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Improving radiomic model
reliability using robust features
from perturbations for
head-and-neck carcinoma
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Victor Ho-fun Lee3, Amy Tien Yee Chang4 and Jing Cai1*

1Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong,
Hong Kong SAR, China, 2Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong
Kong SAR, China, 3Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong
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Background: Using high robust radiomic features in modeling is

recommended, yet its impact on radiomic model is unclear. This study

evaluated the radiomic model’s robustness and generalizability after

screening out low-robust features before radiomic modeling. The results

were validated with four datasets and two clinically relevant tasks.

Materials and methods: A total of 1,419 head-and-neck cancer patients’

computed tomography images, gross tumor volume segmentation, and

clinically relevant outcomes (distant metastasis and local-regional recurrence)

were collected from four publicly available datasets. The perturbation method

was implemented to simulate images, and the radiomic feature robustness was

quantified using intra-class correlation of coefficient (ICC). Three radiomic

models were built using all features (ICC > 0), good-robust features (ICC >

0.75), and excellent-robust features (ICC > 0.95), respectively. A filter-based

feature selection and Ridge classification method were used to construct the

radiomic models. Model performance was assessed with both robustness and

generalizability. The robustness of the model was evaluated by the ICC, and the

generalizability of the model was quantified by the train-test difference of Area

Under the Receiver Operating Characteristic Curve (AUC).

Results: The average model robustness ICC improved significantly from 0.65 to

0.78 (P< 0.0001) using good-robust features and to 0.91 (P< 0.0001) using

excellent-robust features. Model generalizability also showed a substantial

increase, as a closer gap between training and testing AUC was observed

where the mean train-test AUC difference was reduced from 0.21 to 0.18 (P<

0.001) in good-robust features and to 0.12 (P< 0.0001) in excellent-robust

features. Furthermore, good-robust features yielded the best average AUC in

the unseen datasets of 0.58 (P< 0.001) over four datasets and clinical outcomes.
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Conclusions: Including robust only features in radiomic modeling significantly

improves model robustness and generalizability in unseen datasets. Yet, the

robustness of radiomic model has to be verified despite building with robust

radiomic features, and tightly restricted feature robustness may prevent the

optimal model performance in the unseen dataset as it may lower the

discrimination power of the model.
KEYWORDS

radiomics, head and neck squamous cell carcinoma, model reliability, feature
reliability, model robustness
Introduction

Radiomics is an emerging artificial intelligence technology

that utilizes high-throughput features extracted from imaging

features for divulging cancer biological and genetic

characteristics (1–4) in oncology. It has demonstrated

promises and offered insights with its defined radiomic models

into cancer diagnosis (5), prognostication (6), treatment

response (7) as well as toxicity prediction (8). Despite a wide

range of potential applications in the clinic, a primary concern of

radiomics modeling is its robustness of radiomic models.

Identifying robust features is the prerequisite for building a

robust radiomic model. However, the rare availability of test-

retest scans prevents radiomic studies from comprehensively

assessing feature robustness. Therefore, Zwanenburg et al. (9)

proposed a perturbation-based dataset-specific radiomic feature

robustness assessment method, an alternative to the

conventional test-retest method. The feature robustness is

quantified using the intra-class coefficient of correlation (ICC)

from simulated perturbation images. The quantified feature

robustness is used to identify and remove the low-robust

features. However, the impact of eliminating low-robust

features in radiomic modeling on the final model has not been

di scussed , wh ich prevent s the opt ima l u t i l i t y o f

feature robustness.

Therefore, it would be instructive if the impact on radiomic

model is clear when removing low-robust features. This

manuscript evaluated the radiomic model’s robustness and

generalizability under different thresholds of the low-robust

feature removal. The model robustness is quantified with ICC

using the perturbation method (10), and model generalizability

is quantified with the train-test difference of Area under the

Receiver Operating Characteristic curve (AUC), AUCtesting –

AUCtraining. The change in the model performance would

provide informative guidance when removing low-robust

radiomic features from modeling.
02
Materials and methods

Overview

The overall study workflow is summarized in Figure 1A.

Four publicly available datasets of head-and-neck cancer (HNC)

named 1) Head-Neck-Radiomics-HN1 (HN1) (1, 11),, 2) Head-

Neck-PET-CT (HN-PETCT) (11, 12),, 3) HNSCC (13–15), 4)

OPC-Radiomics (OPC) (16, 17), were collected, and each dataset

was used to perform the analysis independently. Two prediction

outcomes, including distant metastasis (DM) and local-/

regional- recurrence (LR), were modeled using five commonly

used classifiers. The five classifiers include Ridge (18),

Supporting Vector Classifier (SVC) (19), classifiers

implementing the k-nearest neighbor’s vote (KNN) (20),

Decision Tree (21), and Multilayer Perceptron Neural

Network (MLP) (22). Each dataset was randomly split into

multiple training and testing cohorts for repeated stratified

cross-validation, and the training cohorts underwent

robustness analysis, feature selection, and modeling. During

each cross-validation iteration, the robustness of each radiomic

feature was analyzed by image perturbations on the training

samples and quantified by ICC. Features with high robustness

scores were filtered out and further selected based on outcome

relevance and redundancy before model training. To validate the

performance of both model generalizability and robustness

using radiomic features with increasing robustness, three

groups of radiomic models were constructed 1) without

feature robustness filtering, 2) with filtering threshold of 0.75,

and 3) with filtering threshold of 0.95, as shown in Figure 1B.

