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GLUD1 suppresses
renal tumorigenesis and
development via inhibiting
PI3K/Akt/mTOR pathway
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Growing cancer cells are addicted to glutamine. Glutamate dehydrogenase 1

(GLUD1) is one of key enzymes in glutaminemetabolism and plays a critical role

in the malignancy of diverse tumors. However, its role and molecular

mechanism in clear cell renal cell carcinoma (ccRCC) development and

progression remain unknown. In this study, analysis results of the GEO/

TCGA/UALCAN database showed that GLUD1 level was downregulated in

ccRCC tissues. Immunohistochemistry and western blotting results further

validated the downregulation of GLUD1 level in ccRCC tissues. GLUD1 level

was gradually decreased as ccRCC stage and grade progressed. Low GLUD1

level was associated with a shorter survival and higher IC50 value for tyrosine

kinase inhibitors (TKIs) in ccRCC, reminding that GLUD1 level could predict the

prognosis and TKIs sensitivity of ccRCC patients. High level of methylation in

GLUD1 promoter was positively correlated with the downregulation of GLUD1

level and was negatively correlated with survival of ccRCC patients. GLUD1

overexpression suppressed RCC cell proliferation, colony formation and

migration by inhibiting PI3K/Akt/mTOR pathway activation. Low GLUD1 level

correlated with suppressive immune microenvironment (TIME) in ccRCC.

Together, we found a novel tumor-suppressing role of GLUD1 in ccRCC

which was different from that in other tumors and a new mechanism for

inhibiting PI3K/Akt/mTOR activation and TIME in ccRCC. These results provide

a theoretical basis for GLUD1 as a therapeutic target and prognostic marker

in ccRCC.
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Introduction

More than 400,000 new cases of renal cell carcinoma (RCC)

and nearly 180,000 deaths occurred each year (1). Clear cell renal

cell carcinoma (ccRCC) is the most common and invasive

subtypes of RCC type (2). The prognosis of ccRCC has been

drastically improved over the past decades with the emergence of

tumor immunotherapy (3). Currently, most patients are treated

with immune checkpoint inhibitors (ICIs) or a combination of

ICIs and tyrosine kinase inhibitors (TKIs). Despite clear benefit

of these treatments over large populations, there are still some

patients who are innately resistant to these treatments or develop

resistance within a few months (4). Therefore, there is an urgent

need to develop predictive biomarkers that can guide treatment

strategies at the individual level.

Glucose and glutamine are the two main nutrient sources

during cell proliferation. ccRCC is addicted to glutamine (5–8).

Glutamine is converted to glutamate by glutaminase (GLS or

GLS2) (9). Glutamate is converted to a-ketoglutarate (a-KG)
through one of two sets of enzymes, glutamate dehydrogenase 1

(GLUD1) or transaminase (10). Then, a-KG enters the

tricarboxylic acid (TCA) cycle and generates ATP (11). Through

the TCA cycle, glutamate also provides precursors for the

biosynthesis of amino acids, nucleotides, lipids and reducing

equivalents in the form of NADH (necessary for oxidative

phosphorylation to synthesize ATP) and NADPH (required for

lipid and nucleotide biosynthesis). Since GLUD1 regulated

glutaminolysis, ATP production, biosynthesis and affected the

occurrence and progression of breast cancer, gastric cancer and

lung cancer (12–14), and highly proliferative human tumors

display high transaminase and low GLUD expression (14).

Therefore, GLUD1 might play a crucial role in ccRCC

development and progression. Currently, the role and

mechanism of GLUD1 in ccRCC occurrence and development

remains unknown.

In this study, we found that GLUD1 expression level was

downregulated in ccRCC tissues. Downregulated GLUD1 level

was correlated with ccRCC malignancy, and poor prognosis and

TKIs sensitivity. The increased methylation in GLUD1 promoter

led to the downregulation of GLUD1 level. GLUD1 suppressed

ccRCC cell proliferation, colony formation and migration by

inhibiting PI3K/Akt/mammalian target of rapamycin (mTOR)

pathway activation. GLUD1 level was negatively associated with

the tumor immunosuppressive microenvironment (TIME).

GLUD1 might be a novel prognostic, predictive marker and

potential therapeutic target for ccRCC.

