
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Dirk Geerts,
University of Amsterdam, Netherlands

REVIEWED BY

Shuai Liu,
University of Hawaii at Manoa,
United States
Lei Li,
University of Otago, New Zealand
Mohit Arora,
All India Institute of Medical Sciences,
India

*CORRESPONDENCE

Jing Lian
lianjing11171@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Breast Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 20 June 2022

ACCEPTED 07 September 2022
PUBLISHED 26 September 2022

CITATION

Li RQ, Wang W, Yan L, Song LY,
Guan X, Zhang W and Lian J (2022)
Identification of tumor antigens and
immune subtypes in breast cancer for
mRNA vaccine development.
Front. Oncol. 12:973712.
doi: 10.3389/fonc.2022.973712

COPYRIGHT

© 2022 Li, Wang, Yan, Song, Guan,
Zhang and Lian. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 26 September 2022

DOI 10.3389/fonc.2022.973712
Identification of tumor antigens
and immune subtypes in
breast cancer for mRNA
vaccine development

Ruo Qi Li1,2†, Wei Wang3† , Lei Yan4†, Li Ying Song5, Xin Guan6,
Wei Zhang7 and Jing Lian1*

1Department of Pathology,Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi
Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Taiyuan, China, 2General Surgery Department, Third Hospital
of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,
Taiyuan, China, 3Department of Urologic Surgery, Shanxi Medical University Second Affiliated
Hospital, Taiyuan, China, 4Department of Orthopaedic Surgery, Shanxi Medical University Second
Affiliated Hospital, Taiyuan, China, 5Thyroid Surgery Department, First Hospital of Shanxi Medical
University, Taiyuan, China, 6Cardiovascular Department, Third Hospital of Shanxi Medical University,
Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,
7Department of Urologic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
Background: Poor prognosis, resistance to chemotherapy, insensitivity to

radiotherapy, and a high prevalence of adverse drug reactions remain urgent

issues for breast cancer (BC) patients. Increased knowledge of tumor

immunobiology and vaccine development suggests the possibility of cancer

vaccination. Here, we investigated potential BC-associated antigens for the

development of an anti-BC mRNA vaccine and populations suitable for

mRNA vaccination.

Methods: Gene expression and clinical data were obtained from The Cancer

Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC). The single-cell sequencing data were obtained from

the Single Cell Portal platform. cBioPortal was used to visualize and compare

genetic alterations. Correlations between immune cell infiltration and antigen

expression were visualized with the Tumor Immune Estimation Resource

(TIMER). Immune subtypes were identified by consensus clustering and

analysis of immune infiltration. Biomarkers for the assessment of mRNA

vaccination suitability were investigated.

Results: Three tumor-associated antigens, CD74, IRF1, and PSME2, that

showed overexpression, amplification, and mutation and were linked with

prognosis and immune cell infiltration, were identified. Single-cell

sequencing analysis showed the expression of the three tumor-associated

antigens in different cells of BC. Three immune subtypes were identified among

BC patients, with Cluster B patients having a tumor microenvironment

conducive to immunotherapy. These subtypes also showed different

expression patterns of immune checkpoints, immune cell death-promoting
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.973712/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.973712/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.973712/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.973712/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.973712&domain=pdf&date_stamp=2022-09-26
mailto:lianjing11171@163.com
https://doi.org/10.3389/fonc.2022.973712
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.973712
https://www.frontiersin.org/journals/oncology


Li et al. 10.3389/fonc.2022.973712

Frontiers in Oncology
genes, and response to immune checkpoint inhibitor (ICI) therapy. Thus, we

identified five biomarkers that could be applied for assessing vaccination

suitability and predicted drugs that would be appropriate for patients

unsuited for vaccination.

Conclusions: Our findings suggest new directions for the development of

mRNA vaccines against breast cancer.
KEYWORDS

breast cancer, tumor antigen, immune subtypes, mRNA vaccine, tumor
immune infiltration
Introduction

Worldwide, the “pink killer” breast cancer (BC) represents

about 30% of cancers in women, with a high mortality (1). The

cost of surgery, hospitalization, loss of productivity, and

emotional trauma place a heavy burden on the patient’s

follow-up and treatment, as well as adding insecurity and

economic burden to society (2). There are multiple subtypes

of BC, classified according to their gene expression profiles.

Four subtypes , namely , luminal A and B, HER2-

overexpressing, and basal-like, are the best categorized (3).

Despite progress in early detection and treatment, leading to a

38% in mortality rate, many patients have a poor prognosis (4).

For example, the five-year survival rate for basal-like BC is

84%, with overall survival rates averaging only one year for

patients with stage IV disease, lower than other BC subtypes

(5). In addition, some patients do not respond to

chemotherapy or radiotherapy or may experience severe side

effects, including damage to the nervous system (6). It is thus

necessary to investigate and develop different treatments.

Cancer immunotherapy includes the use of monoclonal

antibodies (mAbs), cell therapies, lytic virus treatment, and

vaccination, amongst others, and offers great promise for the

treatment of a variety of tumor types (7). It is well-known that

the immune system plays a key role in BC (8). Antagonists

targeting the immune checkpoints CTLA-4 and programmed

cell death protein 1 (PD-1) and its ligand 1 (PD-L1) have

achieved satisfactory results in a large number of clinical trials

and appear to induce long-lasting responses that benefit overall

survival (OS) in BC (9). For example, treatment with the anti-

PD-1 mAb pembrolizumab resulted in an objective response rate

of 18.5% in 27 triple-negative BC (TNBC) patients previously

treated with chemotherapy (10). Besides, cancer vaccines are

becoming increasingly attractive to oncologists as an emerging

hotspot for BC immunotherapy.
02
The rationale behind tumor vaccines is the induction or

