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Efficacy of non-enhanced
computer tomography-based
radiomics for predicting
hematoma expansion:
A meta-analysis

Yan-Wei Jiang †, Xiong-Jei Xu †, Rui Wang
and Chun-Mei Chen*

Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
Background: This meta-analysis aimed to assess the efficacy of radiomics

using non-enhanced computed tomography (NCCT) for predicting hematoma

expansion in patients with spontaneous intracerebral hemorrhage.

Methods: Throughout the inception of the project to April 11, 2022, a

comprehensive search was conducted on PubMed, Embase, and Cochrane

Central Register of Controlled Trials. The methodological quality of studies in

this analysis was assessed by the radiomics quality scoring system (RQS). A

meta-analysis of radiomic studies based on NCCT for predicting hematoma

expansion in patients with intracerebral hemorrhage was performed. The

efficacy of the radiomics approach and non-contrast CT markers was

compared using network meta-analysis (NMA).

Results: Ten articles comprising a total of 1525 patients were quantitatively

analyzed for hematoma expansion after cerebral hemorrhage using radiomics.

Based on the included studies, the mean RQS was 14.4. The AUC value (95%

confidence interval) of the radiomics model was 0.80 (0.76-0.83). Five articles

comprising 846 patients were included in the NMA. The results synthesized

according to Bayesian NMA revealed that the predictive ability of the radiomics

model outperformed most of the NCCT biomarkers.

Conclusions: The NCCT-based radiomics approach has the potential to

predict hematoma expansion. Compared to NCCT biomarkers, we

recommend a radiomics approach. Standardization of the radiomics

approach is required for further clinical implementation.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

display_record.php?RecordID=324034, identifier [CRD42022324034].
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1 Introduction

Intracerebral hemorrhage is a life-threatening and costly

disorder that accounts for 10–15% of all strokes (1). Hematoma

expansion is an independent risk factor for poor neurological

outcomes. Predictions of hematoma expansion risks can help to

stratify patients. Previous studies have reported that spot signs

are a good predictor of hematoma expansion (2, 3).

Nevertheless, the application of spot signs is limited because

computed tomography angiography (CTA) and contrast-

enhanced CT are not routinely performed in the emergency

department. Non-enhanced CT (NCCT) is most commonly

used for intracerebral hemorrhage imaging. Several studies

have reported that radiological markers extracted from NCCT,

including the black hole, satellite, and blend signs, are related to

hematoma expansion (2). However, the extraction of radiomic

markers is time-consuming and heterogeneous. Further, the

accuracy of radiomic markers may depend on the experience

of the clinician who reads the medical images.

Radiomics is a new method for the quantitative analysis of

medical images (4). Radiomics analysis was initially

implemented in the mining of medical images related to

oncology. Recently, the radiomics approach has been applied

in non-oncological fields (5). An increasing number of studies

have used an NCCT-based radiomics approach to predict

hemorrhage expansion(Figure 1) (4, 6, 7). However, data on

the predictive efficacy of radiomics methods remain insufficient

for further implementation.

This meta-analysis aimed to determine whether NCCT-

based radiomics approaches are effective for predicting

hematoma expansion. Radiomics quality scoring (RQS) was
Frontiers in Oncology 02
used to determine the quality of the studies included in the

meta-analysis (8). Network meta-analysis (NMA) was employed

to synthesize diagnostic test accuracy data in order to assess the

efficacy of different diagnostic tests (9, 10). We compared the

efficacy of common NCCT markers and radiomics approaches

for predicting intracerebral hemorrhage expansion using NMA.
2 Methods

2.1 Literature search and study selection

This study was conducted according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA) statement (eTable 1) (11). This study was registered

with PROSPERO (CRD42022324034). PubMed, Embase, and

the Cochrane Central Register of Controlled Trials were

searched thoroughly from inception to April 11, 2022

(eTable 2) for articles in English. References to relevant

published articles were also searched to obtain the

desired articles.

