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Sternectomy is a procedure mainly used for removing tumor masses infiltrating

the sternum or treating infections. Moreover, the removal of the sternum

involves the additional challenge of performing a functional reconstruction.

Fortunately, various approaches have been proposed for improving the

operation and outcome of reconstruction, including allograft transplantation,

using novel materials, and developing innovative surgical approaches, which

promise to enhance the quality of life for the patient. This review will highlight

the surgical approaches to sternum reconstruction and the new perspectives in

the current literature.
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Introduction

Chest wall corrections are generally concerned with the resection of primary locally

invasive chest wall malignancies or metastatic tumors (1, 2). The correct approach for the

reconstruction depends on the size, location, and depth of the tumor, as well as the

vitality of the surrounding tissues. The aim is to obtain clean surgical margins to afford

the patients the longest time survival while avoiding recurrence. The majority of surgeons

consider a defect bigger than 5 cm or including more than four ribs as a mandatory case

for reconstruction due to the possibility of further complications related to the instability

of the chest wall (2, 3). Moreover, certain defects, such as some apicoposterior defects,

even of bigger dimensions, may not need reconstruction due to sufficient support

provided by the shoulder or by the scapula (2, 3). The first goal of a chest wall

reconstruction is to maintain the stability of the thorax, preserving the lung functions

and protecting the intrathoracic organs, while minimizing the deformity which may
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derive from the resection (4, 5). One of the most beneficial

approaches in the last few decades is the discussion of each

clinical case by a multidisciplinary team including thoracic

surgeons, plastic surgeons, neurosurgeons, and radiation

oncologists to provide the optimal setting and procedures

tailored to the patient (4, 6, 7). The choice of the proper

materials for the reconstruction is also necessary to obtain the

optimal aesthetic effect and physical comfort (4, 6, 7).

One of the most challenging procedures for thoracic

surgeons is the removal of the entire sternum for a tumor or

infection infiltrating the bone (8, 9), which is quite frequent in

tumors growing in the anterior part of the chest. The greater

challenge is the reconstruction, which must guarantee the

protection of the underlying visceral components, the space

behind the sternum, and restoration of the stability of the

chest wall and pulmonary function (9).

The capacity to maintain the stability of the chest wall has

been extensively studied for its crucial role in preserving the

dynamics of breathing (10, 11). Recently, computer simulations

have helped guide reconstruction of the chest and prevent

possible functional problems after surgery (12, 13). Reduction

of thorax expansion may compromise the volume of the chest,

with 20% loss of its normal capacity (6). The type of prosthesis is

also critical because most of the patches are non-absorbable and

synthetic and the patients are often young, with a long-life

expectancy (10–14).

The prosthesis materials are designed to stretch uniformly,

inducing a uniform tension at the extremities where they will be

fixed (15–17). They are generally well tolerated if covered by

viable tissue, although some reports described an infection rate

between 10 and 25% for the use of synthetic meshes, which

needed to be removed due to infection. Other interesting

materials have been developed to avoid this problem, such as

vinyl meshes, due to their flexible characteristics and

biocompatibility, or the bovine pericardium prosthesis, which

is completely biological and mitigates infection or

contamination (18). Furthermore, the scientific community is

trying to identify the best approaches to cover the chest,

especially after sternum removal (11, 16). Currently, sternal

reconstruction methods often employ a sandwich approach

using a polymethyl methacrylate/polypropylene (PMM/PP)

implant and a soft tissue flap (19, 20) (Figure 1). Another

approach involves the use of a titanium rib-bridge system in

addition to soft tissue flaps (21, 22) (Figure 1).

Long-term results related to PMM/PP hardware failure have

found a solution using the rigid reconstruction of the sternum

with a double-barrel free fibula flap plus titanium plates, with the

soft tissues of the free flap as coverage (22, 23). This approach

provides better stability due to the improved biomechanical

design (23–25).

