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Matricellular proteins are nonstructural extracellular matrix components that

are expressed at low levels in normal adult tissues and are upregulated during

development or under pathological conditions. Tenascin C (TNC), a

matricellular protein, is a hexameric and multimodular glycoprotein with

different molecular forms that is produced by alternative splicing and post-

translational modifications. Malignant gliomas are the most common and

aggressive primary brain cancer of the central nervous system. Despite

continued advances in multimodal therapy, the prognosis of gliomas remains

poor. The main reasons for such poor outcomes are the heterogeneity and

adaptability caused by the tumor microenvironment and glioma stem cells. It

has been shown that TNC is present in the glioma microenvironment and

glioma stem cell niches, and that it promotes malignant properties, such as

neovascularization, proliferation, invasiveness, and immunomodulation. TNC is

abundantly expressed in neural stem cell niches and plays a role in

neurogenesis. Notably, there is increasing evidence showing that neural stem

cells in the subventricular zone may be the cells of origin of gliomas. Here, we

review the evidence regarding the role of TNC in glioma progression, propose a

potential association between TNC and gliomagenesis, and summarize its

clinical applications. Collectively, TNC is an appealing focus for advancing

our understanding of gliomas.
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Introduction

The extracellular matrix (ECM) is a dynamic and complex

meshwork consisting of various multidomain macromolecules

that are continually synthesized and secreted by surrounding

cells. Many ECM molecules, the basic structural proteins,

provide a three-dimensional structural framework that ensures

cell cohesion and facilitates formation of tissues and organs (1,

2). In addition to structural matrix molecules, such as collagen

and laminin, various non-structural proteins are present in the

ECM in specific situations. These secreted nonstructural ECM

components, called matricellular proteins (MCPs), are rapidly

turned over, rather than remaining as stable structural elements

(2, 3). MCPs present in the brain ECM include tenascin C

(TNC), thrombospondins (TSPs), secreted protein acidic and

rich in cysteine family (SPARC) proteins, and periostin (3). They

are characterized by low expression levels in healthy adult

tissues, but have high expression levels during development

and are promptly upregulated under pathological conditions.

By binding to other matrix proteins, specific cell surface

receptors, such as integrins, and soluble extracellular factors,

including cytokines, growth factors, and proteases, MCPs can

directly or indirectly modulate cellular morphology, regulate

several cellular processes, such as proliferation, differentiation,

migration, apoptosis, and survival, and induce tissue remodeling

(3–5). TNC, as anMCP, is highly expressed in most solid cancers

of the ECM. This has been associated with poor prognosis and is

involved in many malignant biological behaviors (6, 7). In

addition, TNC is present in several stem cell niches (8, 9),

including neural stem cells (NSCs) and glioma stem cells

(GSCs) (10–12). Therefore, understanding the role of TNC in

cancers and stem cells can contribute to the development of new

therapeutic avenues.

Gliomas, the most common primary intracranial tumors in

adults, are grouped into four classes (grades I–IV), based on

histological characteristics (13). The mean annual incidence is

approximately six per 100,000 people worldwide (14). Although

some advances in diagnosis and treatment have been made, the

prognosis of patients with gliomas remains poor. In particular,

for glioblastoma (GBM), the median survival time is

approximately 15 months and the 5-year survival rate is only
Frontiers in Oncology 02
5.8% (15–17). The standard regimen for primary GBM includes

maximal surgical resection, followed by chemotherapy with

temozolomide and radiation therapy, which is referred to as

the STUPP protocol (18). Recently, many novel therapeutic

options, such as immunotherapy (19, 20), targeted therapy

(21, 22), and tumor-treating fields (TTFields) (23, 24) have

been proposed, but the efficacy of these protocols is

unsatisfactory (16). The main reasons for the poor outcomes

of GBM patients are the disease’s heterogeneity and adaptability,

which lead to resistance to treatment and tumor recurrence. The

tumor microenvironment (TME) and cancer stem cells (CSCs)

may account for the dynamic and heterogeneous characteristics

of GBM (25, 26). Recently, substantial evidence has shown

pleiotropic and important roles for TNC in the glioma TME

(27, 28), as well as in NSC and GSC niches (10–12).

Interestingly, many researchers have reported that GSCs may

be derived from NSCs in the adult brain subventricular zone

(SVZ) (29–31).

Here, in light of its potential significance, we review the

matricellular protein TNC in the glioma ECM, and highlight the

implications of TNC in glioma progression, tumorigenesis,

and treatment.
Structure of tenascin C

TNC, a member of the tenascin family, was first identified in

the 1980s. Other members of this family include tenascin-W,

tenascin-X, and tenascin-R. Since the discovery of TNC

independently and concurrently in several different laboratories,

it is known under various names, such as glial/mesenchymal

extracellular matrix protein (GMEM) (32), myotendinous antigen

(33, 34), cytotactin (35), J1 220/200 (36), neuronectin (37), and

hexabrachion (38). The TNC glycoprotein consists of six identical

monomers that are disulfide-linked into a hexamer at their N-

termini (38, 39). Each subunit is approximately 180–400 kDa in

humans and is composed of four different parts (Figure 1): an N-

terminal cysteine-rich domain with highly conserved heptad

repeats, 14.5 epidermal growth factor (EGF)-like repeats, eight

constitutively expressed fibronectin type III (FNIII) domains, and

a fibrinogen-like globe (FBG) at the C-terminus (28, 40, 41). Nine
FIGURE 1

Schematic illustration of the domain structure of TNC.
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alternatively spliced domains (A1–A4, B, AD2, AD1, C, and D)

are inserted between the 5th and 6th FNIII domain in the human

gene (42), which can theoretically give rise to 512 possible TNC

splice isoforms (43, 44). However, the number of alternatively

spliced domains varies among species, with chickens, mice, and

rats having six, six, and seven domains, respectively (43, 45, 46).

These alternatively spliced repeats with unique interaction sites

may not only offer novel binding abilities or susceptibilities to

proteolytic cleavage, but may also disrupt the existing binding

sites, resulting in the acquisition or loss of certain functions (43).

In addition, post-translational modifications, such as glycosylation

and citrullination, assembly into a fibrillar matrix, and proteolytic

processing, further increase the complexity of the TNC structure

and function by exposing hidden binding sites, covering exposed

binding sites, or generating smaller soluble fragments (6, 43, 44).