After pooling the search results from the three databases and

removing duplicate articles, the abstracts and titles of the articles

were screened independently by two researchers. Eligible articles

were identified by a comprehensive reading of the full text. We

included all eligible radiomics articles that used non-enhanced

CT to assess hematoma expansion in patients with intra-cerebral

hemorrhage. Articles that met one or more of the following

criteria were excluded: (1) conference abstracts, reviews, letters,

case reports, and case series studies with sample sizes < 10; (2) in

multiple studies using the same population, only the study with
FIGURE 1

Flowchart of (NCCT-based radiomics. NCCT: non-enhanced computed tomography.
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the largest dataset was included; (3) non-human studies; (4)

secondary intra-cerebral hemorrhage; (5) intraventricular

hemorrhage; and (6) studies without comparison. All

inconsistencies were resolved by negotiation or by a

third investigator.
2.2 Data extraction

Eligible articles contained information that was

independently extracted by two researchers, including authors,

year of publication, sample size, number of cases in the training

and validation sets, study population, study design, study

country, number of institutions, composition of model

construction, mode of visualization, interval image

examination, research topic, segmentation software, method of

extraction of imaging histology features, validation method,

method of screening variables, final study characteristics,

sensitivity (Se), specificity (Sp), true positives (TPs), false

positives (FPs), true negatives (TNs), false negatives (FNs),

diagnostic accuracy rate (DAR), diagnostic odds ratio (DOR),

number of hematoma expansions, and non-expansions. All

inconsistencies were resolved by negotiation or by a

third investigator.
2.3 Quality assessment

All eligible studies were assessed for bias using the

QUADAS-2 tool for diagnostic meta-analyses (12). Four key

domains were assessed, including flow and timing, reference

standards, index tests, and patient selection. Three main

domains were assessed using the Applicability Concerns Test.

Risk of bias was categorized as low, high, or unclear. When all

domains were rated as yes, the risk was considered low. A

potential risk of bias existed when any of the domains was

rated no. The unclear classification only applied when there were

insufficient data to report. The 16 components of RQS were used

to assessed the quality of radiomics studies (8). Reviewers scored

each component and summed up the scores. The procedures for

scoring each component have been described previously.
2.4 Outcome measures

We performed a synthetic analysis of TP, FP, TN, and FN

indicators of eligible articles using a diagnostic meta-analysis.

Comparative analyses were performed for Se, Sp, positive

predictive value (PPV), negative predictive value (NPV), DAR,

and DOR. Articles that did not provide the four indicators TP,

FP, TN, and FN were calculated using the number of cases of

hematoma expansion and non-expansion, combined with Se

and Sp, using Review Manager 5.4.1. (eTable 3).
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Se refers to the proportion of positive cases detected within