The robustness and generalizability of the three groups of

radiomic models were compared statistically. The comparisons

were performed independently for the 4 datasets, 2 outcomes,

and 5 classifiers, resulting in 40 experiments in total. The

improvements of the final selected radiomic feature robustness

were also validated through statistical comparisons.
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Materials

A total of 1,419 HNC patients were recruited from the four

publicly available datasets from The Cancer Imaging Archive

(TCIA) (20). Pre-treatment computed tomography (CT) images

and corresponding structure sets for radiation therapy were

collected in DICOM format from the TCIA website. DM and

LR records were also collected as predictive targets for radiomic

modeling. They are two critical oncological endpoints in cancer

treatment prognosis (23, 24), and the common predictive

outcomes in many radiomics studies (6, 25, 26).

In order to ensure data consistency, a set of inclusion criteria

were applied. Only patients with available 1) pre-treatment CT

images, 2) clinical outcomes records of both DM and LR, and 3)

primary gross tumor volume (GTV) contours were included in

the study. The identifier of the selected image and the GTVs are
Frontiers in Oncology 03
also shared in GitHub for replication purposes. Each dataset was

splitted into 60 training and testing sets using repeated stratified

cross-validation. The folder numbers were chosen in a way that

at least two patients in the minority group and 100 patients in

total are left for testing to ensure the reliability of the testing

performance. The final selected patient numbers, patient

distributions for the two prediction outcomes, and train-test

split cross-validation methods for the five datasets are listed

in Table 1.
Image preprocessing and radiomic
feature extraction

Radiomic features were extracted from the pre-treatment

CTs within GTVs. The images and GTV contours were
B

A

FIGURE 1

The overall study workflow (A) and model construction and performance analyses workflow (B).
TABLE 1 The total patient numbers, patient distributions of the two binary prediction outcomes, and the train-test cross-validation methods of
the screened patient cohort of the four public datasets.

Dataset name Total patient No. Distant metastasis Local-/regional- recurrence Cross-validation method

Event Non-event Event Non-event

HN1 137 8 129 34 103 Stratified 2-fold, 30 repetitions

HN-PETCT 298 40 258 43 255 Stratified 3-fold, 20 repetitions

HNSCC 460 39 421 65 395 Stratified 4-fold, 15 repetitions

OPC 524 74 450 73 451 Stratified 4-fold, 15 reptations
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preprocessed before extracting features to maintain feature

reproducibility and consistency (27, 28). First, CT images were

isotopically resampled into 1mm x 1mm x 1mm using B-spline

interpolation. The GTV contours were converted into voxel-

based segmentation masks according to the resampled CT image

grids. Additionally, a re-segmentation mask of the HU range of

[-150, 180] was generated for each image to limit the texture

feature extraction within soft tissue. All the mentioned

preprocessing steps were implemented on Python (3.8) using

SimpleITK (1.2.4) (29) and OpenCV (30) packages.

The rest of image preprocessing and radiomic feature

extraction were performed using Pyradiomics (2.2.0) (31)

package. In addition to the original image, features were

extracted from 11 filtered images, including three Laplacian-of-

Gaussian (LoG) filtered images (with a sigma value of 1, 3, and

6 mm), and eight coilf1 wavelet filtered images (LLL, HLL, LHL,

LLH, LHH, HLH, HHL, HHH). The image intensities of both the

original and filtered images were discretized into multiple fixed

bin counts of 50, 100, 150, 200, 250, 300, and 350 for texture

feature extraction to reduce the feature susceptibility to image

noise. A total of 5486 radiomics features were extracted for each

patient. The radiomic feature extraction parameter file for

Pyradiomics can be found in the GitHub link.
Feature robustness analysis and filtering

The robustness of radiomic features were analyzed via the

image perturbations in four modes proposed by Zwanenburg et al.

(9) with slight modifications. For each perturbation, both the

image and mask were translated and rotated simultaneously by a

random amount. They aim to simulate the patient position

variation during imaging. A random Gaussian noise field was

added to the image to mimic the noise level variations between

different imaging acquisitions. The GTV mask was also deformed

by a randomly generated deformable vector field. It aims to mimic

the inter-observer variability during GTV delineation. Dice

similarity index of 0.75 and the Hausdorff distance of 5 mm

were used to constrain the perturbed contours. Multiple

parameters of the different perturbation modes were chosen.

The translation distances, rotation angles, noise addition levels,

and contour randomization parameters were listed in Table 2. To

explore the perturbations within the specified range as much as
Frontiers in Oncology 04
possible, 60 perturbations among the entire 4,423,680

combinations of perturbation modes were randomly chosen

independently for each patient. The complete set of radiomic

features were extracted for the chosen perturbations, and the

feature robustness was calculated for each training set using the

one-way, random intraclass coefficient of correlation (ICC) (32,

33), with patients as subjects and perturbations as raters. The ICC

scores were used to filter out the robust features based on a pre-

defined threshold before feature selection and modeling
Feature selection and modeling

A two-step feature selection approach was adopted to obtain

the top features that are less redundant and more relevant to the

outcome for modeling. First, the outcome relevance of each

feature was evaluated by one-way ANOVA P-value repeatedly

under downsample bootstrapping [imbalanced-learn 0.8.0 (34)]

without replacement with 100 iterations on the training set.