For example, glycosylated TNC is likely to regulate proliferation of

NSCs (47), and the fragmented EGF-like domain has

proapoptotic activity in smooth muscle cells, in contrast to

intact TNC (48).
Expression and regulation of
tenascin C

TNC is a regulatory glycoprotein that exhibits different spatial

and temporal distribution patterns throughout life. In general,

during embryogenesis, TNC is highly expressed in neural

ectodermal tissues and in some non-neural sites where high cell

turnover, tissue remodeling, and epithelial–mesenchymal

interactions occur (41, 43). In the embryonic developmental stage

and shortly after birth, the expression level of TNC peaks and then

decreases significantly with increasing age (49). In fact, this

molecule is considered to be mainly secreted by immature and

reactive astrocytes, radial glial progenitor cells, and oligodendrocyte

precursor cells (OPCs) in the developing central nervous system

(CNS) (50–52). In contrast, in the normal adult CNS, it is sparsely

expressed and is confined to NSC niches, such as the SVZ and the

hippocampus, where it is produced by astrocytes (53) and granule

cells (54), respectively, as well as to the cerebellum, where it is

produced by Golgi epithelial cells (55). However, TNC is actively re-

expressed in the adult CNS in response to pathological conditions,

including neuroinflammation (56), neurodegeneration (57, 58),

trauma (59, 60), and tumorigenesis (27, 28, 61). For example,

many experimental studies have indicated that TNC is expressed

in the brain parenchyma (astrocytes, neurons, and brain capillary

endothelial cells) and the walls of cerebral arteries (endothelial,

smooth muscle, adventitial, and periarterial inflammatory cells)

between 24 and 72 h after post-subarachnoid hemorrhage (SAH)

(62, 63). As a key regulator of neuroinflammation, TNC is involved

in early brain injury, including blood–brain barrier destruction (64),

neuronal apoptosis (65), cerebral vasospasm (66), delayed cerebral

ischemia (67), and chronic hydrocephalus (56, 62, 68). In addition,

Xie et al. (69) reported that TNC plays a role in chronic
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neuroinflammation in Alzheimer’s disease, and that its deficiency

could produce an anti-inflammatory pattern and reduce cerebral

amyloid b load. More importantly, numerous studies have reported

increased levels of TNC in multiple malignant solid tumors, with

the highest concentrations found in gliomas (7, 27, 70). TNC

expression is correlated with glioma grade, poor patient survival,

and disease progression (71, 72).

In humans, TNC is located on chromosome 9q32–q34 (73).

Upstream of its transcription start site, there is a region with

high promoter activity that contains a TATA box (44, 74).

Various specific transcription factors, intracellular regulators,

and stimuli, including cytokines, growth factors, reactive oxygen

species, hypoxia, and mechanical stress, can control TNC

expression by directly or indirectly regulating the TNC

promoter (74). For instance, homeobox even-skipped homolog

protein-1 (Evx-1) stimulates TNC promoter activity by

synergizing with transcription factors FOS and/or JUN, which

target the AP1 site (75). Another homeobox transcription factor,

orthodenticle homolog 2 (OTX2), binds to the TNC promoter

with high affinity and represses the gene transcription (76). In

addition, cyclic tensile strain has been shown to induce mRNA

encoding TNC in fibroblasts in b1-integrin-mediated RHO/

ROCK signaling (77, 78) and nuclear translocation of the

transcriptional regulator megakaryocytic leukemia-1 (MKL-1)

(79). After CNS injury, activated microglia and macrophages

secrete basic fibroblast growth factor (bFGF) and transforming

growth factor-b1 (TGF-b1), which can induce an increase in

astrocyte tenascin production (80). Moreover, TNC was also

considered a target gene of the transcription factor SOX4, which

is overexpressed in many human malignancies, including glioma

(81, 82).

Fibroblasts are a major source of the TNC deposited in the

solid tumor stroma of the peripheral system, whereas tumor cells

themselves rarely express TNC (70). Nevertheless, in gliomas,

TNC is expressed by malignant tumor cells (83). The NOTCH

signaling pathway plays a critical role in the regulation of TNC

expression (Figure 2) (84). NOTCH is a large transmembrane

receptor of the cell-binding ligands delta and jagged. After

activation, ligand-dependent cleavage allows the release of its

intracellular domain, which translocates to the nucleus and

affects NOTCH-dependent transcription by binding to RBPJk/
CSL (85). A GBM tissue microarray revealed a significant

association between RBPJk and TNC levels, with the former

being a NOTCH2 transcription co-factor (84). Additionally, the

human TNC promoter contains an RBPJk-responsive element

(84). Sivasankaran et al. (84) proposed a mechanism for

NOTCH/RBPJk-mediated transactivation of TNC in GBM,

consistent with the report by Ma et al. (86), in which TNC is

upregulated in CD47-loss-of-function cells via a NOTCH-

mediated mechanism. On the other hand, Sarkar et al. (87).

found that TNC is a pivotal initiator of enhanced NOTCH

signaling and promotes GSC growth through the TNC–a2b1–
JAG1–NOTCH signaling axis. In breast cancer cells, Oskarsson
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et al. (88) reported that TNC accumulation enhanced the

performance and function of the NOTCH pathway, which is

vital for the adaptation of metastasis-initiating breast cancer

cells. Taken together, evidence suggests that there may be

positive feedback between TNC expression and the NOTCH

pathway that ultimately increases the malignant biological

behavior of gliomas.
Interaction partners and receptors
of tenascin C

As mentioned above, TNC is a hexameric extracellular

glycoprotein and each monomer consists of four different

domains. This highly complex structure gives TNC the

capacity to interact with various binding partners or ligands,

such as other ECM components, cell surface receptors, and

soluble factors, which affect distinct signaling pathways (28, 44,

70, 89). The first and most studied ECM component that

interacts with TNC is fibronectin (89), whose binding sites

involve FNIII repeats (90, 91). Additionally, TNC can bind to

other ECM proteins, such as periostin (92), perlecan (93),

fibrillin-2 (94), aggrecan (95), and SPARC-related modular

calcium-binding protein 1 (SMOC1) (96). These complex
Frontiers in Oncology 04
interactions between TNC and ECM proteins may contribute

to changes in the matrix components and the biological

properties of the TME. TNC can also bind to proteoglycans

(PGs), such as receptor-like protein tyrosine phosphatase beta/

zeta (RPTPb/z) (97) and neurocan (98), two nervous tissue-

specific chondroitin sulfate proteoglycans: glypican (99),

syndecan-4 (100), and two heparan sulfate proteoglycans.

These PGs are involved in tumor or stem cell adhesion and

proliferation by interacting with multiple domains of TNC or

peptides derived from TNC. In addition to PGs, TNC can act

directly on cell surface receptors, particularly integrins. Yoshida

et al. (70) reported that TNC plays an essential role in cancer cell

biology as a ligand for integrins a2/7/8/9b1 and avb1/3/6. The
EGF-like repeats of TNC are capable of promoting cell

proliferation by binding directly to the EGF receptor and

activating the ERK/MAPK signaling pathway (101), whereas

the FBG domain of TNC is able to maintain the synthesis of

proinflammatory cytokines via activation of Toll-like receptor 4

(TLR4) in a myeloid differentiation factor-88 (MyD88)-

dependent manner (102). Furthermore, a large number of

growth factors have been found to bind to the TNC FNIII 1–5

subdomain, including the platelet-derived growth factor (PDGF)

family, TGF-b superfamily, FGF family, insulin-like growth

factor-binding proteins (IGF-BPs), and neurotrophins (103).

More recently, a few studies have suggested that TNC

participates in recruiting and concentrating WNT ligands in

acute kidney injury and whisker follicle stem cell niches, thereby

potentiating WNT/b-catenin signaling, presumably due to the

formation of a favorable microenvironment near the cell surface

(104, 105). Finally, TNC can even bind to pathogens, such as

human immunodeficiency virus, and neutralize viral activity

(106). Taken together, the interaction partners of each TNC

isoform are thought to be dependent on their domains, thus

performing different functions in a context-dependent manner.

