEN genes (16). In

addition to the genetic factors, breast cancer microenvironment
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plays a major role in its development and progression where the

immune cell repertoire is cardinal (17).

Heightened or prolonged exposure to estrogen contributes

to the major risk factor for breast cancer development. The

occurrence of sporadic breast cancers is associated with exposure

to estrogen, which is a substantial risk factor for the development

of such cancers (18). Other risk factors include old age, obesity,

high breast density, alcohol intake, smoking, hormonal therapy,

and pregnancy associated factors (19–24). Additionally, early

menarche/late menopause, usage of oral contraceptives,

hormone replacement therapy, benign lesions, and radiation

therapy are some of the known risk factors (25–28). Few of them

are modifiable risk factors such as lifestyle and physical activity if

adopted successfully, can offer reduction in the disease

burden (29).
Epigenetic players in breast cancer

Dynamic and heritable modifications occurring to the

genome independently of DNA sequence, is a phenomenon

referred to as the “epigenetics”. Interestingly, cancer was the

first disease linked to epigenetic changes (30). For the onset of

cancer, the activation of oncogenes and/or the suppression of

tumor suppressor genes are the key events that are always

accompanied with epigenetic changes. These epigenetic

changes include DNA methylation, histone posttranslational

modifications, expression of micro-RNA, and long non-coding

RNA (31, 32).

Breast cancer development is a complex and multistep

process involving the synergistic crosstalk between genetic and

epigenetic alterations which are influenced by a plethora of

internal and external factors. Such factors include but not

limited to the cell’s intrinsic microenvironment, nutrient

supply, cellular stress as well as external environmental

exposures to agents that are endocrine disrupters or are of

carcinogenic nature. Altogether, critical genes involved in

proliferation, apoptosis, cell motility, invasion, etc. are

influenced by the epigenetic changes that are implicated in

breast cancer development and progression (Figure 2).
DNA methylation

One of the most well-known and major epigenetic

mechanisms is DNA methylation, which involves the

covalent addition of a methyl group (CH3) to the 5′-
position of cytosine that resides before the guanine in the

DNA sequence. Such methylat ion within the CpG

dinucleotides which are concentrated in large clusters also

called the CpG islands, regulates gene expression thereby

governing the major biological process implicated in cancer
frontiersin.org
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(33, 34). As a result of methylation, a 5-methylcytosine (5mC)

structure is formed that can either block the access of

transcription factors to the binding sites of the DNA or

engage methyl binding domain proteins (MBDs) in

conjunction with the modification of histone proteins, so

that the expression of methylated genes is prevented. In such

a scenario when the promoters of key tumor suppressor genes

are densely methylated, leads to their silencing and if
Frontiers in Oncology 03
oncogenes are less methylated, leads to their aberrant

activation (35, 36).

DNA methylation is a reversible process where a specific

group of enzymes called the DNA methyltransferase (DNMTs)

govern the process. DNMT1, DNMT3a, and DNMT3b are the

three active DNA methyltransferases. Demethylation of DNA is

catalyzed by an enzyme family belonging to the Ten-eleven

translocation methylcytosine dioxygenases also known as ten-
FIGURE 2

Overview of Key Epigenetic Events in Breast Cancer. Mechanisms for epigenetic alterations in breast cancer are shown focusing on two major
players that include the methylation of DNA and the modification of histone proteins. Hypomethylation of oncogenes and hypermethylation of
tumor suppressor genes is an important epigenetic phenomenon in breast cancer that affects various cellular processes of proliferation,
apoptosis, migration, invasion, drug resistance, etc. Post translation modifications made to histone proteins impact gene expression by altering
the chromatin structure towards open or closed conformation. Histone methylation of lysine is implicated in both transcriptional activation and
repression depending on the methylation site that constitutes the various histone marks/code.
A

B

C

FIGURE 1

Classification of Breast Cancer (A) Breast showing the different tissue types consisting of duct, lobe, lobules, nipples, and fatty tissue. (B) Cross-sectional
view of mammary duct, consisting of basal cells and luminal cells. Breast cancer arising from the luminal or basal cells can be further characterized
based on the expression of different hormone receptors. (C) Based on the expression of ER, PR, HER2, and proliferation status as assessed by Ki67,
different molecular subtypes of breast cancer have been identified that have distinct prognostic features and response to therapies (3).
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eleven translocations (TETs), which can turn 5mC to 5-

hydroxymethylcytosine (5-hmC) by the process of

hydroxymethylation. TET1, TET2, and TET3 are three such

enzymes involved in DNA demethylation thereby recovering the

silenced genes that are once affected by the DNMTs. Together,

this entire process influences the transcriptional activation of

important genes involved in carcinogenesis and genomic

stability (37–41). Several other proteins that have DNA

demethylase activities and are implicated in breast cancer

include the growth arrest and DNA-damage inducible protein

(GADD45) and the cytidine deaminases family of proteins,

Act ivat ion-induced cyt id ine deaminase (AID) and

Apolipoprotein B mRNA editing catalytic polypeptide‐like

family (APOBEC). GADD45A has compelling associations

between DNA repair and epigenetic gene regulation (42, 43).