Materials and methods

Bioinformatics analyses

The microarray series (GSE53757) information was obtained

from the National Center for Biotechnology Information Gene
Frontiers in Oncology 02
Expression Omnibus database (NCBI GEO, https://www.ncbi.

nlm.nih.gov/gds/?term=GSE53757). The TCGA GLUD1 mRNA

level data (RNA Seq v2) in RCC patients was from https://www.

synapse.org/. The clinical data were from cBioPortal database

(www.cbioportal.org). The protein levels of GLUD1 were from

the UALCAN database (http://ualcan.path.uab.edu/).
Tissue collection

Surgical specimens of ccRCC cases and adjacent normal

renal tissues were collected from nephrectomy specimens at the

Affiliated Beijing Friendship Hospital, Capital Medical

University in December 2017. 10 paired ccRCC and normal

renal specimens were formalin-fixed and paraffin-embedded for

immunohistochemistry (IHC) analysis. Another 12 paired fresh

samples were immediately frozen in liquid nitrogen and stored

at -80°C for use in western blotting (WB) analysis. All specimens

were histologically confirmed by uro-pathologists. The study

was approved by the Research Ethics Board of Affiliated Beijing

Friendship Hospital and was performed according to the World

Medical Association Declaration of Helsinki. All subjects

included in the protocol signed a declaration of informed

consent. Prior to surgery, the patients had not received

any therapies.
Immunohistochemistry

IHC was performed as described before (15). The sections

were incubated with anti‐GLUD1 antibody (Cat# PTM-5632,

1:100, PTM Biolabs Inc., Hangzhou, China). Image‐Pro plus 6.0

(MediaCybernetics Inc., SilverSpring, MD, USA) was used to

analyze optical densitometry.
Western blotting

WB was performed as previously described (16). The

primary antibodies comprised anti-Flag (Cat# AE063), anti-

Akt (Cat# A17909), anti-p-Akt (Cat# AP1259), anti-mTOR

(Cat# A11354), anti-p-mTOR (Cat# AP0978), anti-GAPDH

(Cat# A19056) (all from Abcam, Cambridge, UK) and anti‐

GLUD1 antibody (Cat# PTM-5632, PTM Biolabs Inc). The

secondary antibodies comprised HPR-labeled anti-rabbit

antibody (Cat# ZB-2301) and HPR-labeled anti-mouse

antibody (Cat# ZB-2305) (all from ZSGB-BIO, Beijing, China).
Gene set enrichment analysis

The association between phenotypes and GLUD1 expression

level was analyzed using gene set enrichment analysis (GSEA
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v2.2, http://www.broad.mit.edu/gsea/) as previously described

(17). A gene set is considered significantly enriched when the

false discovery rate (FDR) score is < 0.05.
Methylation level analysis of GLUD1
promoter and correlation analyses with
phenotypes and survival

UALCAN online tool (http://ualcan.path.uab.edu/cgi-bin/

ualcan-res.pl) was used to analyze methylation levels of

GLUD1 promoter in ccRCC and paracancerous tissues. The

correlation between methylation levels of GLUD1 promoter and

GLUD1 mRNA level and correlation between the methylation

level of GLUD1 promoter and clinical phenotype were analyzed

by MEXPRESS tool (https://mexpress.be/index.html). MethSurv

was used to perform multivariable survival analysis using DNA

methylation data.
Plasmid construction, cell culture
and transfection

The human renal carcinoma cell lines ACHN and 769-P

were obtained from American Type Culture Collection and

cultured according to the standard protocols. ACHN and 769-

P cells were cultured in RPMI-1640 medium, containing fetal

bovine serum (FBS) at a final concentration of 10%. All cell

culture reagents were provided by HyClone (Logan, UT, USA).

Lipofectamine 2000 (Invitrogen Carlsbad, CA, USA) was used

for GLUD1-Flag (Zeqiong, Changsha, China) transfection

according to the manufacturer’s protocol.
Cell proliferation assay

The Cell Counting Kit-8 (Dojindo, Kumamoto, Japan)

colorimetric assay was conducted to measure the relative

number of viable cells (18).
Colony formation assay

The single cell colony formation abilities were measured by

plate colony assay in a 6-well plate (19). Triplicate experiments

with triplicate samples were performed.
Wound healing assay

Cells were seeded into 6-well cell culture plate and cells were

wounded with the tip of a P-20 microtube. Then, wound healing

was monitored and measured.
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Co-expression gene network of GLUD1