Notably, TNC harbors some cryptic functional sites within its

molecular structure, which are released through proteolytic

cleavage by matrix metalloproteinases (MMPs) and a

disintegrin and metalloproteinase (ADAM) family. The TNC-

derived peptide fragments, such as FNIII A2, contain bioactive

sites and may play a different and even opposite role than that of

the parental TNC molecule (107).
Tenascin C in glioma

TNC is abundantly expressed in a variety of tumors,

including breast cancer, colon adenocarcinoma, prostatic

adenocarcinoma, and lung carcinoma, but particularly in

gliomas (7, 27, 28, 70). In general, TNC is mainly present in

the glioma perivascular and intercellular spaces and less

abundantly in the cells (108, 109), and its expression level

increases with glioma grade (71, 109). Interestingly, the

concentration of TNC in the cerebrospinal fluid and cyst fluid
FIGURE 2

Potential positive feedback mechanism in gliomas between TNC
expression and NOTCH pathway. TNC binds to integrin a2b1 on
the glioma cell and upregulates JAG1 expression which interacts
with its receptor NOTCH. The interaction results in the release
of intracellular domain that translocates to the nucleus to affect
NOTCH-dependent transcription by binding to RBPJk. Moreover,
the human TNC promoter contains an RBPJk-responsive element.
Thus, the activation of NOTCH signaling increases TNC expression.
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also seems to reflect the tumor grade (110, 111). Among patients

with GBM, those who had TNC immunopositivity survived for a

significantly shorter period than those in whom TNC expression

was absent (71). Thus, TNC in gliomas can be identified as a

predictor of poor prognosis and disease progression (71, 72).

Unlike most other tumors, malignant glioma cells are the main

source of TNC (112). TNC can also promote many malignant

biological behaviors of glioma, such as neovascularization,

proliferation, adhesion or migration, and immunomodulation

(27, 28).
Tenascin C and neovascularization

Gliomas are characterized by a high degree of vascularization.

These blood vessels are necessary for tumor growth, as they are

involved in providing nutrients and removing metabolic waste.

Over the past few years, some studies have demonstrated that TNC

is mainly found in the perivascular niche of gliomas (72, 108),

particularly in hyperplastic blood vessels (113, 114). The

microvessel endothelial cells (114), pericytes (115) and smooth

muscle cells (116) all have the capacity to synthesize and release TN/

TNC. In GBM, perivascular TNC is related tomicrovascular density

and vascular endothelial growth factor (VEGF) expression (108). In

addition, in melanoma, TNC can regulate the expression of VEGF

and affect angiogenesis in tumors (117). Proteome and

immunohistochemical comparisons between tissues with

physiological angiogenesis and GBM angiogenesis indicated

aberrant upregulation of TNC in the latter (118). Therefore, TNC

may play an important role in glioma neovascularization (Figure 3).
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Recently, Rosińska et al. (119) reported that gliomas deploy diverse

neovascularization means to meet a dedicated blood supply,

including co-option, angiogenesis, vasculogenesis, vascular

mimicry (VM), and transdifferentiation of GSCs. First, TNC is

linked to angiogenesis. Zagzag et al. (120) discovered that TNC acts

as a permissive substrate that promotes microvascular cell

migration in vitro by triggering focal adhesion kinase (FAK)

phosphorylation in endothelial cells. In TNC-knockdown GBM-

neurosphere intracranial xenografts, tumor blood vessel density was

lower, while the lumen was enlarged as compared to the control

(121). It is important to mention that Rupp et al. (122)

demonstrated the dual angiogenic effects of TNC in GBM

(Figure 3). The direct contact between endothelial cells and TNC

represses actin polymerization, impairs YAP signaling, and

downregulates pro-angiogenic factors, consequently negatively

influencing endothelial cell proliferation, survival, sprouting, and

tubulogenesis. TNC also induces GBM cells to secrete pro-

angiogenic factors, such as ephrinB2, a soluble molecule released

by MMPs and ADAM10/17 and enhances endothelial cell

tubulogenesis. These opposing effects are reminiscent of the cell-

specific functions of TNC. Another study suggested that direct

contact between the TNC-rich glioma matrix and endothelial cells

could induce endothelial detachment, anoikis, selection of a highly

proliferative phenotype, and defective tubulogenesis in vitro,

whereas higher FN : TNC ratios reversed these effects (123). In

addition to glioma, TNC also promotes cellular processes involved

in angiogenesis in fibrovascular membranes in eyes with

proliferative diabetic retinopathy (124) and affects colitis-

associated cancer angiogenesis through interaction with integrin

avb3 (125). Second, TNC can also promote vasculogenic mimicry
FIGURE 3

The roles of TNC in glioma neovascularization. On the one hand, TNC blocks YAP signaling and endothelial cell behavior through direct
contact. On the other hand, TNC induces ephrin-B2 and a pro-angiogenic secretome in glioblastoma cells. In addition, TNC activates AKT/
MMP2/MMP9 axis and further promotes vasculogenic mimicry in glioma. Moreover, TNC-ephrinB2-ephB4 signaling pathway supports GSCs
differentiation into endothelial cells. YAP, Yes-associated protein; MMP, matrix metalloproteinase.
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(Figure 3). Cai et al. (126) showed that TNC activates the AKT/

MMP2/MMP9 axis and further promotes VM in glioma, which is

similar to the findings of Kang et al. (127), who reported that TNC-

knockdown suppresses this process in gastric cancer by inhibiting

the ERK-mediated epithelial-to-mesenchymal transition (EMT).

The third process involves the mechanism of TNC-induced

transdifferentiation of GSCs (Figure 3). Angel et al. (128)

demonstrated the mechanism by which an autocrine TNC–

ephrinB2–ephrinB4 signaling pathway supports GSC

differentiation into endothelial cells. Taken together, GBM

neovascularization correlates with multiple complex processes, in

which TNC plays a vital role. In addition to angiogenesis, VM, and

transdifferentiation of GSCs, it is necessary to explore additional

functions of TNC in co-option or vasculogenesis in future.
TNC and cell proliferation

The TME is composed of heterogeneous cell types, including

endothelial, stromal, multiple immune, and tumor cells (25). As

an ECM glycoprotein, TNC has been shown to exert different

effects on different cells during tumor proliferation. To date, little

information has been available on the TNC-mediated signaling

pathways involved in cell proliferation. As mentioned above,

TNC appears to play a dual role in endothelial cells in glioma

(122, 123). Furthermore, the number of microglia in control and

TNC-knockdown tumors was not significantly different in

xenografts (121). In contrast to microglia, T-cell proliferation
Frontiers in Oncology 06
can be suppressed by TNC-containing exosomes produced by

GSCs (129). Many studies have reported contradictory results

regarding the effects of TNC on glioma cells (Figure 4). Initially,

we observed that TNC expression is associated with a high

proliferation index (108, 109). Since then, some of the

mechanisms underlying the glioma cell proliferation have

begun to be revealed. Huang et al. (130) found that TNC was

able to bind to FNIII13 in the heparin-binding site II and

interfere with cell binding to FN by syndecan-4, thereby

leading to human glioma proliferation (Figure 4). Martin et al.

(131) proposed that TNC promotes the growth of tumor cells by

inducing the expression of 14-3-3 tau. Differential RNA

expression analysis has revealed that some TNC-mediated

growth-promoting signaling pathways are activated in glioma

cells (132). Other in vivo and in vitro experiments have also

reported the proliferative effects of TNC (128, 133, 134).