Moreover, sternectomy due to an infection after a

cardiothoracic operation has an incidence between 1 and 4%

(26); however, reconstruction of the bone provides long-term
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results, without significant morbidity, although several reports

have emphasized the importance of coverage with a visceral

component or muscles flaps (27–29). The most important step

in sternal reconstruction is the setting of the anterior chest wall to

avoid respiratory problems that may arise due to hypomobility of

the chest wall (30). In recent decades, different techniques and

materials have been used for sternal reconstruction, and currently

(31), attention has been given to allograft sternum implantation

for better aesthetic results and a more “natural” definition of the

anterior chest, without immunosuppression.
Sternum reconstruction for
oncological reasons and infections

Primary malignant sternal tumors (PMSTs) are infrequent

tumors, and most of them present at the stage of infiltration of

the sternum and soft tissues (32, 33). Radical resection may be

the most successful standard treatment, although the local

aggressiveness of the tumor makes the surgical approach

particularly complex and is associated with a high risk of

recurrence (4, 32, 34).

Musculocutaneous flaps have been used to successfully cover

extensive skin excisions (4, 28, 29, 35, 36). A representative

demonstration of this method was shown in 2004 by Alain R.

Chapelier et al., who reported 38 patients undergoing curative

resection for PMST (37). The resections included the affected

sternum, with partial or complete removal and en bloc

asportation of the closed area. The sternal defects were

reconstructed using a mesh for chest wall stability and the

pectoralis major (PM) muscles with skin advancement or

latissimus dorsi musculocutaneous flap to reconstruct the soft

tissue cover.

The results are generally satisfactory, with low mortality.

Furthermore, the stability of the chest can be supported by

various prosthetic materials, such as two layers of Marlex mesh

(MMM), as proposed by several authors (38–40), or a

polytetrafluoroethylene (PTFE) patch (33) (Figure 1). Recently,

another approach was introduced with methyl methacrylate bars

to reduce the amount of prosthetic material, and thus, the risk of

infection (7, 41). However, the PM is the most commonly used

material for the correction of sternal defects, especially in men,

but in women, skin closure or grafting of the donor site is

commonly conducted (28, 29). In particular, musculocutaneous

flaps guarantee the best aesthetic results and represents a well-

vascularized soft tissue cover (28, 29).

Another less frequently used approach is momentum

interposition, especially in patients undergoing resection of an

irradiated sternum or recurrent tumors, such as sarcomas (42,

43). Although satisfactory results in high-grade tumors have not

been reported, in patients with limited local recurrence or one

metastasis, resection may be possible with good long-term
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survival (5, 44–47). Nevertheless, in large sternal defects or

patients with an irradiated sternum, reconstruction using

musculocutaneous flaps is preferred because of the reduced

risk of infection (24, 40, 46). Additionally, the use of methyl

methacrylate mesh is recommended for reconstruction after

complete sternectomy (48).

Secondary sternal tumors are infrequent and are associated

with breast, thyroid, or kidney metastasis (49–51). They

represent 15% of all sternal tumors and involve mainly the

body of the sternum. Because they are infrequent, the scientific

community has not reached a consensus regarding their

treatment (50). Chemoradiotherapy and hormonal therapy are

generally considered the gold standards of treatment (51, 52).
Surgical techniques and prosthesis

The most common materials for sternum reconstruction are

PTFE and MMM because they provide rigidity of the chest (11,
Frontiers in Oncology 03
51). When PTFE is used for extensive anterior chest wall defects

requiring rib resection up to the entire lateral aspect of the

sternum, the reconstruction is based on a series of sternal

punches passing through the sternum to accommodate the

anchoring sutures of either the PTFE or the MMM (53).
The methyl methacrylate mesh

Methyl methacrylate consists of a sandwich of two mesh

layers to maintain the rigidity of the reconstruction. This

product has been used since the 1980s and for several years it

has been considered the best choice for the sternum and the

entire or partial chest wall reconstruction (54). It is usually set by

the thoracic surgeon with the first layer of polypropylene

material fixed on the ribs, and the methyl methacrylate is

generally used as a cover for the prosthesis, becoming an

integral part of the chest support. This approach is particularly

useful for massive chest wall demolitions, especially anteriorly
B

A

FIGURE 1

Standard procedure for sternal reconstruction. Current approaches for sternum reconstructive surgery rely on the use of a sandwich implant
with a polymethyl methacrylate/polypropylene (PMM/PP) shown in panel (A), and a titanium rib-bridge system, shown in panel (B).
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and laterally, to prevent chest deformity (55). On the other hand,