amplification of tumor-associated T cells that target and destroy

the tumor (11). The mRNA vaccines have several benefits over

other vaccine types, including ease of preparation, non-integration

into the host’s genome, and their possible destruction by cellular

RNases, which increase their overall safety (12). Recent research

has suggested the possibility of using mRNA vaccines to combat

several malignancies. The safety of the new mRNA vaccine has

been demonstrated in patients with metastatic gastrointestinal

(GI) cancer, where the presence of CD8+ and CD4+ neoantigen-

specific T cells stimulated by the vaccine were detected (13). A

recent preclinical study demonstrated the efficacy of an mRNA

vaccine targeting Trp2 that resulted in an antigen-specific T cell

response in melanoma (14). A phase I/II clinical trial of two

mRNA vaccines (CV-9103 and CV-9104) for prostate cancer

targeting four prostate-specific antigens (STEAP, PSCA, PSMA,

and PSA) produced good results (15). Combination

immunotherapy using an mRNA vaccine against MUC1 and an

anti-CTLA-4 mAb was found to be highly effective in comparison

with either the vaccine or the mAb alone in TNBC patients (16).

Although there are relatively few studies on the use of mRNA

vaccines against BC, the concept of immunization against BC-

specific tumor-associated antigens (TAAs) of BC is feasible and

worthy of investigation. However, none of the studies have

explored the possibility of immune mRNA vaccines in BC.

Here, a systematic analysis of BC sequencing data was

performed. Three TAAs that correlated with good patient

prognosis and tumor infiltration by antigen-presenting cells

were identified. This allowed the stratification of BC patients

into three immune categories based on differences in

molecular, cellular, and clinical characteristics. It is hoped

that these results will offer a valuable reference for the

further development and administration of cancer vaccines,

as well as for determining the optimal combination of

immunotherapies for specific patients.
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Methods

Data sources

Supplementary Figure S1 shows the workflow of the study.

Data on gene expression (fragments per kilobase million,

FPKM), patient prognosis, and clinicopathology were

obtained from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/). The final analysis included 1104

samples and the detailed clinical information on these 1104

patients was extracted (Supplementary Table S1). Additional

data on 1904 cases were obtained from the METABRIC

(Molecular Taxonomy of Breast Cancer International

Consortium) dataset in the cBioPortal database (http://www.

cbioportal.org/,version v4.1.5). The detailed clinical

information on these 1904 patients together with OS data are

shown in Supplementary Table S2. The summaries of the

sample compositions of the different clinical groups are

provided in Supplementary Table S3. The FPKM values from

the TCGA BC (TCGA-BRCA) cohort were converted to

transcripts per million (TPM) before normalization. The

mutect2-processed BC mutation dataset from TCGA was also

used and data on 1726 immune-associated genes, including

cytokines, interferons, interleukins, and TNFs together with

their respective receptors were downloaded from the

IMMPORT database (https://www.immport.org/shared/

genelists). Supplementary Table S4 lists the information on

the immune-related genes.
Single cell data collection and quality control
The single-cell sequencing data from three primary BCs

were obtained from the Single Cell Portal platform

(http://singlecell.broadinstitute.org) (accession number

EGAS00001005115). This dataset contained a total of 77,881

BC cells. A Seurat object was created using the “Seurat” package

V4.0 (https://satijalab.org/seurat) (17). Cells were further filtered

according to the following threshold parameters: the total

number of expressed genes, 200–9000; and proportion of

mitochondrial genes expressed<20%. The “NormalizeData”

function in Seurat was used to normalize the expression

matrix of single cells. The “FindVariableFeatures” function in

Seurat was used to find the top 2000 highly variable genes. The

expression levels of highly variable genes were scaled and

centered using the “ScaleData” function in order to exclude

the influence of mitochondrial genes. A total of 38,941 annotated

BC cells were obtained. These cells were renamed by annotated

information from the Single Cell Portal. Data were visualized in

two dimensions using the “uniform manifold approximation

and projection for dimension reduction” method (18).

“DimPlot” function is used to visualize the expression of

specific genes in different types of cells.
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Tumor antigen identification by
cBioPortal analysis

The cBioPortal for Cancer Genomics (http://www.

cbioportal.org) is an online tool for the integration of raw data

from large studies on a variety of cancers (19). cBioPortal was

used for the exploration, visualization, and analysis of genetic

alterations in BC antigens together with multidimensional

cancer genomic data. Both mutated genes and amplified genes

in BC were obtained from cBioPortal, and the genes are

displayed in Supplementary Table S4.
TIMER analysis

The Tumor Immunization Estimation Resource (TIMER,

https://cistrome.shinyapps.io/timer/) analyzes immune

infiltration data in various tumor types (20). TIMER was used

here to determine the relationships between infiltration and

tumor-associated antigen expression. Correlations were

determined by Spearman’s analysis with Purity Adjustment

and P-values < 0.05.
Identification of immunophenotyping in
BC patients

Information on the expression patterns of 1726 immune-

associated genes was obtained from the TCGA-BRCA and

METABRIC cohorts. According to the gene expression of the

OS-related immune gene profiles, the “ConsensusClusterPlus” R

package was used for the separation of immune subtypes to find

populations suited for vaccination (21). The clustering algorithm

used the k-means of Euclidean distance with 50 sub-samplings,

each resampling using 80% of the complete sample population,

and nine maximum clusters. The optimal K was calculated by

the elbow method and ensured that the patient numbers in the

individual clusters exceeded 100. The R package “Rtsne” was

applied for t-distributed stochastic neighbor embedding (t-SNE)

to reduce the data dimensionality and to determine sample

distributions after clustering (22). Survival was compared

between the clusters using the “survival” R package and the

“pheatmap” package (https://CRAN.R-project.org/package=

pheatmap) was used for the creation of heatmaps for clinically

relevant antigens to illustrate the differences in expression

between the populations.
Gene set variation analysis

Gene set variation analysis (GSVA) was used to investigate

the relationships between immune subtype and biological
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process, using the “GSVA” package in R (23). Functional

annotation was performed with “clusterProfiler” and the gene

set file (c2.cp.kegg.v7.2.symbols.gmt) was obtained from the

MSigDB database (https://www.gsea-msigdb.org) (24, 25).
Analysis of the tumor infiltration
microenvironment

Single-sample gene-set enrichment analysis (ssGSEA) was

used to determine the relative abundance of different immune

cell types infiltrating the tumor microenvironment (TME) (26).