Moreover, the growth of GSCs is related to TNC-activated

NOTCH signaling (87). Nevertheless , the opposite

phenomenon was described in another study. TNC failed to

affect GBM neurosphere cell growth in vitro, whereas TNC-

knockdown enhanced tumor cell proliferation in vivo (121). One

possible explanation for these different functions is that different

domains of TNC have different proliferative properties (27, 61).

The EGF-like repeats and FBG region can bind to the EGF

receptor and integrinavb3, respectively, contributing to growth.

Certain alternatively spliced domains, such as AD1, AD2, and C,

are also responsible for proliferation (27, 135). However, a

fragment composed of all FNIII domains induced a reduction,
FIGURE 4

The roles of TNC in glioma cell proliferation and migration. For one thing, the role of TNC in glioma cell proliferation is complex. The EGF-like
repeats, the FBG region, A2 and some alternatively spliced domains, such as AD1, -AD2 and -C, of TNC as well as integral TNC molecule
contribute to the glioma cell proliferation. In contrast, the fragment composed of all FNIII-domains decreases the proliferation of glioma cell. In
addition, TNC impairs the adhesive properties of FN, which contributes to glioma cell proliferation. For another thing, TNC promotes glioma cell
invasiveness. This molecule not only contributes to the intermediate adhesion that support cell motility, but also promotes “EMT-like” changes.
Moreover, TNC also induces matrix destructing enzymes to promote tumor cell migration.
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whereas the integral TNC molecule led to an increase in glioma

cell proliferation (Figure 4) (61). Another explanation is that the

absence or decrease of a specific receptor compromises the

proliferative effect. The lack of PDGF-Rb in the glioma cell

lines U87, U251, and GL261 resulted in the attenuation of

TNIIIA2-related proliferation (136). Recently, Fujita et al.

(136–138) showed that TNIIIA2 derived from TNC plays a

vital role in the malignant behavior of glioma cells. They

presented a positive spiral loop in which the peptide TNIIIA2

promoted PDGF-dependent proliferation by activating integrin

b1 in GBM cells expressing PDGF-receptor b. The consequent
upregulation of PDGF stimulated TNC expression, which

induced MMP-2-mediated TNIIIA2 liberation (136). Further

research is needed to explore the relationship between other

domains and cell proliferation.
TNC and cell invasiveness

A major contributor to the poor prognosis of GBM patients

is the invasive nature of tumor cells, which readily invade

healthy brain tissues. This invasive ability of GBM cells makes

maximum safe resection nearly impossible, thereby causing

therapy-resistant tumor relapse, even in distant parts of the

contralateral hemisphere (139). Generally speaking, glioma cell

invasion involves multiple molecular mechanisms, including

ECM components, adhesion proteins, proteinases, and

cytoskeletal changes (139).

A good balance between assembly and disassembly of cell-

matrix adhesion sites is a key determinant of cell adhesion and

migration. Appropriate adhesion is essential for migration, yet too

strong an adhesion has an adverse effect on cell motility. Hence,

intermediate adhesion may be most beneficial for cell migration

(140). To date, TNC has been found to play complex modulatory

roles in glioma cell adhesion (Figure 4). Briefly, the dual effects of

both pro- and anti-adhesion are dependent on the cell type,

cellular context, different receptors, and the structure itself (28,

43, 44). On the one hand, TNC is not a good adhesive substrate for

glioma cells, and it can impair fibronectin-mediated cell adhesion

and spreading (130). However, some studies have found that TNC

acts as a surface-coating molecule that supports cell adhesion

(141), perhaps in an Arg-Gly-Asp (RGD)-dependent manner

(142). Additionally, adhesion of glioma cells to tenascin is

mediated by different coating concentrations and integrin

receptors (143). Thus, TNC appears to facilitate regulation of

glioma cell adhesion turnover.

Furthermore, many reports have demonstrated that TNC

expression is related to the infiltrative phenotype of many

tumors, including gliomas (43, 44, 89, 144, 145). Hirata et al.

(146) revealed that endogenous TNC enhanced glioma

invasiveness through compositional changes in the surrounding

brain parenchyma. TNC not only directly supports glioma cell

migration, but also augments this role, mediated by FN, through
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interaction with integrin a2b1 (147). In addition, several

mechanisms that are involved in the regulation of TNC

expression, such as IL-33/NF-kB/TNC (148) and NOTCH/

RBPJk/TNC (84), were found to increase the motility of glioma

cells. Some growth factors, including lysophosphatidic acid and

PDGF, strongly induce glioma cell migration via actin

cytoskeleton remodeling in the TNC microenvironment

(Figure 4) (149). Remarkably, although TNC can activate high

levels of phosphorylated FAK in endothelial cells, leading to

microvascular migration (120), it stimulates low levels of FAK

phosphorylation in glioma cells (120, 121). Cell migration is a

complex and dynamic process, involving the establishment of

polar structures, adhesion formation and disassembly, and

formation of protrusions at the front, and contractile structures

at the rear of the cell (150). FAK phosphorylation is associated

with focal adhesion. Therefore, we speculated that the anti-

attachment effect of TNC allows glioma cells to detach from

ECM molecules and thereby contribute to migration.

Finally, proteolytic degradation of the ECM is another

important cause of glioma invasion. Sarkar et al. used a three-

dimensional matrix and revealed that some proteinases are

associated with TNC-mediated invasiveness, such as MMP-12

in U178 and U251 glioma cell lines (151, 152), as well as ADAM-

9 in glioma patient-derived GSC lines (Figure 4) (153). In

addition, in vivo experiments also demonstrated its influence

on invasion. In TNC-knockdown xenografts, gliomas were

confined to well-defined tumor boundaries, and decreased

TNC led to inhibition of glioma invasion (121). Considering

the diverse actions of distinct domains of this protein, some

studies have focused on alternatively spliced domains. TNIIIA2

enhances the disseminative migration of GBM (136, 138) and

confers anoikis resistance (137), but these activities are both

abrogated by peptide FNIII14, which inactivates b1-integrins
(136–138, 154).

Thus, TNC is a potential enhancer of glioma invasiveness. It

may be responsible for an intermediate cell adhesion state.

Moreover, the aggressiveness of gliomas is further enhanced in

the presence of TNC. Further studies involving different

domains and isoforms of TNC are required.
TNC and immunomodulation

Accumulating evidence has indicated that immune cells fail to

function properly in gliomas. By employing immune escape

mechanisms, including creating an immunosuppressive

microenvironment, gliomas can bypass immunosurveillance and

hamper the effect of immunotherapy (155). Recently, it has been

proposed that serum TNC could be used as an indicator of the

immunosuppressive microenvironment status of low-grade

gliomas as well as to predict the efficacy of immunotherapy

(156). The effect of TNC on various immune cells has been

extensively reviewed elsewhere (28, 157). We have focused on
frontiersin.org

https://doi.org/10.3389/fonc.2022.971462
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2022.971462
the main findings. Generally, TNC activates innate immune cells,

but exerts immunosuppressive effects on lymphocytes, such as T

cells (Figure 5). TNC is regarded as an inducer of the

neuroinflammatory response in stroke, particularly SAH (56,

157). By interacting with TLR-4 of microglia or macrophages,

the FBG domain of TNC leads to the production and release of

pro-inflammatory cytokines, including IL-1b, IL-6, and TNF-a
(56, 157). In chronic neuroinflammation in the brains of

Alzheimer’s disease model mice, TNC deficiency alleviates

neuroinflammation and enhances the anti-inflammatory

response (69). Hence, it seems reasonable to conclude that TNC

has the capacity to induce M1 proinflammatory or anti-

tumorigenic phenotypes in macrophages and microglia.