the material characteristics of methyl methacrylate do not

include fluid permeability, and this could be an unfavorable

due to the risk of infection, pain, and rigidity of the thorax (55–

57). The most frequent complications regarding the use of

methacrylate (11) are fractures and infections, which have

been described in 10–20% of patients, followed by the

necessity to remove the prosthesis (11, 33). The scientific

community and experts in the field agree that coverage with

soft tissues is necessary to guarantee satisfactory long-term

results (34, 58).
PTFE

PTFE is another material frequently used for chest wall

reconstruction (30). The material is flexible and easily

conforms to the chest. The thickness of the mesh provides a

permanent tight suture and good chest stability. Similar to

MMM, PTFE is useful for large correction of the thorax, and it

is recommended to cover it with viable tissue (11). The only

difference compared to MMM is that, even if it becomes infected,

immediate removal is not suggested, but rather, the scientific

literature advises removing it after 6–8 weeks from infection, so

the scar tissue can support the chest after the mesh removal

(34, 59).
Titanium plates

In the last few decades, new approaches and materials have

been developed for prosthetic surgery, including thoracic

surgery. The use of titanium is popular because it exhibits high

strength, low weight, and intrinsic diamagnetic characteristics,

which permits patients to continue using the magnetic

resonance imaging diagnostic tool (60). The most important

trait of titanium is its high biocompatibility. Different models

have been used recently by surgeons, from the Borrelly steel

staple-splint system to STRATOS bars, which are reportedly

comfortable in regard to remodeling and fixing on the ribs (61,

62). The improved results are attributed to locking the bars in

place using at least three screws to guarantee the stability of the

chest in the area where the terminal part of the clean resected

ribs margins needs to be fixed (61, 62). Several studies confirmed

that the titanium bars may be more beneficial in cases of large

thorax reconstruction, not only for guaranteeing the stability of

the chest but also for preventing respiratory problems and

infections (34). In particular, only a few complications have

been observed, such as dislocations or ruptures of the bars, with

an incidence frequency of around 0 to 11% of cases (63).

Moreover, titanium plates in association with acellular

collagen matrixes or cryopreserved homografts may be an

appropriate alternative in cases of re-operation or operation of
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a highly irradiated area (51, 53, 64). The titanium bars may be

formed to the desired length and are anchored to the ribs to

prevent fracture or dislocation, which occurred in only one

patient who required plate replacement with acellular collagen

matrix patching (64). The titanium plates are usually implanted

at a 2:1 ratio, depending on the number of ribs resected (64).

Moreover, if an acellular collagen matrix prosthesis is selected, a

combination of titanium plates and an acellular collagen matrix

patch can be used (65, 66). Another approach involves using

titanium plates without an internal coverage material (7, 13, 22,

33, 38, 53).

However, the necessity to cover large reconstructions, often

considered one of the main causes of high morbidity and

mortality, led to the development of more innovative

approaches. In particular, the versatility of materials has been

considered a point of interest, and for this reason, the

introduction of 3D-printed sternum prostheses has introduced

a new paradigm of “chest wall reconstruction” (67, 68). A

baseline high-resolution computed tomography scan is used to

define a 3D model of the thorax and tumor mass using specific

software (69). Through the use of powdered titanium and

electron-beam melting technology, each layer is constructed

and modeled as a personalized sternum to ensure optimal

anchorage to the ribs and to ensure clean margins after

surgical resection (59). Recently, several authors have reported

customizing a titanium sternum model after resection with

significant results (70).

Other interesting materials include carbon-fiber molds or

alumina-ceramic models, which can be produced in a very short

time, usually around 7 days, with very good aesthetic results (71).

In particular, long-term results related to this new generation of

materials showed that they remained very stable, even years after

implantation (71, 72). For both the approaches, regarding the

use of new materials and standards, a higher complication rate

has been reported in patients with severe co-morbidities and

older age (71–73). One equally important aspect is the cost of

3D-printed models, which depends on the size and thickness of

the prosthesis. The use of traditional materials (i.e., a

combination of titanium bars and mesh) is much cheaper

(between 400 and 500 €) than the use of alumina prostheses,

which usually cost around 10,000–15,000 € each (74).
Allogenic sternal allografts and the
future of regenerative medicine in
sternum reconstruction