The ImmuneScore, StromalScore, ESTIMATEScore, and

TumorPurity were determined by the “ESTIMATE” package. In

addition, CIBERSORT was used to calculate the fractions of 22

immune cell types in individual samples (27). Information on

immune checkpoint (ICP) and immune cell death (ICD)-

modulating genes were acquired from previous publications (12).
Predicted responses to immunotherapy
in the three clusters

Immunotherapy responses were predicted using the Tumor

Immune Dysfunction and Exclusion (TIDE) online tool (http://

tide.dfci.harvard.edu/) (28). A higher TIDE prediction score

represents a greater potential for immune evasion and suggests

that the patient is less likely to benefit from immune checkpoint

inhibitor (ICI) therapy (28). We used TIDE to evaluate the

potential clinical efficacy of immunotherapy in the

different clusters.
Mutation identification

Visualization of gene mutation patterns in the clusters was

performed with the “maftool” R package which also calculated

the tumor mutation burden and mutation numbers in individual

samples (29). Additionally, a set of tumor driver genes for BC

were extracted from the NCG database (http://ncg.kcl.ac.uk/

index.php). The Human Genome Assembly GRCh38 was

utilized as the reference genome (https://www.ncbi.nlm.nih.

gov/grc/human/data?asm=GRCh38). Mutations with q-values

< 0.05 were considered significant, and mutated driver genes

were mapped to chromosomes with the “RCircos” R

package (30).
Weighted gene co-expression
network analysis

The Weighted Gene Co-expression Network Analysis

(WGCNA) was carried out using the “WGCNA” package in R
Frontiers in Oncology 04
and normalized immune-related gene expression (31). There

were no outlying samples discovered after clustering the

samples. Thus, the subsequent analysis included all the

samples. Pearson correlation coefficients between genes were

calculated and applied for the creation of a similarity matrix. The

representation matrix was converted to an adjacent and then to a

topological matrix. At least 30 genes were included in each

module. Eight modules were identified after placement of the

soft threshold at three. Links between the modules and the

cluster categories were determined and, finally, the “turquoise”

module was considered to have a significant association with the

vaccination-suitable population. GO and KEGG functional

enrichment of the genes in the “turquoise” module were also

assessed with the “Clusterprolifer” package.
Biomarkers with the Potential to Assess
Prognosis after mRNA Vaccination

ROC curves, plotted by the “timeROC” package (https://

CRAN.R-project.org/package=timeROC), were used to assess

the associations with all genes and prognosis. Genes with area

under the curve (AUC) values larger than 0.75 at one and three

years, and those with AUCs greater than 0.70 at five years, were

considered to be potential biomarkers.
Anti-cancer drug sensitivity analyses

The sensitivities of 21 documented anti-BC chemotherapeutic

agents in the different treatment clusters were assessed with the R

package “pRRophetic” and the Genomics of Drug Sensitivity in

Cancer (GDSC) database (32, 33).
Results

Exploring potential tumor antigens of BC

TAAs incorporated into mRNA vaccines should have higher

expression in tumors compared with normal tissue (34). In

addition, tumors carrying large numbers of mutated TAAs tend

to be more susceptible to ICP blockade (35). Therefore, analysis

of the tumor mutation profile of individual patients is necessary

to generate personalized BC vaccines with high potency. In the

initial evaluation of potential TAAs, 18 309 abnormally

expressed genes were identified, of which 8824 were

upregulated and 9485 were downregulated (Figure 1A). An

investigation of the copy numbers of the abnormally expressed

genes that were likely to encode TAAs (Figure 1B). The 16 491

mutated genes and the 21 644 amplified genes are listed in

Supplementary Table S4. Next, frequently mutated genes that
frontiersin.org
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may encode tumor-specific antigens were selected by analyzing

the altered genome fraction and mutation counts in each sample.

Most BC patients showed relatively high fraction-of-genome

alterations and mutation counts (Figures 1C, E) indicating that

BC has high immunogenicity. It was also found that tumor

protein p53 (TP53) and Phosphatidylinositol-4,5-Bisphosphate

3-Kinase Catalytic Subunit Alpha (PIK3CA) had the highest

number of mutations determined by both altered genome

fractions and mutation counts (Figures 1D, F). In addition to

TP53 and PIK3CA, other genes including POU Class 5

Homeobox 1B, Transcriptional Repressor GATA Binding 1,

Ryanodine Receptor 2, Cancer Susceptibility 8, Colon Cancer

Associated Transcript 2, CUB and Sushi Multiple Domains 3,

MYC Proto-Oncogene, and Solute Carrier Family 30 Member 8

also showed high degrees of change in the altered genome
Frontiers in Oncology 05
fraction category (Figure 1D) while the 10 top-scoring genes

in the mutation-count category were Titin, CUB and Sushi

Multiple Domains 3, POU Class 5 Homeobox 1B, Tribbles

Pseudokinase 1, Cancer Susceptibility 8, MYC Proto-

Oncogene, Colon Cancer-Associated Transcript 2, and Pvt1

Oncogene (Figure 1F). Taken together, 4986 upregulated and

frequently mutated tumor-associated genes were identified.
Identification of TAAs linked to prognosis
and antigen-presenting cells