However, this phenomenon contrasts with the tumorigenic

properties of TNC and its higher expression in high-grade

gliomas. One possible explanation is that this dual effect on

macrophages is likely to be dependent on the cellular source. In

murine models of breast cancer, Deligne et al. (158) found that

host-derived TNC enhances antitumor immunity by recruiting

proinflammatory macrophages, whereas tumor-derived TNC

drives macrophages to produce an immunosuppressive

response. Another possibility, proposed by Yalcin et al. (28), is

that TNC has different functions in distinct phases of

carcinogenesis. TNC plays a pro-inflammatory and anti-tumor

role in tumor initiation, and tissue remodeling and tumor-

promoting roles during tumor progression. This is similar to the

phenomenon in which microglia can inhibit tumor growth and

exhibit a tumor-promoting state in the early and late stages of

glioma progression, respectively (159). Many studies have

illustrated that tumor-associated macrophages (TAMs) are re-

educated by glioma cells and show remarkable heterogeneity

(160–162). Thus, it is increasingly thought that the M1/M2

dichotomy is an oversimplification and is no longer applicable

to gliomas. Due to the complex heterogeneity of TAMs, it is
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in TAMs. A study by Ma et al. (86) suggested an intricate

relationship between TNC and CD47-mediated macrophage

phagocytosis. Decreased CD47, a “don’t eat me” signal, not only

recruits more M2-like TAMs, but also upregulates TNC

expression, which further facilitates phagocytic ability and

secretion of proinflammatory factors. Furthermore, TNC-

induced cytokines, such as IL-1b and IL-6, and transcription

factors, such as NF-kB and signal transducer and activator of

transcription 3 (STAT3), have been implicated in cancer-related

inflammation (86, 161, 163). These cytokines or transcription

factors also induce TNC expression (7). This positive feedback is

consistent with the fact that TNC expression increases with an

increase in glioma grade. Hence, a more detailed study may be

requ i r ed to c la r i f y the ro l e o f TNC in cance r -

related inflammation.

Unlike the innate immunity, the immunosuppressive effects

of TNC on T cells have been extensively studied in prostate

cancer, breast cancer, and GBM. TNC generates barriers and

retains CD8 tumor-infiltrating lymphocytes inside the tumor

stroma in human breast cancer (164). TNC expressed on GBM

cells decreased the T cell amoeba-like shape formation and

paralyzed migration, while transmigration of T cells through

the monolayer and ECM of glioma cell lines lacking TNC was

obviously increased (165). GSC-derived exosomes carrying TNC

attenuate T cell activity by interacting with the integrin receptors

a5b1 and avb6. More importantly, these TNC-containing

exosomes pass through the blood–brain barrier and enter into

the circulation, suppressing systemic immune responses in

patients with GBM (129). In prostate cancer, Jachetti et al.

(166). found that CSCs can migrate early to prostate-draining

lymph nodes where they overexpress TNC, inhibiting T cell

activation, proliferation, and cytokine production, thereby

overcoming immune surveillance. In addition, the relationship
FIGURE 5

Immunomodulatory role of TNC in neuroinflammation.
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between TNC and autophagy was uncovered. TNC has been

implicated in the suppression of T-cell antitumor responses

caused by autophagy defects. Blockade of TNC sensitizes the

efficacy of immune checkpoint inhibitors in autophagy-

impaired triple-negative breast cancer (167). This finding may

present prospects for anti-PD1/PD-L1 treatment of gliomas.
Tenascin C and EMT

EMT is an essential process that confers malignant

properties to cancer cells (168). Initially, EMT was defined by

changes in cell morphology and behavior, such as repression of

the existing epithelial characteristics and gain of mesenchymal

properties. In recent years, we have found that activation of EMT

programs endows cancer cells with additional properties beyond

enhanced motility and invasiveness, such as cancer cell

stemness, local immunosuppression, increased drug resistance,

changes in genomic stability, and prevention of senescence

(168). Accumulating evidence has suggested that TNC can

promote “EMT-like” changes in different cancers, including

breast cancer (169, 170), gastric cancer (127), colorectal cancer

(171), pancreatic ductal adenocarcinoma (172), and

nasopharyngeal carcinoma (173). However, the EMT observed

in gliomas seems to differ from the classical EMT and therefore

the term “glial to mesenchymal transition” has been proposed

(174). Notably, mesenchymal GBM shares certain common

features with gliomas that undergo “EMT-like” changes. They

both exhibit a more aggressive nature and resistance to many

treatments, and have the same master regulators, such as STAT3

(175–177). Thus, TNC-induced “EMT-like” changes in gliomas

require further exploration.
Tenascin C and mesenchymal GBM

Based on transcriptional signatures, GBMs can be classified

into three subtypes: The Cancer Genome Atlas (TCGA)

proneura l (TCGA-PN), c lass ica l (TCGA-CL) , and

mesenchymal (TCGA-MES) subtypes (178). By applying

single-cell RNA-sequencing (scRNA-seq), malignant cells in

GBM converge to a limited set of four cellular states: neural-

progenitor-like (NPC-like), oligodendrocyte-progenitor-like

(OPC-like), astrocyte-like (AC-like), and mesenchymal-like

(MES-like) (179). These subtype transitions have become

increasingly important, particularly the “proneural-to-

mesenchymal transition” (PMT), which is analogous to EMT.

This phenomenon is associated with requiring a more aggressive

treatment pattern and with resistance to treatment. After

reviewing the related literature, we believe that there is an

underlying relationship between TNC and MES GBM. Angel

et al. (128) found that TNC is overexpressed in MES GBM and
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that this is positively correlated with the expression of MES

markers in TCGA. They further confirmed the role of TNC in

regulating glioma cell plasticity in MES GBM. Moreover,

Miroshnikova et al. (180) demonstrated that hypoxia-inducible

factor 1a (HIF1a) directly regulates TNC expression and that

TNC modifies ECM stiffness and mechano-signaling.

Interestingly, another study implied that stiff tenascin-rich

stroma enhances integrin mechano-signaling to induce PMT

in GBMs (181). Additionally, macrophages were found to

interact with receptors (OSMR or LIFR) complexed with

GP130 on GBM cells via macrophage-derived oncostatin M

(OSM), thereby activating STAT3 and inducing the transition of

GBM cells into MES-like states (182). As mentioned above, TNC

is considered an activator of STAT3 (86, 161, 163). Hence, it may

be worthwhile to study the significance of TNC in mesenchymal

GBM further.
Tenascin C and treatment-related
changes

The current treatment of glioma, particularly GBM, remains

a challenging problem with poor prognosis. Although many

therapeutic options are available, resistance to therapy

frequently causes treatment failure and tumor recurrence.

Several studies have shown that TNC are likely to be related to

this process. Radiation therapy is known to cause tumor cell

death triggered by DNA breaks. However, ionizing radiation also

induces changes in the TME, leading to an increase in TNC

(183). In addition, irradiation-associated inflammation and

hypoxia trigger tenascin C expression via TGF-b (80) and

HIF-1 signaling (180), respectively. Therefore, it is plausible

that radiation therapy can kill tumor cells, while simultaneously

providing favorable conditions for tumor relapse.