Features with P-values less than 0.1 were picked out in each

iteration and ranked by their frequencies, and the top 10%

features with the highest frequencies were chosen. Second, the

feature with a higher mean correlation with the rest of the

features in each highly correlated feature pair was removed.

Pearson correlation coefficient was used to evaluate inter-feature

correlation, and the threshold of 0.6 was chosen to identify the

feature pairs with high correlations. A maximum of 10 features

was further filtered based on the outcome relevance frequency

ranking acquired in the previous step. The predictive models

were trained from the final selected features using five different

classification methods with automatic hyperparameter tunning.

All the model trainings were implemented with the scikit-learn

(0.24.0) (35) package. All the feature selection and modeling

process was on training dataset.
Performance analyses

The reliability of the predictive models was evaluated in both

generalizability and robustness. Model generalizability evaluates

model predictability consistency between the training cohort and

the unseen cohort. It is quantified as the difference between training

and testing predictability which is scored by the AUC. The model
TABLE 2 The parameters of perturbation modes.

Perturbation modes Perturbation range Reference axis Perturbation number Total number

Translation distance (mm) 0 to 3 with a 0.2 step size AP, SI, LM 4,096 4,423,680

Rotation angles (degree) -20 to 20 with a 5 step size SI 9

Noise addition level 0, 1, 2, 3 – 4

Contour Randomization 30 – 30
AP, anterior-posterior; SI, superior-inferior; LM, lateral-medial.
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robustness metric was designed to evaluate the prediction reliability

of patients under different perturbations across all the patients using

ICC (1,1) (10). The ICC(1,1) is calculated with

MSR −MSW
MSR + k + 1ð ÞMSW

where MSR = mean square for rows; MSW = mean square for

residual sources of variance; k = number of raters/

measurements. In our case, MSR is the mean square for

patients, and MSW is the averaged inter-perturbation variance,

and k is the number of perturbations.

These two performance scores were calculated for all the

models generated from the 60 cross-validation iterations and

statistically compared between each of the two feature robustness

filtering thresholds (ICC > 0.75, ICC > 0.95) and the performance of

models constructed without robustness filtering using pairwise t-

test. The comparisons were performed for each dataset, prediction

outcome, and modeling classifier independently. Additionally, the

robustness of the final selected features with and without robustness

filtering was statistically compared by pairwise t-test for each dataset

and prediction outcome.
Bias evaluation against feature
selection method

It is possible that the single feature selection method could

lead to bias in the results. To facilitate the potential bias, the

minimum redundancy maximum relevance (mRMR) feature

selection method was implemented. The robustness and

generalizability analysis was performed for all four datasets

and outcomes with the Ridge classifier. This bias evaluation

aims to ensure that the conclusion is not biased towards a

specific feature selection method.
Frontiers in Oncology 05
Results

Feature robustness and
model robustness

The radiomic feature robustness was quantified by the ICC

under image perturbations. The distributions of all the extracted

radiomic features show a strong skewness towards higher

robustness, as shown by the histograms of feature ICCs for the

four datasets in Figure 2. Different datasets show distinctive

patterns of feature robustness distributions. HN1 (median =

0.84) and HN-PTECT (median = 0.82) has more features with

high robustness whereas HNSCC (median = 0.77) and OPC

(median = 0.74) have the histograms skewed towards the lower

end. On average, 3320/5486 radiomic features remained after

being filtered by the threshold of 0.75 and 605/5486 remained for

the threshold of 0.95. The final selected radiomics features after

the subsequent feature selection procedures showed a significant

increase (P< 10-11) in mean ICC with increasing feature

robustness filtering thresholds. On average, the ICC of the

final selected features improved by 0.18 under the filtering

threshold of 0.75, and the improvement increased to 0.30

under the threshold of 0.95, as shown by the first column of

the heatmaps in Figure 3A.

The radiomic model robustness improved significantly after

removing non-robust features prior to modeling. The ICC of

radiomic models constructed without feature robustness filtering

is 0.65 averaged over all the datasets, outcomes, and classifiers. It

is improved to 0.78 (P< 0.0001) and 0.91 (P< 0.0001) after

feature robustness filtering with ICC > 0.75 and ICC > 0.95,

respectively. The box plot in Figure 3 showed the distribution of

the model robustness ICC. Interestingly, the outliers indicated

observations in low robust models (ICC< 0.5) using high robust

features (ICC > 0.75 and ICC > 0.95), despite the statistical
FIGURE 2

Histograms of the robustness of all the extracted radiomic features for the four analyzed datasets averaged under cross-validations. Feature
robustness is quantified as intraclass correlation coefficient (ICC). The shaded areas indicate the 95% confidence interval of the average
histogram curves. In general, there are more high-robust features than ones with low robustness. Different datasets show distinctive patterns of
feature robustness distributions. HN1 and HN-PETCT have more features with high robustness, whereas HNSCC and OPC have the histograms
skewed towards the lower end.
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significance in model robustness differences. The outlier samples

were further analysed in terms of the datasets and classifiers. No

statistical difference was found in different datasets (P > 0.05),

and statistical differences were observed in the classifiers. In the

feature robustness filtering group of ICC > 0.95, 8 (0.33%)

samples in KNN, and 4 (0.17%) samples in Decision Tree

were found to have poor model robustness performance

despite using excellent-robust radiomic features.