The identified genes were then evaluated for their relationships

with prognosis. This showed that 415 genes were closely associated

with BC OS, of which 107 were linked with disease-free survival
B

C D

E F

A

FIGURE 1

Potential BC tumor-associated antigens. (A) Chromosomal locations of differentially expressed genes. (B) Chromosomal locations of genes with
aberrant copy numbers. (C-F) Potential tumor-associated antigens. Overlap between mutated genes in the genome fraction altered group
(C) and the mutation count group (E). Top genes in the genome fraction altered group (D) and mutation count group (F). * P<0.05
frontiersin.org

https://doi.org/10.3389/fonc.2022.973712
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.973712
(DFS). After analysis of the genes’ overlap with 1726 immune-

related genes, three specific TAAs, namely, CD74Molecule (CD74),

Interferon Regulatory Factor 1 (IRF1), and Proteasome Activator

Subunit 2 were identified (PSME2) (Figure 2A). Patients with

higher levels of tumor-associated CD74 had significantly better

outcomes in comparison with those with lower levels and high

levels of IRF1 and PSME2 were also linked with better prognosis

(Figures 2B–G). Importantly, the expression levels of CD74

(Figure 2H), IRF1 (Figure 2I), and PSME2 (Figure 2J) were

positively associated with the levels of most immune cells, such as

B cells, CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells

(DCs). Thus, three specific TAAs (CD74, IRF1, and PSME2) were

found to be potential vaccine candidates. As these TAAs appear able

to stimulate immune activity, they could be processed and

presented by antigen-presenting cells to provoke an anti-tumor

response. We next explored the expression of CD74, IRF1 and

PSME2 in 17 cell types based on single-cell sequencing analysis and

visualized the results (Figure 3A). The results showed that CD74

expression was relatively high in B cells, monocytes/macrophages

and pre-dendritic cells (pDCs), IRF1 expression was relatively high

in endothelial cells, myoepithelial cells, and Cancer-associated

fibroblasts (CAFs) and PSME2 expression was relatively high in

monocytes/macrophages, cycling monocytes/macrophages, cycling

T cells and conventional dendritic cells (cDCs) (Figure 3B).
Identification of potential BC
immune subtypes

Immunotyping is useful as it reflects the immune status of

the tumor and the TME and can thus assist the identification of

suitable candidates for vaccination. A total of 1726 immune gene

profiles were extracted and subjected to univariate Cox

regression analysis, with P<0.05 being chosen as the threshold

for screening. Ultimately 281 genes associated with OS were

screened for subsequent analysis (Supplementary Table S5). The

ability of these 281 genes to predict recurrence-free survival

(RFS), disease free interval (DFI), and progression free interval

(PFI) is also shown in Supplementary Table S5. The results

showed that most of the screened genes also had the ability to

predict RFS, DFI and PFI. Additional enrichment analyses were

performed to examine their physiological roles. A consensus

cluster was then constructed using the prognosis-related profiles

of immune genes. The classifier model was most stable when k

was set to 3 (Figures 3C-D, Supplementary Figure S2).

Ultimately, three immune subtypes (Clusters A, B, and C)

were obtained with the least within-group minimum variance

and between-group maximum variance values (Figure 3E). The

patient classifications and clinical characteristics of the clusters

are also summarized in Supplementary Tables S6 and S7. After t-

SNE analysis to reduce the dimensionality of the data, it was
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found that the three clusters differed significantly (Figure 3F)

with Cluster B showing the best prognosis (Figure 3G). This

suggested that the BC TME influenced prognosis and verified

both the reproducibility and stability of the results. Notably,

CD74, IRF1, and PSME2 were strongly expressed in Cluster B

(Figure 3H). These findings indicate that Cluster B patients may

recruit more immune cells to fight cancer than the rest of the

population. This also suggests that Cluster B patients would be

likely to benefit from an mRNA vaccine directed against these

TAAs. Further analysis of the distribution of patients with

different BC molecular subtypes indicated irregular clustering

(Figure 3I). Both the basal and HER2 subtypes were more

common in Cluster B, suggesting patients with these subtypes

were more likely to benefit from immunotherapy, consistent

with clinical findings (36, 37). Cluster B also showed enrichment

in numerous immune-associated pathways, as shown by the

GSVA results (Figures 3J–3L). Thus, immunotyping is effective

for prognostic prediction in BC and it is likely that mRNA

vaccines directed against the three identified TAAs may be more

effective in patients with basal-like and HER2 BC.
TME characteristics in relation to
immune cluster

The different proportions of immune cells associated with

TMEs fell into 28 signatures, shown by ssGSEA analysis

(Figure 4A). Cluster B had a greater abundance of innate

immune cells, including B cells, CD4 +T cells, CD8+ T cells,

eosinophils, macrophages, MDSCs, mast cells, and T helper

cells (Figure 4A). CIBERSORT analysis indicated greater

numbers of cytotoxic immune cells (native B cells and CD8

T cells) but fewer immunosuppressive regulatory immune cells

(macrophage M0 and macrophage M2 cells) in Cluster B

(Figure 4B). The immune and stromal scores obtained by

ESTIMATE (Figures 4C–F) indicated that these were higher

in Cluster B, while the tumor purity was lower in this cluster,

suggesting higher numbers of tumor-infiltrating immune cells.