Co-expression online analysis was performed in the website

(https://www.cbioportal.org/) by using the mRNA level in the

TCGA_KIRC database (TCGA, Nature 2013). With P value <

0.05 as the threshold, the genes which had greater than 0.3

Spearman correlation coefficient with GLUD1 in expression level

were selected. Cytoscape software (Cytoscape_v3.8.0) was used

to draw gene co-expression network.
Protein-protein interaction (PPI) network
construction of GLUD1-related genes

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was

applied to uncover differentially expressed genes (DEGs)

between ccRCC tumors and adjacent renal tissues. DEGs were

screened out using GEO2R according to the criteria of P value <

0.05 and |logFC| > 1. The DEGs which were statistically

correlated with GLUD1 (|spearman coefficien| > 0.3) were

defined as GLUD1-related genes.

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING, http://string-db.org/) is a database used to predict the

interaction among GLUD1-related DEGs. The minimum

interaction value is set to 0.4 (medium confidence), and

protein nodes that do not interact with other proteins are

removed. Then, the network graph was visualized and

analyzed using Cytoscape v3.8.0.
KEGG pathway analysis

KEGG analysis was executed by online analysis tools–

Database for Annotation, Visualization, and Integrated

Discovery (DAVID) (http://david.abcc.ncifcrf.gov/).
Analyses of the correlations of GLUD1
levels with the immunosuppressive
microenvironment of ccRCC

The correlations of GLUD1 level with immunosuppressive

cells abundances were analyzed on the TISIDB database (http://

cis.hku.hk/TISIDB/index.php). Immune score was estimated

using Sangerbox (http://vip.sangerbox.com/home.html) for

assessing the association between tumor microenvironment

components and GLUD1 expression in ccRCC. Tumor

Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.

harvard.edu) computational methods were used to predict

T cell dysfunction.
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Statistical analysis

Statistical analyses were performed using IBM SPSS 26

(SPSS, Inc., Chicago, IL, USA) and Graphpad Prism 8

(Graphpad Software, Inc., San Diego, CA, USA). The paired

samples were analyzed by paired samples t-test. The unpaired

samples were analyzed by independent samples t-test. The

relationship between GLUD1 expression level and clinical

stages was analyzed by one-way ANOVA. Overall survival

analysis was evaluated by Kaplan–Meier plots and log-rank

tests. Correlation between methylation levels of GLUD1

promoter and GLUD1 mRNA level was analyzed by Pearson

correlation analysis. Proliferation curve results were analyzed

using a repeated measures ANOVA. Correlations between gene

expression levels and among GLUD1 level and immune cells

infiltration were analyzed by Spearman correlation analysis. A P-

value < 0.05 was deemed statistically significant.
Results

GLUD1 is downregulated in
ccRCC tissues

In order to clarify the role of GLUD1 in ccRCC, we analyzed

the data from GEO database (GSE53757) and the TCGA_KIRC

database. We found that GLUD1mRNA levels were significantly

downregulated in ccRCC tissues compared with nontumor

tissues (Figures 1A, B). Moreover, based on CPTAC database,

we found that GLUD1 protein levels were also decreased in

ccRCC tissues compared with normal renal tissues (Figure 1C).

Subsequently, we examined GLUD1 protein levels in ccRCC

tissues and adjacent renal tissues by IHC and WB, respectively.

The results further confirmed that the protein level of GLUD1 in

the ccRCC tissues was lower than that in the matched adjacent

normal tissues (Figures 1D, E). All these results demonstrate that

GLUD1 expression level is downregulated in ccRCC tissues.
GLUD1 is a potential prognostic and
TKIs sensitivity predictive markers for
ccRCC patients

To investigate the clinical significance of GLUD1

downregulation in ccRCC tissues, we analyzed the correlation

between GLUD1 expression level and clinicopathological

characteristics. GLUD1 mRNA level was gradually decreased

as T stage, AJCC stage and Fuhrman grade progressed

(Figures 2A–C). The low level of GLUD1 was related with

recurrence and relapse of ccRCC patients (Figures 2D, E),

while high level of GLUD1 was related with survival of ccRCC

patients (Figure 2F). These results reveal that GLUD1 may be a
Frontiers in Oncology 04
tumor suppressor in ccRCC and potential prognostic marker for

ccRCC patients.