Elevated expression of TNC affects the response of gliomas to

chemotherapy with temozolomide (TMZ). In an in vitro

experiment, TNC-knockdown GBM neurospheres were found to

be more sensitive to TMZ (121). Another study conducted in vivo

and in vitro showed that peptide FNIII14, which can inhibit the

effects of TNIIIA2 through inactivation of b1-integrins, increased
the susceptibility of GBM cells to TMZ by suppressing O6-

methylguanine-DNA methyltransferase (MGMT) expression

(138). These findings suggest that targeting TNC may augment

the anti-tumor efficacy of TMZ.

Immunotherapy is a novel therapeutic strategy that extends

beyond radio- and chemotherapy. However, the immunosuppressive

microenvironment limits the application of immunotherapy in

gliomas. We previously reviewed the immunosuppressive effects of

TNC, which further compromise the efficacy of anti-cancer

immunotherapy. Recently, TTFields therapy have shown promising

prospects. Nothing is currently known about TNC function

in TTFields.
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Tenascin C in neural stem cell
niches: implications for
gliomagenesis

Tenascin C and neural stem cells/
oligodendrocyte precursor cells

In the past, neurogenesis was observed to occur mainly

during the developmental period. Adult neurogenesis has been

widely described. Various newborn neural cells are continuously

generated from NSCs located in two canonical regions of the

adult CNS: the SVZ of the lateral ventricle and the dentate gyrus

of the hippocampus. These stem cells reside in a specialized

environment, known as a niche, which is able to maintain the

basic properties of stem cells. TNC, secreted by NSCs and OPCs,

is considered to be an important component of the stem cell

niche and plays a vital role in NSC development (10). The effect

of TNC on adult neurogenesis has also been well-characterized

(184, 185). Both in vivo and in vitro assays indicate that TNC-

knockout reduces OPC proliferation in the mouse CNS, which is

associated with a partial loss of response to PDGF (186). In

addition, the fact that TNC-null OPCs exhibit accelerated

maturation rates suggests that this molecule contributes to the

maintenance of the immature state (52). The underlying

mechanism is gradually being elucidated (187). However, there

are distinct perspectives on the role of TNC in OPC migration.

Some studies have provided direct evidence for migration-

inhibiting effects and mechanisms, including the prevention of

WNT signaling (188) and modulation of cell–ECM interactions

(189, 190). In contrast, other studies have reported that TNC

may be associated with the rostral migratory stream (191),

expression of proteinases (151–153) and enhancement of

WNT signaling (104, 105). Thus, it is plausible to emphasize
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the complex migratory role of this molecule. Overall, TNC

promotes NSC/OPC proliferation, inhibits differentiation, and

regulates migration (Figure 6).
Tenascin C and gliomagenesis

Currently, there is a view that SVZ-derived NSCs or OPCsmay

have potential glioma cellular origins (Figure 6) (30, 192–195). Lee

et al. (29) presented direct molecular genetic confirmation from

patients and mouse models, showing that NSCs harboring driver

mutations in the SVZ migrate to distant brain regions and lead to

GBM development via aberrant growth of the OPC lineage.

Notably, as shown above, TNC is enriched in the GSC and NSC

microenvironments and is responsible for tumor progression and

neurogenesis, respectively. Additionally, GSCs share many features

and behaviors with NSCs, including common markers (such as

nestin and CD133) and self-renewal properties (196). Therefore, it

is necessary to explore whether TNC is involved in the malignant

transformation of NSCs or OPCs.

Previous studies have indicated that malignant gliomas can

arise from neural stem/progenitor cells carrying driver mutations

(such as mutations in P53, PTEN, EGFR, and NF1), whereas more

differentiated cell types are less likely to undergo malignant

transformation (29, 30, 195, 197). However, the causes

underlying this phenomenon remain unclear. Interestingly, a

relationship between TNC and gene instability has previously

been reported (198). One RNA profiling experiment showed that

TNC downregulates the expression of cell cycle- and DNA repair-

related genes in T98G GBM cells (132). The influence of TNC on

cell cycle progression of the SVZ and spinal cord neural stem/

progenitor cells has been investigated (199, 200). TNC-mediated

enhancement of the proliferative capacity of tumor cells (130) and

neural stem/progenitor cells (200) concomitantly increases the
FIGURE 6

A possible relationship between TNC and gliomagenesis. In general, TNC can promote NSC/OPC proliferation, inhibit differentiation and
regulate migration. However, TNC is associated with gene instability and cell cycle, and contributes to accumulation of mutations. Then NSC/
OPC carrying driver mutations are likely to undergo GSC transformation. Additionally, neovascularization, proliferation, migration and
immunosuppressive effects on T cell also provide favorable conditions, which leads to gliomagenesis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.971462
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2022.971462
likelihood of accumulation of mutations. Apart from the above,

other important factors, such as stemness maintenance and

migration of stem cells, as well as immunosuppressive effects on

T cells, also provide favorable conditions for the transformation to

malignant tumors. These findings suggest a possible relationship

between TNC and gliomagenesis (Figure 6).
Clinical significance of tenascin C

The clinical implications of TNC have been extensively

recognized (Table 1). TNC could be a potential prognostic

marker for gliomas, including GBM (71, 201), diffuse intrinsic

pontine glioma (202), and ependymoma (203). In addition, TNC

seems to be regarded as a marker for CSCs (201). Another

application is as a candidate for targeted therapy, depending on

its characteristic expression pattern. Many ligands targeting TNC

have been developed, including F16 (204), G11 (205), R6N (206),

PL1 (207), PL3 (208), and Ft (209). The new Ft peptide was

synthesized to target glioma-associated TNC and neuropilin-1

synergistically in neovasculature for the specific penetration of

nanoparticles in anti-GBM therapy (209). Radiolabeled antibodies

specific to distinct domains of TNC have been tested for the

treatment of malignant gliomas in clinical studies (210–212). In

addition, the TNC aptamer GBI-10 was identified (213) and used
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transduction efficiency in glioma cells (214). In a phase I/II trial,

a multi-peptide vaccine, IMA950, that targets TNC held good

promise for glioma patients (215). RNA interference has been

proposed as a novel strategy for treating gliomas to silence TNC

expression. One study by Zukiel et al. (216) suggested that, when

double-stranded RNA targeting TNC, known as ATN-RNA, was

directly injected postoperatively into the region of resection of 10

patients with glioma, almost all treated patients showed a good

response. In agreement with this, other studies have also shown a

significant improvement in overall survival without loss of quality

of life (217, 218). Magnetic resonance imaging and computed

tomography showed delayed tumor growth or a lack of tumor

recurrence (217, 218). In future, more rigorous trials will be

required to support the clinical application of this treatment.
Conclusion

In this review, we focused on the matricellular protein TNC

and highlighted its significant implications in gliomas. TNC

expression is tightly controlled, with distinct spatial and

temporal distribution patterns. Therefore, they are responsible

for various physiological and pathophysiological processes. TNC

is associated with neurogenesis, as manifested by the promotion
TABLE 1 The clinical applications of TNC in gliomas.