In breast cancer, the interaction between GADD45 and BRCA1

gene has been suggested to influence the pathogenesis of the

disease most likely via triggering the nucleotide excision repair

mechanisms (44). Interestingly, GADD45A is abnormally

methylated in breast cancer (45). AID proteins have important

roles in the active DNA demethylation, where its engagement in

the deamination of 5-mC to thymine has been reported (40, 46).

Also, AID is known to facilitate DNA demethylation and is

essential for the EMT in non-transformed mammary epithelial

cells (47). Furthermore, while, APOBEC1 possesses DNA

demethylase activity (48–50), APOBEC mutagenesis

influencing the tumor evolution in ER+/HER2-breast cancer

has been reported (51). Most recently it was shown that the

APOBEC mutagenesis prohibited the growth of breast tumors

by eliciting immunogenic responses (52).

Several genes in breast cancer exhibit CpG island

hypermethylation (53) and in several instances, abnormal

activity of DNA methyltransferases led to the hypermethylation

and silencing ofHOXA5, TMS1, p16, RASSF1A, and BRCA1 genes

of tumor suppressor behavior (54–56). Additionally, genes that

are silenced due to promoter hypermethylation include E-

cadherin, TMS1, GSTP1, and p16 (57–59). These genes are

involved in major biological processes such as estrogen

signaling, pro-apoptosis (HOXA5, TMS1), cell cycle check

points (RASSF1A, p16) and DNA repair mechanisms (BRCA1).

While one of the best examples of a breast cancer susceptibility

gene that is frequently silenced in sporadic breast tumors is the

BRCA1 gene, CpG hypermethylation of BRCA1 associated with

DNMT 3b overexpression has been reported (60). Early stages of

sporadic breast cancer exhibit the loss of cell cycle checkpoint gene

p16INK4a via aberrant CpG promoter methylation (61) and

nearly 80% of breast tumors also exhibit a decreased expression

of another cell cycle inhibitor gene p21/CIP1/WAF1 via elevated

methylation of p21/CIP1/WAF1 gene (62).

DNA methylation also follows a distinct pattern that is

displayed in different subtypes of breast cancer. For example, a

high frequency of DNA methylation has been shown in ER

+/luminal breast cancer compared to ER−/basal-like tumors (63,
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64). Also, well-differentiated tumors have less methylated CpG

islands in comparison to poorly differentiated breast tumors

which exhibits a greater degree of methylated CpG islands (65).

Similarly, increased promoter hypermethylation of the

progesterone receptor gene has been observed in the PR

negative breast tumors (66). Such a differential methylation

pattern in the ER or PR or HER2 gene may affect the

expression of these receptors on the breast tumor and hence

can significantly impact the responsiveness of such tumors to

relevant endocrine/hormonal therapies. In an attempt to study

the DNA methylation profiles of the well-known expression

subtypes of breast cancer i.e. luminal A, luminal B, and Basal

like, 807 cancer associated genes were analyzed and it was

revealed that there is variability in the methylation profiles of

each of the three breast cancer subtypes and that the profiles are

different from each other (64).

DNA methylation alterations in normal breast tissue or

normal tissues adjacent to cancer can also give clues towards

the likelihood of the occurrence of breast cancer. Interestingly, it

is suggested that the detectable methylation variabilities in some

of the cancer related genes in normal breast tissues can predate

the occurrence of breast cancer (67). Moreover, distinct types of

breast cancer can be tracked down back to the specific

progenitor population, deploying their unique methylation

profiles, thereby addressing the issues owing to their cell of

origin or biological heterogeneity as observed in breast cancer

(68). More recently, by comparing breast cancer to normal

breast, seven breast cancer-specific methylation biomarkers

have been identified, while six CpG sites are suggested to

predict patient survival (69). Using a genome wide approach

to analyze the DNA methylation and expression patterns in

breast cancer and normal breast, PRAC2, TDR10, and

TMEM132C genes have been identified that can serve as novel

DNA methylation-gene markers of diagnostic and prognostic

significance in breast cancer (70). Large scale integrative analysis

of the DNA methylation profiles across 1538 METABRIC breast

tumors with respect to transcriptional, genetic, and clinical

aspects, revealed six global trends that affect the DNA

methylation profiles of the breast. These trends consist of

“contamination of immune and stromal cells”, “replication

linked hypomethylation clock”, “X chromosome dosage

compensation”, and “epigenetic instability at CpG islands”.