To further investigate the clinical implications of GLUD1

downregulation in ccRCC, the correlation between the GLUD1

mRNA level and survival rates of patients was analyzed based on

the TCGA data. The results indicated that low GLUD1 level

predicted shorter overall survival (OS) and disease-free survival

(DFS) (Figures 2G, H), especially for patients in higher Fuhrman

stage and T stage (Figures 2I, J). In addition, we also observed

high GLUD1 expression was related with the higher sensitivity of

ccRCC cells to TKIs treatment (Figures S1A, B). Collectively,

these findings reveal that GLUD1 level is a potential prognostic

and TKIs sensitivity predictive markers for ccRCC patients.
High level of methylation in GLUD1
promoter leads to the downregulation
of GLUD1 level in ccRCC tissues and
correlates with the survival of
ccRCC patients

To further explore the underlying mechanism of GLUD1

downregulation, the bioinformatics analyses were performed.

Results showed that GLUD1 gene had low frequency in mutation

(Figure S2), suggesting that decreased GLUD1 level in ccRCC

tissues does not result from gene mutation. However, the

methylation level of GLUD1 promoter in ccRCC tissues was

significantly increased (Figure 3A). In addition, correlation

analysis results showed that the methylation level of GLUD1

promoter was negatively correlated with the GLUD1 mRNA

level (Figure 3B). These results reminded that the increasing

methylation level of GLUD1 promoter might be one of the

mechanisms for GLUD1 downregulation in ccRCC. Based on

MEXPRESS database, we found that the methylation levels of

GLUD1 promoter in ccRCC tissues were significantly

upregulated as neoplasm histologic grade progressed and

positively correlated with lymph node metastasis (Figure 3C).

We further found that the high level of methylation in GLUD1

promoter was related with shorter OS of ccRCC patients

(Figure 3D). These results suggest the methylation in GLUD1

promoter has the important biological significance in

ccRCC phenotypes.

Then, we explored which methylation-related writers and

erasers were responsible for elevated methylation levels of

GLUD1 promoter. Results showed DNMT1, DNMT3A and

DNMT3B wer e up r egu l a t ed , wh i l e KDM1A was

downregulated in ccRCC tissues (Figures S3A–D). Further

Pearson correlation analysis revealed the most significant

negative correlation of GLUD1 level with DNMT3A in ccRCC

tissues (r = -0.3806, P < 0.0001, Figure S3E). These results

suggest that DNMT3A may play a crucial role in regulating the

methylation level of GLUD1 promoter in ccRCC.
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GLUD1 suppresses the proliferation and
migration of RCC cells

To examine the role of GLUD1 in RCC cells, GSEA was

performed based on TCGA_KIRC data. Results revealed that

gene sets associated with cell proliferation and invasion were

significantly enriched in cases with low GLUD1 expression

(Figures 4A, B). These results suggest that the low expression

of GLUD1 may promote ccRCC tumorigenesis and

development. To validate the biological effects of GLUD1 in

ccRCC, GLUD1 was overexpressed in ACHN and 769-P cells.
Frontiers in Oncology 05
GLUD1 overexpression significantly suppressed the

proliferation, colony formation and migration of ACHN and

769-P cells (Figures 4C–F). In summary, these data indicate that

GLUD1 suppresses RCC cell proliferation and migration.

GLUD1 suppresses ccRCC tumorigenesis
and development by inhibiting PI3K/Akt/
mTOR pathway

To clarify the mechanism by which GLUD1 suppressed ccRCC

occurrence and development, we analyzed the genes correlated with
B

C D

E

A

FIGURE 1

GLUD1 is downregulated in ccRCC tissues. (A, B) GLUD1 mRNA levels in ccRCC tissues compared with normal tissues based on GEO GSE53757
data (A) and TCGA_KIRC data (B) respectively. (C) GLUD1 protein levels in ccRCC tissues compared with adjacent normal tissues based on
CPTAC data. (D) GLUD1 protein levels in ccRCC tissues and normal tissues were detected using IHC. Scatter plot displaying the expression of
GLUD1 in adjacent normal tissues and ccRCC tissues. (E) GLUD1 protein levels in ccRCC tissues and paired normal tissues were detected using
western blot assay. **P < 0.01; ****P < 0.0001.
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GLUD1 expression in TCGA dataset. Co-expressed genes can

better clarify the role of GLUD1 in ccRCC. We constructed co-

expressed gene network and found that GLUD2, COX15, VAV3,

TNFAIP6, SHLD2P3, SHLD2P1, SHLD2, etc. were moderately

correlated with GLUD1 (Figure 5A).