The detailed results in model robustness improvements and

their statistical tests for the four datasets (row) and five classifiers

(column) are visualized in the last five columns of the heatmaps in

Figure 4, separated by outcome and robustness filtering thresholds.

Heterogeneous model robustness improvements can be observed

in different datasets, classifiers, and prediction outcomes. Higher

(ICC > 0.75: 0.045~0.24, ICC > 0.95: 0.11~0.47) and more

statistically significant (ICC > 0.75: P-value=9.8 × 10-35~1.1 ×

10-2, ICC > 0.95: P-value=8.9 × 10-48~1.2 × 10-8) prediction ICC

increases were found with the higher feature robustness filtering

threshold in general.
Model generalizability

Model generalizability is quantified as the difference between

the training and testing Area Under the Receiver Operating

Characteristic Curve (AUCs), and a lower score indicates better

generalizability. The model generalizability score averaged over

all the datasets, outcomes, and classifiers are 0.21, 0.18, and 0.12

without robustness filtering, with the filtering threshold of 0.75

(P< 0.0001) and the threshold of 0.95 (P< 0.0001), respectively,

shown in Figure 5.
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Figure 6 shows the subgroup analysis based on datasets,

outcomes and classifiers. In general, model generalizability

showed statistically significant improvements after feature

robustness filtering in most experiments, as shown by the

majority of negative mean generalizability differences and small t-

test P-values. However, the prediction of LR on HN-PETCT had

positive mean generalizability differences (ICC > 0.75:

-0.026~0.013, ICC > 0.95: -0.025~0.016) for most of the classifiers

under both filtering thresholds. Despite the heterogeneous results

among datasets, outcomes, and classifiers, larger improvements

with higher statistical significance in mode generalizability were

observedwith thehigher feature robustnessfiltering threshold (ICC

> 0.75: -0.06~-0.02, P-value = 7.2 × 10-7~2.1 × 10-1; ICC > 0.95:

-0.19~-0.054,P-value=4.8×10-15~6.5×10-1) apart fromLRmodels

for HN-PETCT. Figure 7 shows the comparisons of average

training and testing AUCs along with its 95% confident interval

across the cross-validation models with increasing feature

robustness filtering thresholds. Each subfigure contains the

results of all the five classifiers shown in different colors and

separated by datasets and clinic outcomes. Decreasing training

AUCs were observed with increasing filtering thresholds.

Specifically, the training AUCs averaged over all the datasets and

prediction outcomes without feature robustness filtering, with

robustness filtering on ICC > 0.75, and with filtering on ICC >

0.95 are 0.78, 0.76, and 0.69, respectively. Significant drops of

training AUCs (pairwise t-test P-values< 0.05) were observed in

33/40 experiments from no feature robustness filtering to the

threshold of 0.75 and 40/40 experiments to the threshold of 0.95.

Meanwhile, the average testingAUCs are0.57, 0.58, 0.57with18/40

experiments showing statistical significant difference (pairwise t-

test P-values< 0.05) for ICC > 0.75 and 24/40 for ICC > 0.95.
FIGURE 3

The barplot shows the model robustness ICC distribution for three feature robustness filtering groups, ICC > 0, ICC > 0.75, and ICC > 0.95. The
feature robustness filtering of ICC > 0.95 yields the most robust model. *** indicates the p-value is smaller than 0.0001.
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B

A

FIGURE 4

Average intraclass correlation coefficient (ICC) improvement (A) and t-test P-values (B) of the final selected features and testing predictions after
robust feature pre-selection shown in heatmaps. Each heatmap contains the results of one prediction outcome and one feature robustness
filtering threshold. The first column of each heatmap represents the improvements of the final selected radiomic features, and the remaining
five columns are the improvements of the testing prediction robustness using different classifiers. Results of the four datasets are recorded in
rows. All the experiments showed positive improvements in ICC. A higher and more statistically significant increase in average ICC
improvements can be observed with a higher filtering threshold.
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Different classifiers showed heterogeneous trends of testing AUCs

under increasing thresholds. Notably, the testing AUCs of LR

radiomic models on HN-PETCT showed significant decrease for

feature robustness filtering with ICC > 0.75 (mean decrease: 0.026,

5/5 classifiers with P-value< 0.05) and ICC > 0.95 (mean decrease:

0.102, 4/5 classifiers with P-value< 0.05).
Bias evaluation

The model robustness improved significantly with the

improved feature robustness via the mRMR feature selection,

as shown in Table 3, which is consistent with the model

robustness improvement with filer-based feature selection.

The training AUC showed a consistent drop with the increase

in the threshold of feature robustness, shown in Table 4. In

contrast, the testing AUC showed an increase or maintaining

the same level, resulting in the improved model generalizability.

The bias analysis against the feature selection method

showed consistent results between the filter-based and mRMR

feature selection methods in improving model robustness and

generalizability with robust radiomic features. Therefore, it is

unlikely that different feature selection algorithms would affect

the conclusion.
Discussion

After removing low-robust features, the radiomic model’s

robustness and generalizability have been improved, and the

improvement is consistent across multiple datasets, different
Frontiers in Oncology 08
clinical outcomes, and classifiers. Our results also offer two

practical implications. The radiomic model’s robustness needs

to be evaluated despite using high-robust radiomic features in

modeling. The restricted thresholding on feature robustness

would prevent the optimal performance of the radiomic model

to the unseen dataset.