Most importantly, this study identified X inactivation as a

strong dosage compensation machinery, which can be the

causative reason behind the methylation of attained X-

associated loci in ER negative tumors (71).
Chromatin modification

DNA is wrapped around histone proteins so that it can fit

into the nucleus. Individual histone octamer consists of two

copies of H2A/H2B dimer cores and H3/H4 tetramers, that wrap
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around 146 base pairs of the DNA. Nucleosomes comprise

repeating histone units that ultimately make up the chromatin

(72, 73). Histone octamer harbors an unstructured N terminal

tail of differing lengths that protrudes outward from the

nucleosome. This protruding amino terminal tail can be

subjected to various kinds of modifications where chemical

moieties are added. The addition of various chemical moieties

or tags determines whether the DNA wrapped around histones

is available for transcription. In case, when the chromatin is

tightly folded, the DNA remains inaccessible to the transcription

factors and hence the structure is transcriptionally silent, also

called heterochromatin. Whereas when the structure is less

condensed, more relaxed, and hence more accessible to the

transcription factors and thereby remains transcriptionally

active, also called euchromatin (74). There are at least four

amino acid residues that are subjected to modifications, these

include lysine, serine, tyrosine and arginine, and there are more

than six kinds of modifications that can occur. These include

methylation, acetylation, phosphorylation, ubiquitination,

biotinylation, sumoylation, and proline isomerization. The

different patterns of histone modifications, also famously

referred as the histone code, influences the transition of the

chromatin states between the euchromatin and heterochromatin

eventually regulating gene expression (75, 76).

Histone acetylation
Post translational modifications made to histone proteins

impact gene expression by altering the chromatin structure.

Histone acetylation involves the addition of acetyl groups to

the lysine residues of histones H3 and H4 by the group of

enzymes known as the histone acetyltransferases (HATs) also

called as “writers”. As a part of the gene regulatory machinery,

such modifications disrupt histone-DNA interactions resulting

in the unwinding of the nucleosome. HATs utilize acetyl CoA as

a cofactor and catalyze the reaction, and in doing so they

neutralize the positive charge on the lysine, thereby weakening

the interaction between the histones and the negatively charged

phosphate groups of the DNA. As a result, the condensed

chromatin is now a more open and relaxed structure that is

associated with a higher degree of gene transcription.

Acetylation is a dynamic and reversible process, where the

acetyl groups can be removed by the group of enzymes called

histone deacetylases (HDACs) also called “erasers”, resulting in

the deacetylation of the histone lysine residues thereby making

the chromatin more condensed and transcriptionally repressed

(74, 76, 77). Acetylation of histone H3 on lysine 9 residue

[H3K9], lysine 14 [H3K14], lysine 27 [H3K27], and lysine 122

[H3K122] has been associated with active transcription (78–80).

It is interesting to note that DNAmethyltransferases can directly

interact with the HDACs and the methyl CpG binding domain

family of proteins at their promoter regions and ultimately build

a complex that is transcriptionally repressive. This repressive
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complex is critical for the conversion of acetylated histones that

is transcriptionally active, to the deacetylated transcriptionally

silent form (81).

Enzymes belonging to the category of histone acetylation

“writers”, e.g., enzyme harboring the histone acetylation

domains P300 is implicated in breast cancer where it is

overexpressed and bestow towards an elevated risk of cancer

occurrence and lower survival (82). P300/CBP, also modulate

several processes associated with proliferation, cell death,

epithelial mesenchymal transition (EMT), and metastasis in

breast cancer (83–86).

There are important roles exerted by the histone deacetylases

“erasers” where they regulate the cell growth, EMT,

angiogenesis, and metastasis of breast cancer (87–95). For e.g.,

Sirtuins, a class III histone deacetylase family regulates the

oncogenes and tumor suppressor genes thereby affecting the

breast carcinogenesis in a dual fashion. In this context, SIRT1

hindered the TNBC tumorigenesis, whereas fostered the

tumorigenesis of luminal subtypes (96, 97). Interestingly,

SIRT1 functions downstream of the BRCA1 gene and

negatively regulate Survivin, an anti-apoptotic gene. Such

transcriptional repression of Survivin is mediated via the

deacetylation of histone H3 on lysine 9 on its promoter.

Therefore, ablation of BRCA1 via lessened SIRT1 resulted in

an upregulation of Survivin that facilitated the growth of breast

tumors (98). Other Sirtuin family members are also implicated

in breast cancer. For e.g., in TNBC cells, SIRT2 upregulation

facilitated the deacetylation of histone H4 at the tumor

suppressor gene ARRDC3 and this rendered the aggressiveness

of breast cancer (99). Also, SIRT7 is elevated in human breast

cancers (100).

Histone methylation
Histone methylation mainly occurs on the side chains of

lysine and arginine residues. Unlike acetylation, histone

methylation does not alter the charge of the histone protein

but involves the addition of the methyl groups. Depending upon

the number of methyl moiety added, lysine can be mono, di, or

tri methylated whereas arginine can be symmetrically or

asymmetrically methylated (101, 102). A special group of

enzymes called histone methyltransferases (KMTs) catalyze the

transfer of a methyl group from the S-adenosylmethionine

(SAM) to a lysine’s ϵ-amino group. Methylation is also a

dynamic and reversible process where the removal of the

methyl groups is carried out by demethylases (histone

demethylases, KDMs). The consequences of histone

methylation are more complicated and largely dependent upon

the targeted residues. For example, methylation of lysine H3K4,

H3K36, and H3K79 at histone H3 contributes to transcriptional

activation, while methylation of lysine at H3K9, H3K27 on

histone H3 and, H4K20 on histone H4 is associated with

transcriptional repression and are considered repressive
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epigenetic marks (103). Some of the methylated lysine histone