In order to elucidate the mechanism of GLUD1 in ccRCC

more clearly, we chose the GLUD1-related proteins which were

not only correlated with GLUD1, but also differentially

expressed between ccRCC and adjacent normal tissues.

GLUD1-related proteins were used to construct PPI network.
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We found that SDHD, ECSH1, COL6A3, CAT, ADH6, etc. were

GLUD1-related proteins (Figure 5B).

Then, KEGG enrichment analysis was performed based on

GLUD1-related proteins. Results showed that most of genes

were enriched in PI3K/Akt/mTOR pathways (Figure 5C). The

aberrant activation of PI3K/Akt/mTOR signaling is one of the

most frequent events in human cancer, especially in RCC and

serves to disconnect the control of cell growth, survival and

metabolism from exogenous growth stimuli (20). Hence, we

speculated that GLUD1 suppressed ccRCC tumorigenesis and
B C

D E F

G H I

J

A

FIGURE 2

GLUD1 is a potential prognostic and TKI sensitivity predictive marker for ccRCC patients. (A–C) GLUD1 mRNA levels were gradually
downregulated as T stage, AJCC stage and Fuhrman grade progressed. (D) GLUD1 mRNA level was negatively correlated with recurrence of
ccRCC patients. (E, F) Enrichment plots of gene expression signature for relapse (SMID_BREAST_ CANCER_RELAPSE_IN_LUNG_UP) and survival
(LEE_LIVER_CANCER_SURVIVAL_DN) were obtained by GSEA according to GLUD1 mRNA levels. The ccRCC samples from TCGA_KIRC
database were divided into high and low GLUD1 expression groups according to the median value of GLUD1 RNA-seq quantification results.
(G, H) The Kaplan-Meier (KM) curves of overall survival and disease-free survival based on TCGA_KIRC data. ccRCC patients were divided into
high/low expression groups according to GLUD1 mRNA level. (I, J) KM curves of overall survival based on TCGA_KIRC data. Advanced ccRCC
patients were divided into high/low expression groups according to GLUD1 mRNA level. *P < 0.05; **P < 0.01; ****P < 0.0001.
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development by inhibiting PI3K/Akt/mTOR pathway. Western

blotting results revealed that GLUD1 overexpression decreased

the activation levels of Akt and mTOR in RCC cells (Figure 5D).

These results indicate that the low level of GLUD1 promotes

ccRCC tumorigenesis and development by activating PI3K/Akt/

mTOR pathway.
GLUD1 level is negatively associated with
immunosuppressive microenvironment
in ccRCC

The above results showed that low levels of GLUD1 altered

the metabolism of ccRCC cells by activating the mTOR pathway.
Frontiers in Oncology 07
Altered metabolic pathways, especially mTOR pathway in

tumors play key roles in tumor growth and immnosuppressive

acidic tumor environment (21). The suppressive immune

microenvironment (TIME) reprograms immune cell behavior

by altering the cellular machinery and nutrient supply of

immune cells, thereby limiting antitumor function (21). We

therefore assessed the correlation of GLUD1 expression with

tumor immune microenvironment. The bioinformatics analysis

results showed that GLUD1 level in ccRCC cells was negatively

related with the abundance of immunosuppressive cells (Treg

cells, MDSCs and M2 macrophages) (Figure 6A), indicating that

GLUD1 low level was correlated with the TIME in ccRCC

patients. In addition, GLUD1 low level was also related with

the infiltration of other immune cells, including T cells
B

C

D

A

FIGURE 3

High level of methylation in GLUD1 promoter leads to the downregulation of GLUD1 level in ccRCC tissues and correlates with shorter survival
of ccRCC patients. (A) Methylation levels of GLUD1 promoter was increased in ccRCC tissues based on the TCGA_KIRC data. The Beta value
indicated the level of DNA methylation, and the P value was derived from independent sample two tailed t-test. The data were presented as
mean ± SD. ****P < 0.0001. (B) The correlation between methylation levels of GLUD1 promoter and GLUD1 mRNA level. (C) The correlation
between GLUD1 methylation levels and clinical parameters in the MEXPRESS database. (D) KM curve of methylation levels of GLUD1 promoter
based on the TCGA data. ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.975517
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.975517
B C