Previous literature has discussed the positive impact of robust

feature pre-selection on radiomic model generalizability and

robustness. For instance, Haarburger et al. (36) envisioned that

robust-only features are more likely to lead to a more reliable

radiomic model. Vuong et al. (37) obtained a radiomic model with

multi-institutional datasets, which performed equally well as a

model on a standardized dataset by including pre-screening on

the robust features. Our results confirmed their envision and

findings with quantifiable measurements of model robustness

and generalizability improvements, providing concrete evidence

of increased model stability after feature robustness filtering.

The improved model robustness can be explained by the

reduced variability of the final selected features after pre-

screening on feature robustness, as indicated by the statistically

smallermean feature ICCs.Model output variability is thus reduced

as thefinal selected features are the directmodel input.On the other

hand, without feature robustness filtering beforehand, low-robust

features are likely to remain after feature selection. They are more

likely to be related to the outcome in the training cohort by chance

(type I error) and less likely to be predictive of the unseen cohort or

the entire population. Thus, the final constructed models tend to

have high AUCs in training, but low testing. The high type I error

caused by low feature robustness reduces the power of feature

selection in identifying the truly predictive features and lowers the

generalizability of the final constructed models. However, a
FIGURE 5

The boxplot showed the train-test performance differences. The most restricted feature robustness filtering provides the most generalizable
models. *** indicates the p-value is smaller than 0.0001.
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B

A

FIGURE 6

Heatmaps on mean model generalizability improvements (A) and statistical test results (B) after feature robustness filtering. Model
generalizability is defined as the difference between training and testing AUCs, AUCtesting - AUCtraining. A score closer to zero shows better
generalizability. In general, model generalizability improved after feature robustness filtering, as shown by the negative values on the heatmaps
(A) for both filtering thresholds. Greater improvements were observed with the higher filtering threshold (ICC > 0.95). Moreover, more
significant differences are shown by the smaller P-value. However, the predictions of LR on the dataset HN-PETCT showed worse
generalizability after feature robustness filtering and the opposite trend of generalizability change and statistical test results with increasing
filtering thresholds.
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FIGURE 7

The mean and its 95% confidence interval of the training and testing AUCs of the final constructed models. Each color represents one
classifier for modeling. The solid lines represent the training performances, and the dashed lines represent the testing performances. The
95% confidence intervals are drawn by the error bars. Each subfigure contains the evolution of training/testing AUCs with increasing
feature robustness filtering thresholds for one dataset and prediction outcome. A decreasing trend of training AUCs were observed with
increasing thresholds for all the datasets, prediction outcomes, and classifiers. The testing AUCs remain stable except for local-regional
recurrence prediction on HN-PETCT dataset.
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statistically significant reduction (mean: 0.007, P-value< 0.001) in

LR prediction generalizability and testing AUCs (mean: 0.1, P-

value< 0.001) with pre-selection of robust features on the HN-

PETCT dataset is discovered, as shown in Figure 7. We found out
Frontiers in Oncology 11
that one non-robust feature - wavelet-LHH_glszm_ZoneEntropy -

demonstrated a significant correlation with LR in the entire HN-

PETCT cohort with P-value< 0.001. Meanwhile, it is vulnerable

against the image perturbations with an ICC of 0.36 (95%CI: [0.32,
TABLE 3 The model robustness (ICC) for different feature robustness pre-screening thresholds.

Outcomes ICC > 0 ICC > 0.75 ICC > 0.95

DM HN1 0.73 (0.66 - 0.79) 0.88 (0.84 - 0.91) 0.95 (0.94 - 0.96)

HN-PETCT 0.76 (0.71 - 0.80) 0.92 (0.90 - 0.94) 0.92 (0.97 - 0.98)

HNSCC 0.69 (0.64 - 0.75) 0.78 (0.93 - 0.82) 0.94 (0.93 - 0.96)

OPC 0.74 (0.70 - 0.79) 0.91 (0.90 - 0.93) 0.99 (0.99 - 0.99)

LR HN1 0.70 (0.64 - 0.77) 0.86 (0.82 - 0.90) 0.96 (0.95 - 0.98)

HN-PETCT 0.63 (0.57 - 0.70) 0.81 (0.77 - 0.85) 0.94 (0.92 - 0.95)

HNSCC 0.73 (0.68 - 0.78) 0.89 (0.86 - 0.91) 0.98 (0.97 - 0.98)

OPC 0.70 (0.66 - 0.75) 0.84 (0.81 - 0.87) 0.97 (0.97 - 0.98)
TABLE 4 The training and testing AUC between different feature robustness pre-screening thresholds.

Outcomes ICC > 0 ICC > 0.75 ICC > 0.95

Training AUC Testing AUC Training AUC Testing AUC Training AUC Testing AUC

DM HN1 0.96 0.52 0.92 0.53 0.82 0.60

HN-PETCT 0.84 0.69 0.82 0.70 0.74 0.70

HNSCC 0.76 0.53 0.68 0.50 0.63 0.53

OPC 0.72 0.60 0.68 0.62 0.64 0.62

LR HN1 0.86 0.57 0.82 0.60 0.70 0.60

HN-PETCT 0.83 0.62 0.79 0.63 0.70 0.54

HNSCC 0.74 0.62 0.72 0.64 0.68 0.65

OPC 0.72 0.52 0.69 0.54 0.61 0.54
A B

FIGURE 8

The comparison of the original and perturbed testing AUCs of HN-PETCT-298 averaged over train-test splits for the prediction of DM (A) and
LR (B) using SVC. The testing AUCs showed high consistencies between the original images and perturbed images for the prediction of DM
while large deviations were observed for the prediction of LR.
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0.42]) and thus removed frommodeling, resulting in a reduction in

overall model predictability and generalizability. This raises the

concern about the limited reliability of testing predictability in

representing the model generalizability on the unseen population.