marks have a role in DNA repair e.g., H3K36me3 is important

for the homologous recombinational repair of the DNA double

strand breaks, and H4K20me3 aids the repair via non-

homologous end joining process (104). The resulting balance

between methyltransferases (also called “writer”) and

demethylases (also referred to as “eraser”) determines the

methylation status of the cell (105), where DNA methylation

and histone acetylation act in coordination to govern the overall

gene transcriptional regulation. The balance between the histone

acetyltransferases (HATs “writer”) and histone deacetylases

(HDACs “eraser”) control the overall chromatin states/

structures, hence regulating the gene expression. Histone

modifications offer novel targets that can be exploited in breast

cancer therapies (106).

In breast cancer, luminal A subtypes are found to exhibit

increased global acetylation and methylation of the histone

protein in comparison to the basal subtype (107). By

measuring the relative levels of seven modified histones

proteins including H3K18ac, H3K9ac, H4R3me2, H3K4me2,

H4K12ac, H4K16ac, and H4K20me3 in 880 invasive breast

cancer patients, it was revealed that the expressions of all

seven markers were negatively correlated with tumor grade.

While the loss of H4K16ac was suggestive to be an early event

in the pathogenesis of invasive breast cancer, reduced levels of

H4R3me2, H3K9ac, and H4K16ac were significantly associated

with large tumor size. High levels of H4R3me2 and H3K9ac

correlated with low lymph node stage (107). Interestingly, the

metastatic behavior of breast cancer was correlated to an

increased H3K4 histone mark where the dynamics of H3K4

acetylation and methylation exemplify the different breast cancer

subtypes. While breast cancer cells representing both early and

late cancer cell phenotypes are associated with a genome-wide

gain of H3K4ac; late-stage cancer cells exhibited a gain of

H3K4me3 (108). PI3K/AKT signaling cascade plays a

significant role in breast cancer progression and this signaling

was found to regulate the methylation of H3K4 in breast cancer,

where an elevated level of H3K4me3 was linked with breast

tumors (109). Another histone mark, H3K27ac has an important

role in breast cancer progression and is found to regulate the

EMT process (110, 111). The loss of a repressive epigenetic

mark, the H3K27me3 has been identified as a negative

prognostic indicator in breast cancer (112). Strikingly,

enrichment of H3K27me3 within the promoter of genes

FOXC1, RAD51, CDH1, and RUNX3, resulted in enhanced cell

growth and metastasis of breast cancer (113). Loss of Cadherin 1

due to its hypermethylation via DNA methylation and

trimethylation of H3K27 has been reported during metastasis

(114), where it is important to note that Cadherin 1 is one of the

key genes that inhibits metastasis and progression of breast

cancer cells. Another mark, H4K20me3 is found to be

significantly decreased in breast cancer and, importantly, it

was an independent predictor of poor prognosis of the disease.
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This specific methylation of H4K20 is carried by the KMT5

family of enzymes that ultimately represses the transcription

process (115, 116).

Among the enzymes implicated in gene regulation via

epigenetic mechanisms, the enhancer of zeste homolog 2

(EZH2) is an important histone methyltransferase that

methylates H3K27 leading to the transcriptional silencing of

the target genes in breast cancer. Notably, in breast cancer,

EZH2 has been found to be upregulated and promoted the EMT

process (117, 118). Moreover, the level of EZH2 was gradually

increased in breast cancer progression scenarios ranging from

normal epithelium to epithelial hyperplasia, DCIS, IDC, and

distant metastasis; and the expression of EZH2 was an

independent predictor of breast cancer recurrence (119).

Members of the histone methyltransferases family, such as

lysine methyltransferase 2 (KMT2) are also involved in the

growth and spread of breast cancer cells, where they mediate

the active histone methylation of H3K4 at the enhancer and the

promoter regions of oncogenes and pro-metastatic genes,

thereby facilitating the activation of genes that are estrogen

dependent (120–123).

One of the only known histone 3 lysine 79 (H3K79)

methyltransferases, is the histone methylase disruptor silencing

1 like (DOT1L) which has critical role in the development of

breast cancer and is a potential therapeutic target for invasive

breast cancer (124, 125). DOT1L is known to facilitate the

aggressiveness of tumors by elevating the metastatic behavior

of cancer cells (126) and is implicated in lymph node metastasis

of breast cancer (127). In fact, targeting DOT1L by

pharmacological interventions inhibited the growth and

metastasis of TNBC cancer (128).

Among histone demethylases (erasers) family members are

the prominent enzymes that are Fe2+/oxoglutarate-dependent

containing a JumonjiC (JmjC) domain (129). Histone

demethylase protein LSD1, a non JmjC demethylase has been

found to negatively regulate the expression of cell growth and

motility genes in breast cancer (130–133). Other JmjC KDMs

involved in breast cancer are KDM4A, KDM4B and, KDM4C.