D E

F

A

FIGURE 4

GLUD1 suppresses the proliferation and migration of RCC cells. (A, B) Enrichment plots of gene expression signature for proliferation
(CHIANG_LIVER_CANCER_SUBCLASS_ PROLIFERATION_DN) and invasion (MINGUEZ_LIVER_CANCER_VASCULAR_INVASION_ DN) were
obtained by GSEA according to GLUD1 mRNA levels. The ccRCC samples from TCGA_KIRC database were divided into high and low GLUD1
expression groups according to the median value of GLUD1 RNA-seq quantification results. (C) ACHN and 769-P cells were transfected with
GLUD1-Flag expression plasmid, and protein levels were detected using western blot assay. b-actin was used as a loading control. (D–F) ACHN
and 769-P cells were transfected with GLUD1-Flag. Vector-transfected ACHN and 769-P cells served as control. CCK8 viability assays were
used to analyze cell viability (D). Colony formation assays were performed to detect cell proliferation (E). Wound healing assays were performed
to detect cell migration (F). The relative migration distance is quantified. ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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B

C D

A

FIGURE 5

GLUD1 suppresses ccRCC tumorigenesis and development by inhibiting PI3K/Akt/mTOR pathway. (A) Co-expression network of GLUD1 gene in
ccRCC. Genes that were negatively correlated with GLUD1 were displayed in green, and genes that were positively correlated with GLUD1 were
displayed in red. The darker the color, the stronger the correlation. (B) PPI network of GLUD1-related DEGs. (C) KEGG pathway enrichment
analysis of GLUD1-related differentially expressed proteins. (D) Western blot measured the levels of proteins related to PI3K/AKT/mTOR pathway
in ACHN and 769-P cells with GLUD1 overexpression.
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(Figure 6B). If these T cells were in functional state, they would

kill cancer cells. However, TIDE analysis result revealed that low

GLUD1 levels correlated with higher dysfunction scores of T

cells (Figure 6C), suggesting that patients with low GLUD1 levels

and more immune cell infiltration tend to have a stronger

signature of T cell dysfunction, which may impair the ability

of cytotoxic T cells to kill cancer cells. Therefore, GLUD1

downregulation may contribute to the TIME by enhancing

dysfunctional immune cell infiltration.
Discussion

In this study, we described GLUD1 as a novel tumor

suppressor in ccRCC, which was different from tumor-

promoting role in other cancers. Moreover, we found that the

low level of GLUD1 was correlated with the poor prognosis and

low sensitivity to TKIs therapy for ccRCC patients. GLUD1

might be helpful for identifying patients who need

individualized therapies to improve their clinical outcomes.

GLUD1 was reported to be highly expressed and play the

tumor-promoting roles in breast cancer, gastric cancer and lung
Frontiers in Oncology 10
cancer (12, 22, 23). GLUD1 promoted breast cancer growth

through accelerating metabolic recycling of ammonia (22).

GLUD1 enhanced gastric cancer cell proliferation, migration

and invasion by activating the Notch signaling pathway (12).

GLUD1 regulated redox homeostasis to promote lung cancer cell

proliferation (23). However, in highly proliferative breast

tumors, GLUD1 was also reported to be expressed in low level

(14), indicating that the controversial role of GLUD1 in breast

cancer. In ccRCC, GLUD1 level was downregulated and acted as

tumor suppressor and might be a therapeutic target for ccRCC.

GLUD1 protein level was reported to be downregulated via

ubiquitination and degradation. Detailly, under conditions of

amino acid deprivation, GLUD1 translocated from mitochondria

to the cytoplasm, where it became ubiquitinated and degraded via

the E3 ligase RNF213 (24). Our study found that GLUD1 level was

downregulated in ccRCC tissues not only in protein level, but also in

mRNA level. We also found that the upregulation of methylation

level in the GLUD1 promoter might be responsible for the

downregulation of GLUD1 in ccRCC. This is a new mechanism

of GLUD1 downregulation in ccRCC. By targeting GLUD1

methylation to regulate GLUD1 level might also be a therapeutic

strategy for ccRCC.
B C

A

FIGURE 6

GLUD1 level is negatively associated with the ccRCC immunosuppressive microenvironment. (A) Correlation between GLUD1 level and
immunosuppressive cell infiltration score in ccRCC patients. (B) Correlation of GLUD1 with immune cell infiltration in ccRCC. (C) The correlation
between GLUD1 level and T cell dysfunction score by TIDE analysis. ***P < 0.001.
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Glutamine metabolism stimulates several signaling pathways