Categories Compound Application Result Clinical
trial

Ref

Marker TNC Glioblastoma Prognosis — (71,
201)

TNC Diffuse intrinsic pontine glioma Prognosis — (202)

TNC Integrated TNC expression and 1q25 status Prognosis — (203)

TNC Glioma stem cells Biomarker — (201)

Antibody IL2-F16 (targeting TNC-A1) Combined with temozolomide Complete remission Preclinical (204)

G11 (targeting TNC-C) — Tumor targeting Preclinical (205)

IL12-R6N (targeting TNC-D) — Cancer regression Preclinical (206)

Peptide PL1 (targeting FN-EDB and TNC-
C) + pro-apoptotic payload

Every other day for 10 total injections Reduced tumor growth
and increased survival

Preclinical (207)

PL3 (targeting TNC-C and
neuropilin-1) + pro-apoptotic
payload

Every other day for 10 total injections Improved survival Preclinical (208)

Ft peptide (targeting TNC and
neuropilin-1) + paclitaxel

Intravenously administered every 2 weeks for 3 times Improved survival Preclinical (209)

Radiolabeled
antibodies

Radiolabeled anti-TNC monoclonal
antibodies such as 131I-81C6

Radiotherapy after resection followed by chemotherapy
(temozolomide, lomustine, irinotecan, etoposide)

Low toxicity and
prolonged survival

Phase I/II (210–
212)

Aptamer GBI-10 GBI-10-modified adenovirus Improved the adenoviral
transduction efficiency

Preclinical (213,
214)

Vaccine IMA950 (A multi-peptide vaccine
IMA950 targeting TNC)

Injections of IMA950/adjuvant poly-ICLC after surgical
resection followed by chemoradiotherapy and temozolomide

Improved survival Phase I/II (215)

RNA
interference

ATN-RNA (anti TNC dsRNA) Injection into the brain after resection Improved survival Patients (216–
218)
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of stem cell proliferation, maintenance of stemness, and

regulation of migration. In contrast, TNC is implicated in

malignant glioma progression, including neovascularization,

proliferation, invasiveness, and immunomodulation. However,

because of the complex and various domains and the strong

crosstalk between them, it is difficult to allocate diverse roles to

specific parts of this molecule. Hence, clarifying the underlying

mechanisms is a direction for future research. Additionally,

based on the hypothesis that SVZ-derived NSCs are

instrumental in glioma development, we proposed a possible

link between TNC and gliomagenesis, although direct evidence

is currently lacking. Therefore, future studies should be

conducted to investigate this relationship specifically. Finally,

this molecule has promising potential for application in anti-

glioma therapy. Many drugs directed against TNC, such as

radiolabeled antibodies and dsRNA, have been proven to be

effective in preclinical or clinical studies. The selective targeting

of the downstream signaling pathways of TNC warrants further

investigation. Thorough research on TNC, particularly on the

different domains and critical targets of the signaling pathway,

will provide new therapeutic strategies for glioma treatment.
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77. Chiquet M, Sarasa-Renedo A, Tunç-Civelek V. Induction of tenascin-c by
cyclic tensile strain versus growth factors: distinct contributions by Rho/ROCK and
MAPK signaling pathways. Biochim Biophys Acta (2004) 1693(3):193–204.
doi: 10.1016/j.bbamcr.2004.08.001

78. Maier S, Lutz R, Gelman L, Sarasa-Renedo A, Schenk S, Grashoff C, et al.
Tenascin-c induction by cyclic strain requires integrin-linked kinase. Biochim
Biophys Acta (2008) 1783(6):1150–62. doi: 10.1016/j.bbamcr.2008.01.013

79. Lutz R, Sakai T, Chiquet M. Pericellular fibronectin is required for RhoA-
dependent responses to cyclic strain in fibroblasts. J Cell Sci (2010) 123(Pt 9):1511–
21. doi: 10.1242/jcs.060905

80. Smith GM, Hale JH. Macrophage/Microglia regulation of astrocytic
tenascin: synergistic action of transforming growth factor-beta and basic
fibroblast growth factor. J Neurosci Off J Soc Neurosci (1997) 17(24):9624–33.
doi: 10.1523/jneurosci.17-24-09624.1997

81. Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS.
Genome-wide promoter analysis of the SOX4 transcriptional network in prostate
cancer cells. Cancer Res (2009) 69(2):709–17. doi: 10.1158/0008-5472.Can-08-3415

82. Li L, Li Q, Chen X, Xu M, Li X, Nie L, et al. SOX4 is overexpressed in
diffusely infiltrating astrocytoma and confers poor prognosis. Neuropathol Off J
Japanese Soc Neuropathol (2015) 35(6):510–7. doi: 10.1111/neup.12212

83. Mahesparan R, Read TA, Lund-Johansen M, Skaftnesmo KO, Bjerkvig R,
Engebraaten O. Expression of extracellular matrix components in a highly
infiltrative in vivo glioma model. Acta neuropathologica (2003) 105(1):49–57.
doi: 10.1007/s00401-002-0610-0

84. Sivasankaran B, Degen M, Ghaffari A, Hegi ME, Hamou MF, Ionescu MC,
et al. Tenascin-c is a novel RBPJkappa-induced target gene for notch signaling in
gliomas. Cancer Res (2009) 69(2):458–65. doi: 10.1158/0008-5472.Can-08-2610

85. Wang MM. Notch signaling and notch signaling modifiers. Int J Biochem
Cell Biol (2011) 43(11):1550–62. doi: 10.1016/j.biocel.2011.08.005

86. Ma D, Liu S, Lal B, Wei S, Wang S, Zhan D, et al. Extracellular matrix
protein tenascin c increases phagocytosis mediated by CD47 loss of function in
Frontiers in Oncology 14
glioblastoma. Cancer Res (2019) 79(10):2697–708. doi: 10.1158/0008-5472.Can-18-
3125

87. Sarkar S, Mirzaei R, Zemp FJ, Wei W, Senger DL, Robbins SM, et al.
Activation of NOTCH signaling by tenascin-c promotes growth of human brain
tumor-initiating cells. Cancer Res (2017) 77(12):3231–43. doi: 10.1158/0008-
5472.Can-16-2171

88. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris
PG, et al. Breast cancer cells produce tenascin c as a metastatic niche component to
colonize the lungs. Nat Med (2011) 17(7):867–74. doi: 10.1038/nm.2379

89. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenascin-c
biology. Cell Mol Life Sci CMLS (2011) 68(19):3175–99. doi: 10.1007/s00018-011-
0783-6

90. Chung CY, Zardi L, Erickson HP. Binding of tenascin-c to soluble
fibronectin and matrix fibrils. J Biol Chem (1995) 270(48):29012–7. doi: 10.1074/
jbc.270.48.29012

91. To WS, Midwood KS. Identification of novel and distinct binding sites
within tenascin-c for soluble and fibrillar fibronectin. J Biol Chem (2011) 286
(17):14881–91. doi: 10.1074/jbc.M110.189019

92. Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, et al.
Incorporation of tenascin-c into the extracellular matrix by periostin underlies
an extracellular meshwork architecture. J Biol Chem (2010) 285(3):2028–39.
doi: 10.1074/jbc.M109.051961

93. Chung CY, Erickson HP. Glycosaminoglycans modulate fibronectin matrix
assembly and are essential for matrix incorporation of tenascin-c. J Cell Sci (1997)
110( Pt 12):1413–9. doi: 10.1242/jcs.110.12.1413