Increased levels of KDM4A and KDM4B have been observed in

ERa positive breast cancer cells, while TNBC cells showed an

increased level of KDM4C (134). KDM4B regulates the cell cycle

progression of breast cancer cells and is a direct target of ERa
(135). While an increase of KDM3A is concomitant with a

reduced H3K9me2/3 during breast tumorigenesis, KDM3A

facilitated the activation of genes implicated in breast cancer

as MYC, PAX3, Cyclin D1, MMP-9, S100A4, and JUN, thereby

enhancing the proliferation and motility of breast cancer cells

(136–138). KDM3A also promotes the growth of mammary

gland ducts and tumors by positively affecting the proliferation

via cyclin D1 (138). KDM4C is also necessary for breast cancer

growth and, metastasis, where it serves as a co-activator of HIF-

1a, with the underlying epigenetic mechanism of demethylating

the H3K9me3 (139). Another histone demethylase PHF8
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promoted EMT and breast tumorigenesis (140). PHF20L1, a

methyl lysine reader protein containing a TUDOR domain,

plays important role in breast cancer metastasis (141). Studies

suggested its oncogenic role in response to hypoxic conditions,

where it facilitated glycolysis, cell growth and metastasis of

breast cancer cells by exerting its direct inhibitory activities on

certain genes of tumor suppressive nature like HIC1, KISS1, and

BRCA1 (142).
Non-coding RNAs

Functional RNA molecules that cannot be translated into

proteins also referred to as non-coding RNA possess important

regulatory effects and influence the expression of certain genes

implicated in breast cancer. Among these are the long non-coding

RNAs (lncRNAs) and micro-RNAs (miR). Micro-RNAs have been

widely studied for its epigenetic regulation where they either activate

or repress critical biological pathways and mechanisms important

for breast tumorigenesis. Interestingly the let-7 family of micro

RNAs has a significant role in breast cancer where its silencing has

been associated with the development of metastasis and high-grade

hormone negative breast tumors (143–145). Other micro-RNAs

have important roles too. For. e.g., miR-9-3 activated apoptosis and

miR-148a & miR-152 inhibited cell growth and angiogenesis (146,

147). Micro-RNAs involved in invasion and metastasis includes

miR-125b, miR-126 and, miR-31 respectively (148–150). Some of

the microRNAs whose aberrant hypermethylation has been

reported in primary breast tumors include mir-663, mir-148, mir-

9-1, mir-152, and mir-124a3 (151). Aberrant hypermethylation of

H19, a lncRNA has been observed in invasive breast carcinoma

when compared to normal breast tissues, where tumor suppressive
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functions of H19 have been suggested (152). HOTAIR, is another

lncRNA where studies reported the recruitment of several writer

proteins such as MLL1, MLL3, and P300/CBP to the HOTAIR’s

promoter region thereby resulting in an enrichment of histone

acetylation and elevation of H3K4me3, further driving the

progression of breast cancer by suppressing the apoptosis (153).

Therefore, epigenetic mechanisms offer many modalities

that can be exploited for breast cancer therapies. Considering

the fact that epigenetic changes induced by DNMTs and HDACs

are transient and reversible, a number of studies are currently

ongoing to establish effective, optimal dose and the treatment

schedules for several epigenetic agents implicated in breast

cancer, Figure 3. Data adapted from (154).
Environmental triggers of epigenetic
aberrations in breast cancer

In addition to family history and genetic predisposition,

epidemiological studies unraveled the influence of

environmental exposures to hormonal agents and other

factors that can increase the risk for breast cancer

development. Exposure to endocrine disrupters, indoor and

outdoor air pollution, polycyclic aromatic hydrocarbons

(PAHs) etc. can induce epigenetic changes in an exposure

or disease relation fashion. Xenobiotics such as activators of

the aryl hydrocarbon receptor (AHR), dioxin, phthalates,

polychlorinated biphenyls (PCB), PAHs, bisphenol A

(BPA), arsenic etc. prevalent in the environment, dietary

items, soil, water, and other consumable products, are likely

to contribute to the epigenetic dysregulation of oncogenes

and tumor suppressor genes in breast cancer.
FIGURE 3

Epigenetic Targets and other combined inhibitors for breast cancer therapies under clinical trial. Data adapted from (154). Star (*) represents the
specific epigenetic agent.
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AHR is a well-known sensor and a regulator of toxic and

carcinogenic responses to environmental insults (155, 156). In

advanced malignant breast carcinomas, AHR is shown to be

constitutively active (157) and several studies reveal that

targeting AHR can offer a potential treatment option for

breast cancer patients (158, 159). Industrial xenobiotics,

dietary metabolites etc., serve as agonists of AHR and are

ubiquitously present in the environment. AHR-mediated

epigenetic repression has been found in the BRCA1 gene

which is also a direct target for AHR (160). In fact, CpG

hypermethylation, deacetylation of H3K9, upregulation of

H3K9me3, DNMT-1, DNMT-3a, DNMT-3b, and methyl-

binding protein (MBD)-2 are some of the epigenetic changes

linked with AHRmediated repression of BRCA1 gene (161, 162).