These findings suggest that Cluster B may contain “hot”

immune subtypes, with Cluster C probably is in an

intermediate state, and Cluster A may be immunologically

“cold”. An earlier study by Thorsson et al. proposed six

immune categories (C1-C6) based on an analysis of over

1000 samples from 33 cancers (38). The immune subtypes

identified here are also comparable to previously described

pan-cancer immune subtypes (Supplementary Figure S3). The

individual immune categories varied considerably in their

proportions in the three subtypes. For example, C1 (wound

healing) was predominantly concentrated in Cluster A and C,

whereas C2 (IFN-r) was predominantly concentrated in

Cluster B. C4 (immune-quiet) was not present in the Cluster
frontiersin.org

https://doi.org/10.3389/fonc.2022.973712
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.973712
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E F G

H

I

J

A

FIGURE 2

Relationships of tumor-associated antigens with prognosis and immune cells. (A) Selection of tumor-associated antigens, based on
amplification, mutation, and overexpression (from a total of 4986 candidates), and immune-related genes significantly associated with OS and
DFS (total of three candidates). (B-D) Kaplan-Meier OS curves for groups with different levels of CD74 (B), IRF1 (C), and PSME2 (D). (E)
Relationships between CD74 levels and the immune cell proportions and numbers of B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells. (E-G) Kaplan-Meier DFS curves for groups with different levels of CD74 (E), IRF1 (F), and PSME2 (G). (H)
Relationship between CD74 levels and immune cell proportions and numbers of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils,
and dendritic cells. (I) Relationship between IRF1 levels and immune cell proportions and numbers of B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells in BC. (J) Relationships between PSME2 levels and the immune cell proportions and numbers of B
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells.
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B population, suggesting that the C4 immune category may be

less sensitive to RNA vaccines, thus complementing previous

findings. Both ICPs and ICD modulators play vital roles in

controlling the immune response to the tumor as well as

minimizing damage. The differential expression of these

genes in the three subtypes (Figures 4G, H) showed that they
Frontiers in Oncology 08
were expressed strongly in Cluster B, a further indication that

these patients may respond well to mRNA vaccines. Figure 4I

shows the comparative levels of the most commonly used

biomarkers in the clusters, indicating significant differences

and suggesting that suitable vaccination candidates may be

identified by the presence of these biomarkers.
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FIGURE 3

Single-cell transcriptomic profiles from 17 cell subtypes from 3 BC patients and immune clusters of BC patients in the TCGA cohort. (A) 2d
visualization of 17 cell subtypes in 3 BC patients on the UMAP plot. (B) the expression of CD74, IRF1, PSME2 in 17 cell types was visualized by
bubble plot. (C-E) Three clusters of patients in the TCGA cohort divided according to levels of prognostic immune-related genes. (F) t-
distributed stochastic neighbor embedding (t-SNE) analysis of distributions in the clusters. (G) Survival analysis in the clusters. (H) Heatmap of
tumor antigen expression and clinical parameters. (I) Distribution of immune clusters in patients with different subtypes. (J-L) GSVA enrichment
analysis showing pathway activation in the clusters. Red color in the heatmap presents pathway activation and blue color represents
pathway inhibition.
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Predicted responses to ICI therapy in the
three clusters

We used the TIDE online tool for predicting the response to

immunotherapy in the three clusters in the TCGA-BRCA and

METABRIC cohorts and found that the tumor immune

dysfunction scores for patients in Cluster B were significantly

higher (Supplementary Figure S4), indicating that they may be

less sensitive to immune checkpoint blockade.
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Relationships between the immune
clusters and the tumor mutation burden

It has been found that patients with high tumor mutation

burdens (TMBs) may respond well to immunotherapies due

to the presence of numerous neoantigens (39). Elevated TMB

values and somatic mutation rates have been linked with

increased anti-tumor responses (40). Here, the TMB and

numbers of mutated genes were determined for individual
B
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G

H I

A

FIGURE 4

Immune cell infiltration in the different clusters. (A) Boxplot showing immune cell infiltration, shown by ssGSEA enrichment. (B) Boxplot showing
immune cell infiltration, shown by CIBERSORT. (C-F) Immune-stromal scores and tumor purity of patients in the clusters, determined by
ESTIMATE. (G) Expression of immune checkpoints in the clusters. (H) Expression of immunogenic cell death modulators in the clusters.
(I) Comparison of breast cancer biomarkers between the immune clusters. "*" represents that p-value <0.05; "**" represents that p-value <0.01,
and "***" represents that p-value <0.001
frontiersin.org

https://doi.org/10.3389/fonc.2022.973712
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.973712
patients using the mutect2- processed TCGA mutation

dataset in relation to the immune subtypes. The waterfall

plot (Figure 5A) shows the 20 most commonly mutated

immune-associated genes (Figure 5A). Both the TMB

(Figure 5B) and the mutated gene numbers (Figure 5D)

differed significantly among the three clusters, with Cluster

B showing significantly elevated TMB values in comparison

with Clusters A and C. This suggests that high TMB is linked

to vaccination suitability. Subsequently, a set of tumor-driver
Frontiers in Oncology 10
genes for BC was extracted from the NCG database, and we

evaluated the top 20 tumor-driver genes with the highest

mutation frequencies in the three clusters and determined

their chromosomal locations (Figures 5C, E). Copy number

variations were raised in FLG, PIK3CA, USH2A, GATA3,

CACNA1E, NF1, RUNX1, and AKT1, while reduced copy

number variations were seen in KMT2C, KMT2D, CDH1,

PTEN, TBX3, NCOR1, MAP3K1, ARID1A, SPEN, TP53,

PIK3R1, and MAP2K4 (Figure 5F).
B
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FIGURE 5

Gene mutation landscapes in the clusters. (A) Top 20 mutated genes in all clusters. (B) Tumor mutation burdens. (C) Top 20 mutated tumor-
driver genes. (D) Tumor mutation burdens. (E) Chromosomal localizations of mutated tumor-driver genes. (F) CNV changes in mutated tumor-
driver genes. Red dots represent increased CNV; green dots represent decreased CNV.
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Validation of potential immune subtypes
and properties of BC

We performed validation in the METABRIC cohort,

constructing a consensus cluster in the same manner as the

analysis in the TCGA cohort. The classifier model was most

stable when k=3 (Figures 6A–C, Supplementary Figure S5).
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Information on patient classifications and cl inical

characteristics in the three clusters is also summarized in

Supplementary Tables S7 and S8. After t-SNE analysis to

reduce the dimensionality of the data, it was found that the

three clusters differed significantly (Supplementary Figure S6).