the group diagnosed with disease by the gold standard; a higher

Se indicates a lower chance of a missed diagnosis. Sp refers to the

proportion of negative tests within the group diagnosed as

disease-free by the gold standard; a higher Sp indicates a lower

chance of misdiagnosis. PPV reflects the proportion of

individuals with a positive screening test result who are

actually sick. NPV reflects the proportion of individuals with a

negative screening test result who do not actually have the

disease. DAR is defined as the proportion of all cases detected

as TPs and TNs by clinical diagnostics within all cases. A higher

DOR value indicates that the diagnostic test is more effective at

distinguishing between patients and non-patients.
3 Data Synthesis

3.1 Diagnostic meta-analysis to evaluate
diagnostic test accuracy

Diagnostic test accuracy indicators, such as Se, Sp, PPV,

NPV, DAR, and DOR, were synthesized using a meta-analysis

based on a random-effects model. Forest plots were used to

represent the effect values (odds ratio, OR) and 95% confidence

intervals (CIs). Evaluation of the screening biomarkers

(radiological features or radiomics) was based on summary

receiver operating characteristic (sROC) curves and areas

under the curve (AUCs), whereby a larger AUC indicates

better model performance. The Cochrane Q test and I2 were

used to measure the heterogeneity of the outcomes. The

robustness of the results was evaluated, and sources of

heterogeneity were explored by omitting each included article

one by one in the pooled analysis. Publication bias was evaluated

using funnel plots. A p-value < 0.05 for the Q test or I2 > 50%

indicated the possibility of significant heterogeneity.
3.2 NMA

Studies that included a comparison of radiomics and

radiological markers were used for the NMA. We used NMA

to evaluate the diagnostic value of all radiological features and

radiomics evaluating hematoma expansion in cerebral

hemorrhage in all eligible studies to estimate the OR and 95%

CI for predicting hematoma expansion for Se, Sp, PPV, and NPV

in eligible articles, and to summarize the rank order for all

screening biomarkers.

The implementation of the NMA was based on a Bayesian

model using Markov chain Monte Carlo simulation methods

(MCMC), where the calculated prior distribution and likelihood

values were substituted into MCMC, and the parameters were

adjusted to three chains and 5000 burn-ins using a random-

effects model with 50,000 iterations and an interval of 5. An
frontiersin.org
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optimal fit state of the convergent posterior distribution was

obtained, minimizing the variation of the MCMC error and

deviation information criterion to stabilize the ending (13, 14).

Trace plots and density distribution plots were used to assess

aggregation. We constructed network plots for each outcome

measure separately. The plot points represented different

screening biomarkers, point sizes indicated the total sample

size for each feature, and line thickness represented the

number of studies that were conducted between the two points

connected. The OR values and 95% CIs between different

predictors were represented using forest plots. To better

compare diagnostic efficacy, surface under the cumulative

ranking (SUCRA) was used to calculate the rankings of the

predictors (15). SUCRA values ranged between 0 and 1, with

l a r g e r v a l u e s r ep r e s en t i ng h ighe r r ank ing s and

diagnostic efficacies.

In hypothesis testing for the NMA, we determined

homogeneity and transferability by assessing the baseline

characteristics of the included articles, methodological and

statistical approaches, and agreement of the same predictor

across articles. For consistency tests, we explored local

heterogeneity using nodal splits and the deviance information

criterion for consistency and inconsistency models (DIC) (16). A

smaller difference between DIC values of the two models

indicated good agreement.

As most of the articles constructed the model using the

training set, we only used data from the validation set for

synthetic analysis. Model performance was verified using the

validation set. Articles that were not categorized into the training

and validation sets were analyzed as validation sets.

All data synthesis was conducted using R version 4.1.2

(“meta” package for diagnostic meta-analysis to evaluate

diagnostic test accuracy; “gemtc” package for NMA) and

Review Manager 5.4.1.
4 Results

A comprehensive search of 2114 articles was conducted, and

2037 articles were screened after excluding duplicates. Of the 77

full-text articles searched, 67 were excluded according to the

inclusion and exclusion criteria (Figure 2). Ten articles

comprising a total of 4929 patients were finally included in the

meta-analysis, five of which were used for the NMA. (Table 1).

The causes of cerebral hemorrhage were spontaneous

intracerebral hemorrhage and hypertensive intraparenchymal

hematoma. A total of 1391 (28.22%) patients had hematoma

expansion. The radiological features or radiomics analysis

performed included radiomics model, radiological model,

radiomics-radiological model, black hole sign, blend sign,

heterogeneity, hypodensity, irregular shape, island sign,

midline shift, satellite sign, and swirl sign.
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Based on the QUADAS-2 tool for assessing bias and

applicability (eFigure 1), the overall quality of the included

articles was satisfactory. For some studies, we could not

determine whether the included patients were consecutive or

randomized (n=8) and whether a blinded approach and

diagnostic thresholds were used for analysis (n=3); these

articles were therefore categorized as unclear.