94. Brinckmann J, Hunzelmann N, Kahle B, Rohwedel J, Kramer J, Gibson MA,
et al. Enhanced fibrillin-2 expression is a general feature of wound healing and
sclerosis: potential alteration of cell attachment and storage of TGF-beta. Lab
investigation; J Tech Methods Pathol (2010) 90(5):739–52. doi: 10.1038/
labinvest.2010.49

95. Day JM, Olin AI, Murdoch AD, Canfield A, Sasaki T, Timpl R, et al.
Alternative splicing in the aggrecan G3 domain influences binding interactions
with tenascin-c and other extracellular matrix proteins. J Biol Chem (2004) 279
(13):12511–8. doi: 10.1074/jbc.M400242200

96. Brellier F, Ruggiero S, Zwolanek D, Martina E, Hess D, Brown-Luedi M,
et al. SMOC1 is a tenascin-c interacting protein over-expressed in brain tumors.
Matrix Biol J Int Soc Matrix Biol (2011) 30(3):225–33. doi: 10.1016/
j.matbio.2011.02.001

97. Adamsky K, Schilling J, Garwood J, Faissner A, Peles E. Glial tumor cell
adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine
phosphatase beta (RPTPbeta) to tenascin c. Oncogene (2001) 20(5):609–18.
doi: 10.1038/sj.onc.1204119

98. Milev P, Fischer D, Häring M, Schulthess T, Margolis RK, Chiquet-
Ehrismann R, et al. The fibrinogen-like globe of tenascin-c mediates its
interactions with neurocan and phosphacan/protein-tyrosine phosphatase-zeta/
beta. J Biol Chem (1997) 272(24):15501–9. doi: 10.1074/jbc.272.24.15501

99. Abaskharoun M, Bellemare M, Lau E, Margolis RU. Glypican-1,
phosphacan/receptor protein-tyrosine phosphatase-z/b and its ligand, tenascin-c,
are expressed by neural stem cells and neural cells derived from embryonic stem
cells. ASN Neuro (2010) 2(3):e00039. doi: 10.1042/an20100001

100. Saito Y, Imazeki H, Miura S, Yoshimura T, Okutsu H, Harada Y, et al. A
peptide derived from tenascin-c induces beta1 integrin activation through
syndecan-4. J Biol Chem (2007) 282(48):34929–37. doi: 10.1074/jbc.M705608200

101. Swindle CS, Tran KT, Johnson TD, Banerjee P, Mayes AM, Griffith L,
et al. Epidermal growth factor (EGF)-like repeats of human tenascin-c as
ligands for EGF receptor. J Cell Biol (2001) 154(2):459–68. doi: 10.1083/
jcb.200103103

102. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, et al.
Tenascin-c is an endogenous activator of toll-like receptor 4 that is essential for
maintaining inflammation in arthritic joint disease. Nat Med (2009) 15(7):774–80.
doi: 10.1038/nm.1987

103. De Laporte L, Rice JJ, Tortelli F, Hubbell JA. Tenascin c promiscuously
binds growth factors via its fifth fibronectin type III-like domain. PloS One (2013) 8
(4):e62076. doi: 10.1371/journal.pone.0062076

104. Chen S, Fu H, Wu S, Zhu W, Liao J, Hong X, et al. Tenascin-c protects
against acute kidney injury by recruiting wnt ligands. Kidney Int (2019) 95(1):62–
74. doi: 10.1016/j.kint.2018.08.029

105. Hendaoui I, Tucker RP, Zingg D, Bichet S, Schittny J, Chiquet-Ehrismann
R. Tenascin-c is required for normal wnt/b-catenin signaling in the whisker follicle
stem cell niche. Matrix Biol J Int Soc Matrix Biol (2014) 40:46–53. doi: 10.1016/
j.matbio.2014.08.017

106. Fouda GG, Jaeger FH, Amos JD, Ho C, Kunz EL, Anasti K, et al. Tenascin-c
is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk. Proc Natl
Acad Sci USA (2013) 110(45):18220–5. doi: 10.1073/pnas.1307336110
frontiersin.org

https://doi.org/10.3171/2015.4.Jns15484
https://doi.org/10.1007/s12975-014-0333-2
https://doi.org/10.1007/s12035-017-0466-x
https://doi.org/10.1007/978-3-319-04981-6_20
https://doi.org/10.1161/strokeaha.107.505735
https://doi.org/10.1016/j.neurobiolaging.2013.04.013
https://doi.org/10.1080/19336918.2015.1008332
https://doi.org/10.1080/19336918.2015.1008332
https://doi.org/10.1002/cncr.11796
https://doi.org/10.1002/ijc.10233
https://doi.org/10.1007/bf00201554
https://doi.org/10.1080/19336918.2015.1008333
https://doi.org/10.1080/19336918.2015.1008333
https://doi.org/10.1073/pnas.89.6.2091
https://doi.org/10.1089/dna.1997.16.559
https://doi.org/10.1016/j.bbamcr.2004.08.001
https://doi.org/10.1016/j.bbamcr.2008.01.013
https://doi.org/10.1242/jcs.060905
https://doi.org/10.1523/jneurosci.17-24-09624.1997
https://doi.org/10.1158/0008-5472.Can-08-3415
https://doi.org/10.1111/neup.12212
https://doi.org/10.1007/s00401-002-0610-0
https://doi.org/10.1158/0008-5472.Can-08-2610
https://doi.org/10.1016/j.biocel.2011.08.005
https://doi.org/10.1158/0008-5472.Can-18-3125
https://doi.org/10.1158/0008-5472.Can-18-3125
https://doi.org/10.1158/0008-5472.Can-16-2171
https://doi.org/10.1158/0008-5472.Can-16-2171
https://doi.org/10.1038/nm.2379
https://doi.org/10.1007/s00018-011-0783-6
https://doi.org/10.1007/s00018-011-0783-6
https://doi.org/10.1074/jbc.270.48.29012
https://doi.org/10.1074/jbc.270.48.29012
https://doi.org/10.1074/jbc.M110.189019
https://doi.org/10.1074/jbc.M109.051961
https://doi.org/10.1242/jcs.110.12.1413
https://doi.org/10.1038/labinvest.2010.49
https://doi.org/10.1038/labinvest.2010.49
https://doi.org/10.1074/jbc.M400242200
https://doi.org/10.1016/j.matbio.2011.02.001
https://doi.org/10.1016/j.matbio.2011.02.001
https://doi.org/10.1038/sj.onc.1204119
https://doi.org/10.1074/jbc.272.24.15501
https://doi.org/10.1042/an20100001
https://doi.org/10.1074/jbc.M705608200
https://doi.org/10.1083/jcb.200103103
https://doi.org/10.1083/jcb.200103103
https://doi.org/10.1038/nm.1987
https://doi.org/10.1371/journal.pone.0062076
https://doi.org/10.1016/j.kint.2018.08.029
https://doi.org/10.1016/j.matbio.2014.08.017
https://doi.org/10.1016/j.matbio.2014.08.017
https://doi.org/10.1073/pnas.1307336110
https://doi.org/10.3389/fonc.2022.971462
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2022.971462
107. Iyoda T, Fujita M, Fukai F. Biologically active TNIIIA2 region in tenascin-c
molecule: Amajor contributor to elicit aggressivemalignant phenotypes fromTumors/
Tumor stroma. Front Immunol (2020) 11:610096. doi: 10.3389/fimmu.2020.610096
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