At this point, the intra-cluster variance was the smallest and the

inter-cluster variance was the largest. Cluster B was also linked
B C
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FIGURE 6

Cluster validation in the METABRIC cohort. (A-C) Cluster division based on levels of prognostic immune-related genes. (D) Survival analysis.
(E) Boxplot showing immune cell infiltration, shown by ssGSEA enrichment. (F-I) Immune-stromal scores and tumor purity in the clusters,
shown by ESTIMATE. (J) Heatmap of tumor antigen expression and clinical parameters. (K) Distribution of immune clusters in patients with
different subtypes. (L) Boxplot of immune cell infiltration levels, determined by ssGSEA. "*" represents that p-value <0.05; "**" represents that p-
value <0.01, and "***" represents that p-value <0.001.
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to a better prognosis (Figure 6D). Twenty-eight immune

characteristics were identified in the METABRIC cohort by

ssGSEA, showing higher levels of immune infiltration in

Cluster B (Figure 6E). The ESTIMATE immune and stromal

scores for the clusters in the METABRIC cohort are shown in

Figure 6F–I, indicating higher scores and lower tumor purity in

Cluster B and thus a higher degree of immune cell infiltration.

Interestingly, CD74, IRF1, and PSME2 were also strongly

expressed in Cluster B (Figure 6J). This strongly suggested that

Cluster B was more suitable for tumor mRNA vaccination. The

distribution of the BC pathological subtypes in the three clusters

also revealed that both the basal-like and HER2-overexpressing

subtypes were more strongly represented in Cluster B

(Figure 6K). Finally, the identification of the 28 immune

signatures of the different subtypes in the TCGA cohort by the

ssGSEA approach indicated that both the basal-like and HER2-

overexpressing subtypes had relatively high numbers of immune

cells (Figure 6L). In summary, the immunophenotyping was

confirmed. Cluster B still had an active immune status and high

TAA levels and was more suitable for mRNA vaccination

targeting CD74, IRF1, PSME2. Furthermore, we suggest that

basal-like and HER2-overexpressing BC patients may be more

suited for mRNA vaccine therapy.
Identification of a co-expression module
of immune genes and prognostic
biomarker in BC

Immune-associated genes were clustered using the WGCNA

algorithm using the scale-free fit index and average connectivity

and “three” selected as the soft threshold power (Figure 7A–C).

The representation matrix was converted to an adjacent and

then to a topological matrix. At least 30 genes were included in

each network using average-linkage hierarchy clustering and the

hybrid dynamic shear tree standard. After computation of the

eigengenes for each module, the close modules were

incorporated into a new module (deep split = 4 and min

module size = 30) (Figure 7D). This led to the identification of

eight modules in all immune-associated genes, with the gene

numbers per module shown in Figure 7E. Examination of the

associations between the modules and phenotypes showed a

significant association between the “turquoise” module and

Cluster B (suitable for vaccination) (Figure 7F). In addition,

patients with higher scores of genes in the “turquoise” module

survived longer than those with lower scores in the TCGA

cohort (Figure 7G). GO and KEGG analyses showed that the

genes in the turquoise module were strongly linked with

immune activation and molecular processes of inflammation

(Figures 7H, I). Further, we investigated the ability of all the

genes for predicting prognosis in the Cluster B population

(Supplementary Table S9). Finally, we identified five genes

(ABCG4, MYO1E, REXO2, USP41, and VTA1P1) that showed
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good predictive power, having AUC values larger than 0.75 at

one and three years, and greater than 0.70 at five years

(Supplementary Figure S7) suggesting that these genes could

be used as biomarkers after mRNA vaccination.
Association of immune clusters with
anti-cancer drug sensitivity

To examine the potential efficacies of treatments for patients

in clusters that are unsuited for mRNA vaccination, we evaluated

the sensitivities of patients in the different clusters to various

chemotherapy drugs. Interestingly, we found that the patients in

the Cluster B had lower IC50 values for paclitaxel, rapamycin,

sunitinib, bosutinib, dasatinib, and gefitinib (Figures 8A–E),

while the IC50 values of drugs such as lapatinib, AKT

inhibitor VIII, imatinib, sorafenib, CCT007093, and

bicalutamide were significantly lower in patients in Clusters A

and C (Figures 8F–L). These differences in drug sensitivity

between the clusters are reflections of tumor heterogeneity and

suggest the importance of individualized treatment.
Discussion

Over the past few decades, major technological innovations

have enabled the use of mRNA as a more feasible vaccine

candidate. For example, various modifications of the mRNA

backbone and untranslated regions make the mRNA less

sensitive to RNases, more stable, and highly translatable (41).

In addition, optimization of the mRNA delivery systems has

enhanced the ability of the vaccines to initiate an effective

immune response (41). These factors, together with the

progress in scale-up production, suggest that mRNA vaccines

have significant advantages. Currently, there are numerous

preclinical and clinical trials on mRNA cancer vaccines and

the results show impressive efficacy (42–44). However, the

clinical translation process is still limited by difficulties in

antigen prediction and poor immunogenicity. One of the

major obstacles to the development of effective cancer vaccines

remains the difficulty of antigen selection (41).