Based on RQSs (Table 2), the included articles were generally of

low quality. In ten studies, the mean score was 40% (range, 30.1–

69.4%), and one study scored above 50%. The protocols for image

acquisition reported in most studies were well-documented. Most

studies (70%) used manual segmentation (which is usually

performed by an expert drawing ROIs), and three (30%) used

semi-automatic segmentation (which combines manual

segmentation with some algorithms). Two (20%) of the studies

integrated clinical data into radiomic models and suggested that this

could improve prediction accuracy.
4.1 Diagnostic test meta-analysis

4.1.1 Radiomics model
Ten studies comprising a total of 1525 patients were

quantitatively analyzed for hematoma expansion after cerebral

hemorrhage using the radiomics method (4, 6, 7, 17–23). The

pooled Se, Sp, PPV, NPV, and DAR were 0.771 (0.710-0.832),

0.743 (0.684-0.801), 0.612 (0.448-0.737), 0.863 (0.815-0.912),

and 0.748 (0.707-0.788), respectively (Figure 3). The synthetic

DOR was 9.85 (6.01-16.12) (eFigure 2).
FIGURE 2

Flowchart for study selection.
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TABLE 2 Radiomics quality scores.

Author ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ Total score Mean score (%)

Song 1 1 0 0 3 1 0 0 1 1 0 2 2 2 0 0 14 38.9

Li 1 1 0 0 3 0 0 0 0 0 0 2 2 2 0 0 11 30.6

Ma 1 1 0 0 3 0 0 0 0 0 0 2 2 2 0 0 11 30.6

Xie 1 1 0 0 3 1 1 0 0 0 0 2 2 2 0 0 13 36.1

Chen 1 1 0 0 3 1 1 0 1 1 0 2 2 2 0 0 15 41.7

Pszczolkowski 0 0 0 0 3 1 1 1 1 1 7 4 2 2 0 2 25 69.4

Zhan 1 0 0 0 3 1 1 0 1 0 0 2 2 2 0 0 13 36.1

Zhu 0 1 0 0 3 1 1 0 1 1 0 2 2 2 0 0 14 38.9

Duan 1 1 0 0 3 1 0 0 1 0 0 2 2 2 0 0 13 36.1

Xia 1 1 0 0 3 1 0 0 1 1 0 3 2 2 0 0 15 41.7

①:Image protocol quality; ②: Multiple segmentations; ③: Phantom study on all scanners; ④: Imaging at multiple time points; ⑤: Feature reduction or adjustment for multiple testing; ⑥:
Multivariable analysis with non-radiomics features; ⑦: Detect and discuss biological correlates; ⑧: Cutoff analyses; ⑨: Discrimination statistics;⑩: Calibration statistics;⑪: Prospective
study registered in a trial database; ⑫: Validation; ⑬: Comparison to gold standard; ⑭: Potential clinical utility; ⑮: Cost effectiveness analysis; ⑯: Open science and data.
F
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TABLE 1 Baseline characteristics of included studies.

Author Year Sample
size

HE non-
HE

Study design Study
location

Imaging
modality

Research question

Chen et al 2021 1153 236 917 Retrospectively China NCCT To compare the predictive performance for HE among clinical model,
radiomics model, and hybrid model.

Duan et al 2022 108 54 54 Retrospectively China NCCT To predict HE by using different machine learning methods and to
determine the best radiomics model.

Li et al 2019 167 42 125 Retrospectively China NCCT To quantify the heterogeneity of hematomas in order to find more
quantitative, sensitive, and accurate indicators for predicting HE.

Ma et al 2019 254 58 196 Retrospectively China NCCT To explore the feasibility of predicting hematoma expansion at acute
phase via a radiomics approach.

Pszczolko-
wski et al

2021 1732 474 1258 Retrospectively England NCCT To investigate the use of NCCT radiomics-based features and
generalized linear models for prediction of both HE and poor
functional outcome

Song et al 2021 261 110 151 Retrospectively China NCCT To determine whether NCCT) models based on multivariable,
radiomics features, and machine learning (ML) algorithms could
further improve the discrimination of early hematoma expansion (HE)
in patients with spontaneous intracerebral hemorrhage.