To further explain the reduced testing performance, we have

calculated the distribution of testing AUCs on the perturbed data

and compared with the results on the original data for dataset HN-

PETCTandSVCclassifier, as visualized inFigure8.Comparedwith

DM predictions, the testing AUCs for LR demonstrated higher

variabilities, and the original testing AUCs deviated more to the

averaged AUCs under perturbations. Although the original testing

AUCs increased statistically (ICC< 0.75: mean increase = 0.02, P-

value< 0.01; ICC< 0.95: mean increase = 0.019, P-value< 0.01) after

feature robustness filtering for LR, the average testing AUCs

showed the opposite trend. The high variability of testing AUCs

on LR increases the risk of under-representative testing

performance evaluation on the original data, which can be

alleviated by feature robustness filtering. Our new findings also

support recommendation of using the averaged feature values

under image perturbations for modeling (9).

Notably, we applied a comprehensive evaluation framework to

assess model robustness and generalizability under repeated cross-

validations. Instead of only splitting the entire cohort into a single

training-testing pair and generating a single model for evaluation,

multiple independent train-test splits cangive statistical andunbiased

evaluations of the impact of radiomic feature robustness on model

robustness andgeneralizability. Themaindrawbackof thismethod is

the high heterogeneity in training and testing performance among

iterations (38), which may reduce the statistical significance of our

results.We used image perturbations to assess both radiomic feature

robustness and model robustness. Although the scope of the image

perturbations applied in this studymightbe limited, and the resulting

feature robustness and model robustness is not guaranteed to be as

sensitive as test-retest imaging and manual re-contouring, they are

rather conservative simulations that impose no additional cost in

medical resources and can be easily applied to any dataset.

Comprehensive validations of the proposed perturbation method

in the future are warranted to increase the credibility of this work.

There are other limitations of this study. First, we only considered

four datasets of head-and-neck cancer datasets from The Cancer

Imaging Archive (TCIA), and our results may only be generalizable

to head-and-neck data. To further generalize the findings to other

sites, it is encouraged to testourmethodonmorecancer sites. Second,

bias could arise from the single feature selectionmethod, as different

criteria and techniques in feature selection have different power in

identifying truly predictive radiomic features. It is also suggested to

validate our methods with different feature selection methods.
Conclusion

In this study, we evaluated radiomic model’s robustness

and generalizability by removing the low-robust features. Our
Frontiers in Oncology 12
results suggested to remove low-robust features to improve

model robustness and generalizability to unseen data. Our

findings also imply evaluating model robustness despite

using robust features already, and the strictest threshold

in feature robustness may undermine the optimal

model performance.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://github.com/

vivixinzhi/improved-robustness-and-generalizability-of-

radiomic-modeling-via-image-perturabtion.
Author contributions

XT, JZ, and JC conceptualized the idea. XT, YZ, and JZ

performed data analysis and validation. FK-hL, K-hA, VL, and

AC provided the resources. ZM, SL, WL, and HX performed

data cleaning and verification. TL, BL, TZ, GR, SL, WL, and HX

provide the paper edition and review. XT drafted the original

manuscript. All authors contributed to the article and approved

the submitted version.
Funding

This research was partly supported by Project of Strategic

Importance Fund (P0035421), and Project of RI-IWEAR fund

(P0038684) from Hong Kong Polytechnic University, and

Shenzhen-Hong Kong-Macau S&T Program (Category C)

(SGDX20201103095002019) from Shenzhen Science and

Technology Innovation Committee.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
frontiersin.org

https://github.com/vivixinzhi/improved-robustness-and-generalizability-of-radiomic-modeling-via-image-perturabtion
https://github.com/vivixinzhi/improved-robustness-and-generalizability-of-radiomic-modeling-via-image-perturabtion
https://github.com/vivixinzhi/improved-robustness-and-generalizability-of-radiomic-modeling-via-image-perturabtion
https://doi.org/10.3389/fonc.2022.974467
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Teng et al. 10.3389/fonc.2022.974467
References
1. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P,
Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a
quantitative radiomics approach. Nat Commun (2014) 5(1):4006. doi: 10.1038/
ncomms5006

2. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures,
they are data. Radiology (2015) 278(2):563–77. doi: 10.1148/radiol.2015151169

3. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren
J, et al. Radiomics: the bridge between medical imaging and personalized medicine.
Nat Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/nrclinonc.2017.141. Art.
no. 12.

4. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, et al.
Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung
Cancer (2018) 115:34–41. doi: 10.1016/j.lungcan.2017.10.015

5. Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, Fabro AT, de
Azevedo-Marques PM. Radiomics-based features for pattern recognition of lung
cancer histopathology and metastases. Comput Methods Programs BioMed (2018)
159:23–30. doi: 10.1016/j.cmpb.2018.02.015

6. Mouraviev A, Detsky J, Sahgal A, Ruschin M, Lee YK, Karam I, et al. Use of
radiomics for the prediction of local control of brain metastases after stereotactic
radiosurgery. Neuro-Oncology (2020) 22(6):797–805. doi: 10.1093/neuonc/noaa007

7. Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, et al. Radiomics for response
and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat
(2018) 17:1533033818782788. doi: 10.1177/1533033818782788

8. Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P. Application of
radiomics for the prediction of radiation-induced toxicity in the IMRT era: Current
state-of-the-Art. Front Oncol (2020) 10:1708. doi: 10.3389/fonc.2020.01708

9. Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, et al.
Assessing robustness of radiomic features by image perturbation. Sci Rep (2019) 9
(1):614. doi: 10.1038/s41598-018-36938-4. Art. no. 1.

10. Teng X, Zhang J, Zwanenburg A, Sun J, Huang Y, Lam S, et al. Building
reliable radiomic models using image perturbation. Sci Rep (2022) 12(1);10035.
doi: 10.1038/s41598-022-14178-x

11. Vallières M, Kay-Rivest E, Perrin L, Liem X, Furstoss C, Khaouam N, et al.
Data from head-Neck-PET-CT. Cancer Imaging Arch (2017). doi: 10.7937/K9/
TCIA.2017.8OJE5Q00

12. Vallières M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, Aerts HJWL, et al.
Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer.
Sci Rep (2017) 7(1):10117. doi: 10.1038/s41598-017-10371-5

13. Grossberg A, Elhalawani H, Mohamed A, Mulder S, Williams B, White AL,
et al. HNSCC. Cancer Imaging Arch (2020). doi: 10.7937/K9/TCIA.2020.A8SH-
7363

14. Grossberg AJ, et al. Imaging and clinical data archive for head and neck
squamous cell carcinoma patients treated with radiotherapy. Sci Data (2018) 5
(1):180173. doi: 10.1038/sdata.2018.173.

15. MICCAI/M.D. Anderson Cancer Center Head and Neck Quantitative
Imaging Working Group. Matched computed tomography segmentation and
demographic data for oropharyngeal cancer radiomics challenges. Sci Data
(2017) 4(1):170077. doi: 10.1038/sdata.2017.77

16. Kwan JYY, Su J, Huang SH, Ghoraie LS, Xu W, Chan B, et al. Data from
radiomic biomarkers to refine risk models for distant metastasis in oropharyngeal
carcinoma. Cancer Imaging Arch (2019) 102:1107–16. doi: 10.7937/
TCIA.2019.8DHO2GLS

17. Kwan JYY, Su J, Huang SH, Ghoraie LS, Xu W, Chan B, et al. Radiomic
biomarkers to refine risk models for distant metastasis in HPV-related
oropharyngeal carcinoma. Int J Radiat OncolBiolPhys (2018) 102(4):1107–16.
doi: 10.1016/j.ijrobp.2018.01.057

18. Fournier L, Costaridou L, Bidaut L, Michoux N, Lecouvet FE, de Geus-Oei
LF, et al. Incorporating radiomics into clinical trials: expert consensus endorsed by
the European society of radiology on considerations for data-driven compared to
biologically driven quantitative biomarkers. Eur Radiol (2021) 31:6001–12.
doi: 10.1007/s00330-020-07598-8

19. Suter Y, Knecht U, Alão M, Valenzuela W, Hewer E, Schucht P, et al.
Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring
Frontiers in Oncology 13
feature robustness, class boundaries, and machine learning techniques. Cancer
Imaging (2020) 20(1):55. doi: 10.1186/s40644-020-00329-8

20. Zhang Y, Oikonomou A,Wong A, Haider MA, Khalvati F. Radiomics-based
prognosis analysis for non-small cell lung cancer. Sci Rep (2017) 7(1):46349.
doi: 10.1038/srep46349. Art. no. 1.

21. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C,
Forghani B. Radiomics and artificial intelligence for biomarker and prediction
model development in oncology. Comput Struct Biotechnol J (2019) 17:995–1008.
doi: 10.1016/j.csbj.2019.07.001

22. Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS. Radiomic features and
multilayer perceptron network classifier: a robust MRI classification strategy for
distinguishing glioblastoma from primary central nervous system lymphoma. Sci
Rep (2019) 9(1):5746. doi: 10.1038/s41598-019-42276-w. Art. no. 1.

23. Irani S. Distant metastasis from oral cancer: A review and molecular biologic
aspects. J Int Soc Prev Community Dent (2016) 6(4):265–71. doi: 10.4103/2231-
0762.186805

24. Mittendorf EA, Buchholz TA, Tucker SL, Meric-Bernstam F, Kuerer HM,
Gonzalez-Angulo AM, et al. Impact of chemotherapy sequencing on local-regional
failure risk in breast cancer patients undergoing breast conserving therapy,”. Ann
Surg (2013) 257(2):173–9. doi: 10.1097/SLA.0b013e3182805c4a

25. Zhou Z, Wang K, Folkert M, Liu H, Jiang S, Sher D, et al. Multifaceted
radiomics for distant metastasis prediction in head & neck cancer. Phys Med Biol
(2020) 65(15):155009. doi: 10.1088/1361-6560/ab8956

26. Zhang L-L, Huang MY, Li Y, Liang JH, Gao TS, Deng B, et al. Pretreatment
MRI radiomics analysis allows for reliable prediction of local recurrence in non-
metastatic T4 nasopharyngeal carcinoma. EBioMedicine (2019) 42:270–80.
doi: 10.1016/j.ebiom.2019.03.050

27. Moradmand H, Aghamiri SMR, Ghaderi R. “Impact of image preprocessing
methods on reproducibility of radiomic features in multimodal magnetic resonance
imaging in glioblastoma,”. J Appl Clin Med Phys (2020) 21(1):179–90. doi: 10.1002/
acm2.12795

28. Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, et al. Impact of
image preprocessing on the volume dependence and prognostic potential of
radiomics features in non-small cell lung cancer,”. Trans Cancer Res (2016) 5(4).
doi: 10.21037/8709. Art. no. 4.