BPA is yet another endocrine disrupter and is an

epigenetically active xenoestrogen prevalent in plastic and food

cans (163, 164) whose exposure has been linked with an

increased risk of breast cancer (165). While overexpression of

EZH2 is linked to breast cancer, in-utero exposure to BPA is able

to alter the EZH2 expression in mammary tissues (166). In fact,

exposure of normal breast cells to the environmentally relevant

doses of BPA caused the ERa to internalize into the nucleus and

also changed the DNA methylation status of a lysosomal

associated membrane protein (LAMP3) (167). LAMP3 protein

is implicated in metastasis and breast cancer cell motility and is

of prognostic significance (168–170).

A very prevalent environmental contaminant of soil, food,

and water is arsenic which has been studied widely for its

carcinogenic effect. Exposure to arsenic and the risk of

developing breast cancer has been reviewed extensively (171).

Arsenic is able to transform the normal mammary epithelial cells

that were subjected to chronic treatment with low levels.

Moreover arsenic facilitated the growth of breast cancer cells

that were ERa-positive (172, 173). The involvement of arsenic in

the carcinogenesis process comes from the fact that it induces

genomic instability mediated by disrupting the Fanconi anemia

(FA) and/or breast cancer (BRCA) pathway (174). The

epigenetic influence of arsenic has been established in studies

reporting that arsenic influences DNA methylation by affecting

the pool of available methyl groups. This is because the

detoxification of arsenic utilizes methyl group from S-

adenosyl-homocysteine (SAM) (175). Therefore, exposure to

arsenic and its subsequent metabolism within the cells, impart

towards a global hypomethylation owing to the usage of existing

methyl stores available from SAM (176). Strikingly, maternal

exposure to arsenic not only altered the DNA methylation but

also increased the DNA methylation in children (177, 178).

The source of PAHs is myriad, which includes combustion

products, automobile exhaust, cigarette smoke, indoor and

outdoor air pollution, waste incinerators etc. (179). Tobacco

smoking represents one of the important risk factors for breast

cancer (180–182). Smoking not only affects the DNA

methylation pattern of breast tumors, but it has been a critical
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positive cancer subtypes (183, 184). Aberrant methylation

alterations have also been observed in breast cancer cells

exposed to benzo(a)pyrene, which resulted in the generation

of DNA adducts at the CpG dinucleotides, ultimately affecting

the epigenetic landscape of the methylation process (185).

External factors are not just limited to toxicants or

environmental agents. The cellular microenvironment is

sensitive to cues such as nutrient availability, hypoxia and,

extracellular pH, and can epigenetically reprogram the

metabolic behavior of cancer cells to adapt to the changing

environment (186). The fact that metabolic profiles of cancer

cells differ from the normal cells, gives us a clear indication of the

underlying genetic and epigenetic machinery that are altered in

the carcinogenesis process, thereby bestowing growth advantage

to cancer cells for their survival. Hence metabolic

reprogramming is indispensable for breast cancer and has

many therapeutic ramifications (187). Cellular metabolites

shuffling from the different cellular compartments such as

cytoplasm, mitochondria, nucleus, etc., has the potential to

regulate gene expression by altering the availability of

enzymatic substrates and co-factors required for the metabolic

reactions mediated epigenetic processes, such as DNA and

histone modifications. Glucose remains one of the most

important metabolites shaping the metabolic profiles of breast

cancer by shifting the energy generating mechanisms from

glycolysis to oxidative phosphorylation or vice versa. In this

context, the availability of glucose affects the estrogen which

facilitates glycolysis in a high glucose state but urged oxidative

phosphorylation under the conditions of low glucose to meet the

energy demands of the breast cancer cells (188). It is noteworthy

that in adipose tissues, a major component of the breast, ERa is

the vital regulator of a glucose transporter protein expression

GLUT4 (189). Glycolysis can also be influenced by ERa, during
the conditions of hypoxic stress. Hypoxia inducible factor-1a
(HIF-1a) which is an oxygen-dependent transcriptional

activator that carries out cellular adaptation to low oxygen and

nutrient starved environment, is implicated in the ERamediated

activation of the glycolysis process in breast cancer (190).