Xia et al 2022 376 108 268 Retrospectively China NCCT To identify supratentorial spontaneous intracerebral hemorrhage
patients with HE on admission

Xie et al 2020 251 108 143 Retrospectively China NCCT To predict hematoma expansion and to compare the predictive
performance with conventional radiological feature-based model

Zhan et al 2021 313 44 269 Retrospectively China NCCT To predict HE and the short- term outcomes in patients with small
hematomas.

Zhu et al 2021 314 157 157 Retrospectively China NCCT To evaluate HE prediction in the perihematomal region using
radiomics technology and compare its predictive performance with the
intra-hematomal radiomics signature.

HE: hematoma expansion; NCCT: non-enhanced computed tomography.
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4.2 sROCs and AUCs

The sROC curves demonstrated similar model performance

for the radiomics and radiomics-radiological models, and better

performance than that of the other screening biomarkers

(eFigure 3). The AUC value (95% CI) of the radiomics model

was 0.80 (0.76-0.83) (eFigure 4). However, other biomarkers

were not available due to the limited number of studies that

obtained AUC values and 95% CIs.
4.3 Sensitivity analysis and
publication bias

For most diagnostic indictors, the Cochrane’s Q (p<0.05)

and I2 (I2>50%) tests revealed significant heterogeneity.

However, no significant changes were observed in the Se, Sp,

PPV, NPV, and DAR values after article-by-article exclusion,
Frontiers in Oncology 06
suggesting the robustness of the outcomes and relatively low

potential heterogeneity (eFigures 5). Funnel plots for different

diagnostic indicators of the radiomics model suggested

publication bias (eFigure 6).
4.4 NMA

Figure 4A presents a network plot of the indicators involved

in the composition. In the NMA, 846 patients from five articles

were included (4, 6, 7, 21, 22). The results synthesized according

to Bayesian NMA revealed that the predictive ability of the

radiomics model outperformed most of the NCCT biomarkers

(Figure 5). According to SUCRA (eTable 4), both radiomics and

radiomics-radiological models were ranked in the top two for Se,

Sp, PPV, NPV, and DAR. SUCRA curves are presented in

Figures 4B–F.

The results of the node-splitting method revealed good

consistency (p > 0.05) in most of the direct or indirect

comparisons (eFigure 7). The difference between the DIC

values of both the consistent and inconsistent models did not

exceed 5 and exhibited good consistency (eTable 5).
5 Discussion

This meta-analysis examined the utility of NCCT-based

radiomics methods to predict hematoma expansion. Our

analysis indicated that the radiomics approach demonstrated

potential for the prediction of hematoma expansion. Despite

these promising results, the relatively low RQSs of the included

studies revealed that the radiomics approach was suboptimal for

clinical application. Additionally, our analysis revealed that the

aggregated Se, Sp, and AUC of the radiomics model

outperformed those of the radiological biomarkers.

The results of our meta-analysis demonstrated that NCCT-

based radiomics is a feasible approach for stratifying the risk of

spontaneous intracerebral hemorrhage (21, 24–27). Hematoma

expansion is associated with clinical outcomes of spontaneous

intracerebral hemorrhage. Though there is currently no

definitive therapeutic strategy for prevention of hematoma

expansion, we believe that the HE is an appealing target for

medical intervention, as it may ultimately help some patients

with intracerebral hemorrhages. The CTA spot sign is useful for

stratifying patient risk and providing appropriate treatment (3,

28). However, in most medical centers in China, immediate CTA

is not routinely performed, thus limiting the implementation of

spot signs. NCCT, which is cheaper and more convenient, is the

most commonly used method for diagnosing intracerebral

hemorrhage. Previous studies have reported that NCCT

biomarkers, including the blend sign, black hole sign, and

satellite sign, can be used to predict the risk of hematoma

expansion. According to Li et al. (29), the blend sign
FIGURE 3

Forest plot of radiomics model. CIs: confidence intervals; DAR:
diagnostic accuracy rate; NPV: negative predictive value; PPV:
positive predictive value; Se: sensitivity; Sp: specificity.
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D