29. Yaniv Z, Lowekamp BC, Johnson HJ, Beare R. SimpleITK image-analysis
notebooks: a collaborative environment for education and reproducible research. J
Digit Imaging (2018) 31(3):290–303. doi: 10.1007/s10278-017-0037-8

30. Bradski G. “The OpenCV library,”, in: Dr. dobb’s . Available at: http://www.
drdobbs.com/open-source/the-opencv-library/184404319 (Accessed Mar. 27, 2021).

31. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan
V, et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res (2017) 77(21):e104–7. doi: 10.1158/0008-5472.CAN-17-0339

32. McGraw KO, Wong SP. Forming inferences about some intraclass correlation
coefficients. psychol Methods (1996) 1(1):30–46. doi: 10.1037/1082-989X.1.1.30

33. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation
coefficients for reliability research. J Chiropr Med (2016) 15(2):155–63.
doi: 10.1016/j.jcm.2016.02.012

34. Lemaıt̂re G, Nogueira F, Aridas CK. Imbalanced-learn: A Python toolbox to
tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res
(2017) 18(17):1–5. Available at: http://jmlr.org/papers/v18/16-365.html

35. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al.
API Design for machine learning software: experiences from the scikit-learn
project. arXiv (2013). arXiv:1309.0238. doi: 10.48550/arXiv.1309.0238

36. Haarburger C, Müller-Franzes G, Weninger L, Kuhl C, Truhn D, Merhof D.
Radiomics feature reproducibility under inter-rater variability in segmentations of CT
images. Sci Rep (2020) 10(1):12688. doi: 10.1038/s41598-020-69534-6. Art. no. 1.

37. Vuong D, Bogowicz M, Denzler S, Oliveira C, Foerster R, Amstutz F, et al.
Comparison of robust to standardized CT radiomics models to predict overall
survival for non-small cell lung cancer patients. Med Phys (2020) 47(9):4045–53.
doi: 10.1002/mp.14224

38. Efron B, Tibshirani R. Improvements on cross-validation: The .632+
bootstrap method. J Am Stat Assoc (1997) 92(438):548–60. doi: 10.2307/2965703
frontiersin.org

https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1016/j.lungcan.2017.10.015
https://doi.org/10.1016/j.cmpb.2018.02.015
https://doi.org/10.1093/neuonc/noaa007
https://doi.org/10.1177/1533033818782788
https://doi.org/10.3389/fonc.2020.01708
https://doi.org/10.1038/s41598-018-36938-4
https://doi.org/10.1038/s41598-022-14178-x
https://doi.org/10.7937/K9/TCIA.2017.8OJE5Q00
https://doi.org/10.7937/K9/TCIA.2017.8OJE5Q00
https://doi.org/10.1038/s41598-017-10371-5
https://doi.org/10.7937/K9/TCIA.2020.A8SH-7363
https://doi.org/10.7937/K9/TCIA.2020.A8SH-7363
https://doi.org/10.1038/sdata.2018.173
https://doi.org/10.1038/sdata.2017.77
https://doi.org/10.7937/TCIA.2019.8DHO2GLS
https://doi.org/10.7937/TCIA.2019.8DHO2GLS
https://doi.org/10.1016/j.ijrobp.2018.01.057
https://doi.org/10.1007/s00330-020-07598-8
https://doi.org/10.1186/s40644-020-00329-8
https://doi.org/10.1038/srep46349
https://doi.org/10.1016/j.csbj.2019.07.001
https://doi.org/10.1038/s41598-019-42276-w
https://doi.org/10.4103/2231-0762.186805
https://doi.org/10.4103/2231-0762.186805
https://doi.org/10.1097/SLA.0b013e3182805c4a
https://doi.org/10.1088/1361-6560/ab8956
https://doi.org/10.1016/j.ebiom.2019.03.050
https://doi.org/10.1002/acm2.12795
https://doi.org/10.1002/acm2.12795
https://doi.org/10.21037/8709
https://doi.org/10.1007/s10278-017-0037-8
http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.1016/j.jcm.2016.02.012
http://jmlr.org/papers/v18/16-365.html
https://doi.org/10.48550/arXiv.1309.0238
https://doi.org/10.1038/s41598-020-69534-6
https://doi.org/10.1002/mp.14224
https://doi.org/10.2307/2965703
https://doi.org/10.3389/fonc.2022.974467
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Improving radiomic model reliability using robust features from perturbations for head-and-neck carcinoma
	Introduction
	Materials and methods
	Overview
	Materials
	Image preprocessing and radiomic feature extraction
	Feature robustness analysis and filtering
	Feature selection and modeling
	Performance analyses
	Bias evaluation against feature selection method

	Results
	Feature robustness and model robustness
	Model generalizability
	Bias evaluation

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