However, under normoxia and hypoxia conditions, both ERa
and HIF-1a regulate histone demethylase JMJD2B and

orchestrate breast cancer cell growth by epigenetically

regulating the genes implicated in the cell cycle. Moreover,

knocking down ERa can compromise the HIF-1a function

even under hypoxic circumstances (135). One of the important

transcription factors that aid cancer cells in metabolic adaption

in a nutrient deprived environment, oxidative or xenobiotic

stress is the nuclear factor erythroid 2-related factor 2 (NRF2)

(191). Epigenetic modifications including DNA methylation are

crucial for the regulation of NRF2 and its adaptor protein

KEAP1 (192, 193). In breast cancer patients, elevated NRF2

expression led to decreased overall survival and disease-free

survival (194). Elevated NRF2 enhanced the growth and
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motility of breast cancer cells by upregulating a pivotal enzyme

of the pentose phosphate pathway, i.e., the glucose-6-phosphate

dehydrogenase (G6PD) (195). In fact, Estradiol (E2) can

stimulate NRF2 transcription, leading to an elevation in

mitochondrial biogenesis (196).
Mdig, an environment regulated
gene in breast cancer

To ascertain the kind of risks and exposures affecting breast

carcinogenesis, it is essential to gain an understanding of gene-

environment interaction and the genes that are induced and

manifested in breast cancer. Since a fraction of breast cancer

cases is also sporadic, studying the genetic and epigenetic

mechanisms that regulates breast tumor development under

environmental and occupational settings, will undoubtedly

offer new targets for chemoprevention and therapies.

We have identified one such environmentally induced gene

named the Mineral dust-induced gene (mdig), also called

MINA53, RIOX2, or NO52. Certain environmental agents

such as mineral dust, tobacco smoke, arsenic, silica, etc.

induced the expression of mdig (197–200). Mdig has

oncogenic and epigenetic roles in a variety of human cancers,

where it exhibits elevated expression (201, 202). Mdig promoted

cell proliferation, cell cycle transition, and anti-apoptotic

behaviors in different cell types, further corroborating its

oncogenic role (198, 203). Mdig played key roles in the

pathogenesis of arsenic induced lung cancer, where JNK-

STAT3 signaling and mi-RNA21 mediate the processes.

Further, we found that arsenic exposure induces the

phosphorylation of EZH2 at serine 21 via JNK- and STAT3-

dependent Akt activation (199, 204). Mdig is also upregulated in

smokers in a pack-year dependent fashion, where it predicted

poor overall survival in smokers that had lung cancer (205).

More recently, our studies on mdig and environmental

factor arsenic revealed crosstalk between mdig and a master

regulator of oxidative stress, NRF2, where together they

contribute to arsenic induced generation of cancer stem like

cells. Normal lung cells treated with arsenic showed an

enhancement of HIF1a in the promoter of mdig, which was

somehow accredited by activated NRF2 in response to arsenic

(206). Since HIF1a is a direct transcriptional target of NRF2

(206) and considering the important role of NRF2 and HIF1 in

tumorigenesis, our research further potentiates the importance

of mdig on regulating the stress response activities implicated in

genomic instability relying on metabolic reprogramming and

cancer stem cells (207).

In breast cancer, we have identified that the expression level

of mdig predicts the survival outcomes depending upon the

different status of lymph node metastasis. A higher level of mdig

predicted poor overall survival of patients who had no lymph

node metastasis, whereas, in those patients who were positive for
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overall survival (208). Dwelling further to assess the role of mdig

in breast cancer, our studies revealed a negative correlation of

mdig on the migration, invasion, and DNA methylation of

breast cancer cells. Mdig not only regulated the chromatin

accessibility of the migration/invasion genes but also exhibited

a context dependent expression, where its expression was

downregulated in invasive and triple negative breast cancer.

This supported the notion that mdig is inhibitory for cell

motility and spread and that’s why its high expression predicts

favorable outcomes in lymph node metastasis positive cases of

breast cancer (209). Since mdig is transcriptionally governed by

an upstream regulator c-myc (210), which has both tumor

accelerator and suppressive roles and can inhibit cancer

metastasis (211), our studies are suggestive of the dual roles of

mdig in breast cancer, where it is essential for the early stages of

cancer development due to its pro-proliferative feature but is

inhibitory in the later stages owing to its metastasis

inhibitory features.

Mdig protein contains a conserved JmjC domain. Since JmjC

domain has been identified as a signature motif of the JmjC family

of histone demethylases (129), mdig’s involvement in the epigenetic

process of histone modifications is inevitable. Recent studies

provide evidence that the oncogenic activity of mdig is

presumably achieved via its regulation on the demethylation of

histone proteins. Our studies showed a demethylase like activity of

mdig towards the repressive histone methylation markers that

include H3K9me3, H3K27me3, and H4K20me3. Using the

CRISPR-Cas9 gene editing approach coupled with chromatin

immunoprecipitation sequencing (ChIP) in human lung epithelial

cell line BEAS 2B, lung cancer cell line A549, and breast cancer cell

line MDA-MB-231, an antagonistic effect of mdig on repressive

histone trimethylation marks were revealed where mdig favored the

open conformation of chromatin and permitted active gene

transcription. Knocking down mdig resulted in a pronounced

enrichment of these repressive trimethylation markers on the

genes that are implicated in cell growth, stemness, inflammation,

and metastasis (212). With the loss of mdig, there also occurred an

increase in the levels of the polycomb repressive complex (PRC2)

proteins EZH2 and RBBP4. Strikingly, these proteins are known to

catalyze H3K27me3, and our previous studies identified a direct

protein-protein interaction between mdig and CBX3, CBX5,

RBBP4, and RBBP7 proteins. While RBBP4 and RBBP7 are the

regulatory subunits of the PRC2 complex, CBX3 and CBX5 can

recognize and bind to H3K9me3 (213).