Several features are required in an ideal antigen. The first of

these is immunogenicity, that is, it needs to be capable of

eliciting responses by T and B cells. This requires the

processing and presentation of the antigen by major

histocompatibility complex (MHC; also known as human

leukocyte antigen, HLA, in humans) molecules on the cell

surface (45). TAAs should also be specific to the tumor and

present in significant amounts within the tumor (39). Of course,

the dimensionality and variability of tumor antigens need to be

taken into account.

Based on these properties, we first used BC gene expression

profiles to identify potential antigens for mRNA vaccine
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formulation. We developed BC overexpression and mutation

profiles and identified three promising mRNA vaccine

candidates, namely CD74, IRF1, and PSME2. Elevated

expression of these genes was not only associated with poor

prognosis but also with greater infiltration of antigen-presenting

cells and B cells. Immune subtype analysis showed the presence

of a specific patient group that would be most likely to benefit

from vaccination. This group showed a high degree of immune

cell infiltration, together with elevated expression of ICPs and
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ICD modulators, as well as high TMBs. WGCNA identification

of the characteristic gene modules in this group showed that

ABCG4, MYO1E, REXO2, USP41, and VTA1P1 were useful

biomarkers that could be used to assess vaccination response.

Drug susceptibility analysis in patient populations unsuited for

vaccination indicated the importance of individualized therapy.

While further verification of these vaccine candidates is required,

our findings on their potential for vaccine development are

substantiated by previous studies.
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FIGURE 7

Immune gene co-expression modules. (A-D) Co-expression network of immune-associated genes. (E) Dot plot of co-expression modules.
(F) Correlations between modules and immune clusters. (G) Survival analysis of patients with high and low scores for genes in the “turquoise”
module. (H) GO analysis of genes in the “turquoise” module. (I) KEGG analysis of genes in the “turquoise” module.
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CD74 has a dual role both as a part of the MHCII-like antigen

presentation pathway and as a homologous receptor for

macrophage migration inhibitory factor (MIF) (46). CD74 levels

have been found to be linked with improved prognosis in invasive

basal-like BC, possibly due to raised MHCII levels in tumor cells

and greater numbers of tumor-infiltrating lymphocytes (47).

CD74 knockdown has been found to reduce BC cell

proliferation and increase apoptosis (48). Here, positive

correlations were observed between CD74 and antigen-

presenting cell infiltration, and single-cell sequencing analysis

revealed that CD74 is highly expressed mainly in B cells,
Frontiers in Oncology 14
monocytes/macrophages, and pDCs of BC. Other studies have

also found CD74 is expressed in BC circulating tumor cells (49).

These findings suggest that CD74 may agitate immune cells

surrounding BC to achieve anti-tumor responses, indicating its

potential as a TAA vaccine candidate. Interferon regulatory factor

(IRF)-1 is a transcription factor involved in innate and adaptive

immunity. Deletions of the IRF1 locus at 5q31.1 has been

observed in 50% of BRCA1-positive tumors (50). Surprisingly,

while IRF-1 causes growth inhibition and cell death in BC cells by

down-regulating molecules involved in the NF-kB pathway, the

same effect was not observed in non-malignant human breast
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FIGURE 8

Anticancer drug sensitivities of patients in the different clusters. (A-L) IC50 values of anticancer drugs.
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cells, reflecting the specificity of IRF1 (51). Moreover, IRF-1 binds

to TNF-related apoptosis-inducing ligand (TRAIL) promoter,

enhancing TRAIL-mediated killing of cancer cells. This action is

not seen in normal cells, which ensures the safety of the vaccine to

a certain extent (52). The IRF1/autophagy-related gene−7 (ATG7)

signaling pathway is also key to tamoxifen resistance in estrogen

receptor-positive (ER+) breast tumors (53). Combining endocrine

therapy with compounds that effectively induce IRF1 expression

in vitro is effective in reducing resistance to endocrine therapy in

ER+ BCs (54). Of note, our single-cell sequencing analysis

revealed that IRF1 was highly expressed mainly on endothelial

cells, myoepithelial cells, and cancer-associated fibroblasts, while

relatively low expression was observed in cancer cells and

peripheral immune cells. Therefore, subsequent experimental

studies are still necessary to determine whether IRF1 can be

used as an mRNA vaccine. The PSME2 gene encodes

Proteasome Activator Subunit 2 (PA28b), which is a subunit of

PA28. PA28b expression is low in immature DCs and is strongly

increased in mature DCs. Induction of PA28b expression not only
enhances proteasome activity in activated DCs but also activates

proteases that generate antigenic peptides presented byMHC class

I molecules (55). And the result of our single-cell sequencing

analysis supported the above conclusion that PSME2 was highly

expressed in conventional dendritic cells of BC. This suggests that

PSME2may be involved in antigen processing and presentation in

the BC tumor microenvironment. PSME2, although little studied

in BC, has been found to have anticancer effects in a variety of

cancers. PSME2 inhibits the growth, proliferation, and

malignancy of esophageal squamous cell carcinoma cells and is

considered a potential tumor suppressor (56). Knockdown of

PSME2 is involved in the invasion and metastasis of gastric

adenocarcinoma through upregulation of the chloride

intracellular channel 1 (CLIC1) (57).