that promote cell growth and proliferation. Of which, the activation

of mTOR, a key signaling node regulating protein translation, cell

growth and autophagy (25) is the most important event for

glutamine metabolism. That glutamine was taken up in exchange

for essential amino acids (EAA) is the rate-limiting step in mTOR

activation of cancer cells (25, 26). a-KG from glutamine catabolism

is critical for mTOR activation in cervical and osteosarcoma cancer

cell lines (27). Hyperactivation of PI3K/Akt/mTOR signaling is

critical for RCC cell proliferation, survival, migration andmetastasis

as well as angiogenesis and therapy resistance (28–31). In this study,

we found a novel mechanism by which glutamine metabolism

activated PI3K/Akt/mTOR in ccRCC-the downregulation of

GLUD1 in glutamine metabolism pathway. Further, GLUD1

overexpression suppressed RCC cell proliferation and migration

by inhibiting the PI3K/Akt/mTOR pathway activation.

In addition, GLUD1 was co-expressed with various metabolism-

related genes in ccRCC. GLUD2 was downregulated in glioblastoma,

and GLUD2 inhibited glioblastoma progression by promoting cell

cycle arrest and leading to mitochondrial dysfunction (32). Rab21

was downregulated in ovarian cancer, which led to cytokinesis failure

and induced aneuploidy, further underwent malignant

transformation and tumorigenicity (33). NOD1 was highly

expressed in colorectal cancer, and mediated the adhesion,

migration and metastasis of colorectal cancer cells through the p38

MAPKpathway (34). DNMT3Awas upregulated in liver cancer, and

DNMT3A-mediated promoter hypermethylation inactivated

multiple tumor suppressor genes, thus promoting liver cancer cell

proliferation and colony formation (35). When we constructed the

PPI network using GLDU1-related DEGs, GLUD1 was one of the

hub genes of these co-expressed or related genes. This confirmed that

GLUD1 played a key role in ccRCC development.

ccRCC has been reported to be a highly immunogenic

malignancy that has been shown to be infiltrated by a large

amount of immunocytes, including macrophages, NK cells, and

T cells (36). Several studies have shown that the abundance of

tumor-infiltrating lymphocytes and CD8+ T cells is inversely

associated with prognosis of ccRCC patients (37, 38). As for

immune cell infiltration and immunotherapy, the use of anti-

PD-1 or anti-PD-L1 therapy in ccRCC patients have been

reported. Nivolumab is considered as a standard care strategy

for advanced ccRCC and is widely used in clinical trials (39).

Depleted CD8+ T cells and M2-like macrophages co-occur in

advanced disease and express ligands and receptors that support

T-cell dysfunction and M2-like polarization, an immune

dysfunctional circuit leading to poor prognosis (40). In the

current study, we revealed an inverse correlation between

GLUD1 level and immune cell infiltration, and GLUD1

promotes mTOR pathway activation. mTOR pathway

activation results in the upregulation of HIF-1a and the

increase in glycolysis and lactate production (41). An acidic

TME favors immunosuppression, reduces response to
Frontiers in Oncology
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immunotherapy, and stabilizes immunosuppressive cells (21).

Meanwhile, the expression of PD-L1 protein is dependent on

active Akt-mTOR signaling. The interaction of PD-L1 and PD-1

induces differentiation of naïve CD4+ T cells into Tregs and

maintains Treg-suppressive functions. PD-L1 can also act as a

receptor by sending reverse signals to limit tumor cell apoptosis

(42). Therefore, utilizing drugs targeting GLUD1 metabolism

may synergistically enhance renal cancer immunotherapy

through metabolic reprogramming of the TME.

Taken together, this study revealed that GLUD1 might

predict the prognosis of ccRCC patients, especially advanced

ccRCC patients. GLUD1 suppressed the occurrence and

development of ccRCC by inhibiting the PI3K/Akt/mTOR

pathway. GLUD1 may be a potential therapeutic target for

ccRCC, and a combination of GLUD1 targeted therapy and

immunotherapy may provide better therapeutic efficacy

for ccRCC.
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