In breast cancer cells, loss of mdig also enhanced an epigenetic

mark of transcription elongation H3K36me3, in addition to

H4K20me3 and H3K9me3. In this view, H4K20me3 being a

marker for closed chromatin status in the somatic and embryonic

stem cells (214), it is suggested that an elevation of H4K20me3 can

contribute to growth inhibitory activities in the somatic cells. This

notion is further supported by our previous studies where reduced

mdig resulted in a decline of the S phase cells (198). It is also
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indicated that mdig acts as DNA demethylase or indirectly controls

DNA methylation via the Tet family of DNA methylases (202).

Additionally, a negative correlation was also observed betweenmdig

and H3K9me3 in cellular studies (209, 215, 216). One of the

consequences of enriched histone repressive marks H3K9me3

and H3K27me3, is on the transcription of genes implicated in

glycan metabolism. Mdig exerted a positive regulatory role on the

glycosylation process by inhibiting the repressive histone

methylation marks (217).

Altogether, our research on mdig provided a much-needed

rationale to explore its activities in several aspects of inflammation,

stemness, metabolism, cell growth, metastasis, and epigenetic

reprogramming orchestrating the carcinogenesis machinery in

breast cancer.
Perspectives

Despite tremendous progress being made in breast cancer

research, some challenges still prevail. Metabolic plasticity,

epigenetic reprogramming, and altered receptor repertoire lead

to the issues of drug resistance and treatment failure. It is yet not

fully clear as to what are the remarkable mechanistic programs

that are critical for the breast tumor to become metastatic.

Although our understanding of the heterogeneity of breast

cancers has improved that has led to the generation of novel

anti-cancer therapies exploiting the hormone receptor status,

epigenetic marks, and other biological machineries, yet, when it

comes to the general population there has been very limited

success owing to the individual differences among the patients.

An efficient personalized therapy would offer rescue to some

extent towards combating the setbacks originated due to the

heterogeneity and plasticity issues as observed in breast cancer

therapies under clinical settings.

Environmental exposure to risk factors for breast cancer

require particular attention, where relevant biomarkers related

to such exposure need to be identified. Epigenetic mechanisms

particularly DNA and histone methylation are involved in the

onset of carcinogenesis by modulating the expression of potent

oncogenes and tumor suppressors. Thus, dissecting the epigenetic

elements would widen our knowledge towards better

understanding the causative factors as well as the different

routes that cancer cells adopt to attain heterogeneity. Moreover,

studying maternal, in utero or pre-conception exposures and

unraveling an association between the agents exposed and the

different epigenetic repertoires correlating with the disease

outcome, will be a promising avenue to explore. Such a strategy
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would assist in adopting modifiable approaches that can have

significant implications in reducing the risk factors as a part of

chemoprevention tactics. This demands a multidisciplinary effort

that would integrate genomics, proteomics, and metabolomics in

examining the different epigenomic profiles and pattern that drive

the breast carcinogenesis under the conditions of sporadic and

environmental settings. In this context, research on

environmentally modulated genes engaged in breast cancer such

as mdig, is warranted.
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DCIS Ductal carcinoma in situ

IDC Invasive ductal carcinoma

ILC Invasive lobular carcinoma

HER2 Human epidermal growth factor receptor 2

ER Estrogen receptor

PR Progesterone receptor

BRCA Breast Cancer gene

TNBC Basal/triple negative breast cancer

lncRNAs Long non-coding RNAs

miR Micro-RNAs

MBD Methyl binding domain

5mC 5-methylcytosine

5-hmC 5-hydroxymethylcytosine

DNMT DNA methyltransferase

TET Ten-eleven translocations

HAT Histone acetyltransferases

HDAC Histone deacetylases

HKMT Histone methyltransferases

KDM Histone demethylases

SAM Sadenosylmethionine

EMT Epithelial mesenchymal transition

DOT1L Histone methylase disruptor silencing 1 like

JmjC JumonjiC

PAH Polycyclic aromatic hydrocarbons

AHR Aryl hydrocarbon receptor

PCB Polychlorinated biphenyls

BPA Bisphenol A

LAMP3 Lysosomal associated membrane protein

HIF-1a Hypoxia inducible factor-1&alpha;

GLUT4 Glucose transporter protein expressiona

G6PD Glucose-6-phosphate dehydrogenase

Mdig Mineral dust-induced gene

NRF2 Nuclear factor erythroid 2-related factor 2

ChIP Chromatin immunoprecipitation sequencing

PRC2 Polycomb repressive complex

GADD45 Growth arrest and DNA-damage inducible protein

AID Activation-induced cytidine deaminase

APOBEC Apolipoprotein B mRNA editing catalytic polypeptide-like family
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