Our findings suggest new directions for the development of

mRNA vaccines against BC, CD74, IRF1, and PSME2 were found

to be promising antigens, and patients in the immune Cluster B

were found to be better suited for vaccination. Nevertheless, there

are still some limitations. For one, this work was based on

retrospective data from publically available databases, and may

thus be subject to selection bias. Furthermore, whether the

expression of the identified potential antigen in tumor

infiltrating immune cells has an impact on the efficacy of the

vaccine still needs to be verified by subsequent experiments.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Frontiers in Oncology 15
Author contributions

All authors contributed to the study conception and

design. Collection and assembly of data were performed by

RL, WW, and XG. The first draft of the manuscript was

written by RL and LS. Manuscript revision was performed by

LY, and JL and all authors commented on previous versions

of the manuscript. Interactive review was performed by RL,

LY, WZ, and JL. All authors read and approved the

final manuscript.
Funding

This work was supported by grants from the Shanxi

Provincial Health Commission (2020065) and Shanxi Province

Science Foundation for Youths, China [202103021223445].
Acknowledgments

We thank the TCGA and METABRIC databases for the

availability of the data.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.973712/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.973712/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.973712/full#supplementary-material
https://doi.org/10.3389/fonc.2022.973712
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.973712
References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin
(2020) 70(1):7–30. doi: 10.3322/caac.21590

2. Singleton AC, Raeside R, Hyun KK, Partridge SR, Di Tanna GL, Hafiz N, et al.
Electronic health interventions for patients with breast cancer: Systematic review
and meta-analyses. J Clin Oncol (2022) 40(20):2257–70, Jco2101171. doi: 10.1200/
jco.21.01171

3. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H.
Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol (2010)
28(10):1684–91. doi: 10.1200/jco.2009.24.9284

4. Emens LA. Breast cancer immunotherapy: Facts and hopes. Clin Cancer Res
(2018) 24(3):511–20. doi: 10.1158/1078-0432.Ccr-16-3001

5. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, et al.
Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan
(Immu-132) in heavily pretreated patients with metastatic triple-negative breast
cancer. J Clin Oncol (2017) 35(19):2141–8. doi: 10.1200/jco.2016.70.8297

6. Waks AG, Winer EP. Breast cancer treatment: A review. Jama (2019) 321
(3):288–300. doi: 10.1001/jama.2018.19323

7. Miliotou AN, Papadopoulou LC. Car T-cell therapy: A new era in cancer
immunotherapy. Curr Pharm Biotechnol (2018) 19(1):5–18. doi: 10.2174/
1389201019666180418095526

8. Emens LA. Breast cancer immunobiology driving immunotherapy: Vaccines
and immune checkpoint blockade. Expert Rev Anticancer Ther (2012) 12(12):1597–
611. doi: 10.1586/era.12.147

9. Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and
the immune system: Challenges for prognosis and clinical benefit from
immunotherapies. Semin Cancer Biol (2021) 72:76–89. doi: 10.1016/
j.semcancer.2019.12.018

10. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al.
Pembrolizumab in patients with advanced triple-negative breast cancer: Phase ib
keynote-012 study. J Clin Oncol (2016) 34(21):2460–7. doi: 10.1200/
jco.2015.64.8931

11. Basu A, Ramamoorthi G, Jia Y, Faughn J, Wiener D, Awshah S, et al.
Immunotherapy in breast cancer: Current status and future directions. Adv Cancer
Res (2019) 143:295–349. doi: 10.1016/bs.acr.2019.03.006

12. Huang X, Tang T, Zhang G, Liang T. Identification of tumor antigens and
immune subtypes of cholangiocarcinoma for mrna vaccine development. Mol
Cancer (2021) 20(1):50. doi: 10.1186/s12943-021-01342-6

13. Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, et al. Mrna
vaccine-induced neoantigen-specific T cell immunity in patients with
gastrointestinal cancer. J Clin Invest (2020) 130(11):5976–88. doi: 10.1172/
jci134915

14. Wang Y, Zhang L, Xu Z, Miao L, Huang L. Mrna vaccine with antigen-
specific checkpoint blockade induces an enhanced immune response against
established melanoma. Mol Ther (2018) 26(2):420–34. doi: 10.1016/
j.ymthe.2017.11.009

15. Rausch S, Schwentner C, Stenzl A, Bedke J. Mrna vaccine Cv9103 and
Cv9104 for the treatment of prostate cancer. Hum Vaccin. Immunother (2014) 10
(11):3146–52. doi: 10.4161/hv.29553

16. Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination
immunotherapy of Muc1 mrna nano-vaccine and ctla-4 blockade effectively
inhibits growth of triple negative breast cancer. Mol Ther (2018) 26(1):45–55.
doi: 10.1016/j.ymthe.2017.10.020

17. Hao Y, Hao S, Andersen-Nissen E, Mauck WM3rd, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell (2021) 184(13):3573–87.e29.
doi: 10.1016/j.cell.2021.04.048

18. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al.
Dimensionality reduction for visualizing single-cell data using umap. Nat
Biotechnol (2018) 37:38–44. doi: 10.1038/nbt.4314

19. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The
cbio cancer genomics portal: An open platform for exploring multidimensional
cancer genomics data. Cancer Discovery (2012) 2(5):401–4. doi: 10.1158/2159-
8290.Cd-12-0095

20. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. Timer2.0 for analysis of
tumor-infiltrating immune cells. Nucleic Acids Res (2020) 48(W1):W509–w14.
doi: 10.1093/nar/gkaa407

21. Wilkerson MD, Hayes DN. Consensusclusterplus: A class discovery tool
with confidence assessments and item tracking. Bioinformatics (2010) 22(13):6993.
doi: 10.1093/bioinformatics/btq170

22. Aliverti E, Tilson JL, Filer DL, Babcock B, Colaneri A, Ocasio J, et al.
Projected T-sne for batch correction. Bioinformatics (2020) 36(11):3522–7.
doi: 10.1093/bioinformatics/btaa189
Frontiers in Oncology 16
23. Hänzelmann S, Castelo R, Guinney J. Gsva: Gene set variation analysis for
microarray and rna-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-14-7
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