A B

E F
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FIGURE 4

Network plot and SUCRA of biomarkers for ranking the accuracy of diagnosis. (A) The network plot of Bayesian network meta-analysis;
(B) sensitivity; (C) specificity; (D) positive predictive value; (E) negative predictive value; (F) diagnosis accuracy rate. SUCRA: Surface under the
cumulative ranking curve.
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(Figure 6A), which is defined as an area that has relatively low

attenuation adjacent to an area with high attenuation, showed

39.3% sensitivity and 95.5% specificity for predicting hematoma

growth. The black hole sign (Figure 6B), which represents a low-

density area within a hematoma with high density, is reported to

have sensitivity of 31.9% and specificity of 94.1% (30). One of the
Frontiers in Oncology 08
attributes of the satellite sign (Figure 6C) is shape irregularity. A

comparative study by Shakya (31) showed that the areas under

the curve for the black hole sign and the satellite sign were 63.4%

and 67%, respectively. The relatively low efficacy of the

predictive ability of a single NCCT biomarker restricts their

clinical utility. In contrast, the radiomics studies included in our

meta-analysis exhibited superior performance.

Compared to radiological markers, the radiomics method,

which is based on mathematical calculation, is a more stable

method to predict the risk of hematoma expansion (4, 32). The

definition of radiological markers can be inconsistent, which has

hindered clinical implementation of NCCT biomarkers. In this

regard, a degree of overlap exists between NCCT markers (33).

Moreover, the identification of radiological signs depends on the

reader’s experience. Our meta-analysis demonstrated that the

efficacy of NCCTmarkers was suboptimal for implementation in

clinical practice. Notably, radiomics features may quantitatively

reflect the corresponding NCCT biomarkers. Although a limited

number of studies was included, our results demonstrated that

the radiomics method outperformed radiological biomarkers for

predicting hematoma expansion.

Despite its potential, the radiomics method is relatively

novel, and non-standardized imaging protocols remain

commonplace. RQS was designed to measure the quality of

radiomics research (8, 34). The RQSs, which includes 16 items,

can be used to assess the quality of radiomics studies. Although

evolving rapidly, research applying radiomics must comply with

certain basic principles. For instance, data obtained from other

institutions is considered to be more independent and therefore

more reliable when compared to data obtained internally.

External validation of models is crucial for ensuring their

generalizability. Indeed, the lack of external validation is the

main factor for a low RQS (35). Standardization of high-quality

image-extracted data may be helpful for clinical decision support

systems (36, 37).

This study had several limitations. Meta-analysis had the

limitation of heterogeneity among studies included. Based on the

methods used for image reconstruction, feature extraction, and

algorithms used, there were considerable differences between the

included studies. Second, there was a limited number of eligible

studies in the meta-analysis, possible because the relative

improvement in performance of the radiomics method was

overestimated, and the radiological markers were understated.

Third, radiomics studies are generally of low quality, most lack

external validation, and promising results from radiomics

should be interpreted with caution. Higher-level evidence from

clinical trials is necessary for clinical implementation of

radiomics approaches.

In conclusion, our meta-analysis highlights the potential of

NCCT-based radiomics approaches to predict hematoma

expansion. In this regard, we recommend a radiomics
D

A

B

E

C

FIGURE 5

Network forest plot for biomarkers compared with radiomics
model. Crl: credible interval.
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approach over NCCT markers. Nevertheless, standardization of

radiomics approaches is necessary for further clinical

application, and further multicenter prospective studies with

stricter designs are warranted to verify our findings.
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