Cryopreserved allografts and homografts, recovered from

cadaveric donors and stored at –80°, have also been considered

as a possible solution to reconstruct the thorax after a large chest

wall demolition, or in cases of severe local infection (75). These

materials may be more useful than prosthetic materials since
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they can be incorporated into native tissue along with the

revascularization and cell populations (76). However, this

approach is not widely used due to the challenges associated

with identifying a donor in a short time period (77, 78). The

sternochondral graft is usually derived from a tissue bank via an

aseptic procedure, according to Italian rules (Figure 2). An

antibiotic solution is added for 72 hours at 4°C, and

cryopreservation at -80 °C is necessary to preserve the allograft

from immunogenic alterations (77, 78). The sternum is then

defrosted at 4–6 °C for 12 hours the day before surgery and is

placed into a sterile bag. The graft is generally defrosted in a 0.9%

NaCl solution with antibiotics (77, 78). The surgical procedure

involves the removal of the sternum and associated

subcutaneous or cutaneous tissues.

The most common approach to cover the allograft is using a

PM muscle-flap reconstruction to ensure an ideal fit with the

chest wall of the recipient (21, 28, 29, 40). Titanium bars are also

fixed on the sternum to preserve the stability of the anterior

chest. The PM muscle flaps are usually used, even in case of a

good reconstruction, for an aesthetically favorable result (79).

Despite the availability of common materials used for

sternum reconstruction, new regenerative approaches have
Frontiers in Oncology 05
been explored in recent decades (80). Scientists are trying to

identify a strategy to promote tissue regeneration with bone

remodeling using cell therapy specifically based on mesenchymal

stem cells (MSCs), which appear to play a strategic role in bone

healing, to implement sternal nonunion (81). In addition, MSCs

have been considered for cartilage restoration after injury.

Cartilage can self-repair in a complex structure with low

metabolic capacity (82). Surgical approaches that involve the

management of cartilage usually include microfractures and

autologous osteochondral transplantation; however, there is

currently a tendency to prefer those standards of care over the

use of regenerative treatments. These treatments should be

considered because they could replace surgical procedures that

provide only short-term restoration in favor of a long-term

regeneration (82, 83).

One of the main advantages of MSCs in the scope of cellular

therapies is that MSCs, through a paracrine effect, exhibit anti-

inflammatory activity, and thus, reduce fibrosis and anti-

apoptotic activity while promoting cell proliferation (59). The

optimal source of MSC retrieval is still debated since different

tissues have been identified as potential sources of MSCs, such as

bone marrow and adipose tissue (84, 85) (Figure 3). Bone
FIGURE 2

The sterno-chondral graft preparation. The sternum is usually derived from a tissue bank via an aseptic procedure.
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marrow mesenchymal stem cells (BMSCs) are the most widely

used for musculoskeletal regeneration because they

can differentiate into adipogenic, osteogenic, chondrogenic,

and myogenic cells; however, adipose-derived mesenchymal

stem cells (ADSCs) have shown greater genetic stability,

proliferation capacity, and less senescence than BMSCs (85,

86) (Figure 3).

The new strategies in regenerative medicine involve more

complex but tailored approaches in the field of bone and

cartilage reconstruction. This is a new chapter in the field of

tissue regeneration, although several limitations need to be

clarified. In particular, numerous preclinical and clinical trials

have confirmed that MSCs can differentiate into cartilage tissue

under the influence of chondrogenic factors, facilitating their use

for the repair of injured cartilage (87). Moreover, during the

process of differentiation, MSCs can produce various

extracellular matrices (ECMs) that are essential for the

recovery of cartilage function (88). At the targeted repair

areas, MSCs can release various cytokines, growth factors

(GF), and chemokines, driving endogenous MSCs to enter

lesion areas and creating an appropriate regenerative

microenvironment while simultaneously aiding the

regeneration of cartilage tissue (89). The combination of MSCs

with exogenous biochemical or biomechanical stimuli, in

addition to customized engineered scaffolds in MSC-based

therapies, represents a significant advance in cartilage

regeneration (89, 90).

Additionally, microfracture surgery is a commonly used

technique for early-phase cartilage injury. In microfracture

surgery, the surgeon drills several holes in the subchondral
Frontiers in Oncology 06
bone to discharge BMSCs, cytokines, and platelets from the

marrow, which can stimulate the regeneration of cartilage (91,

92). Microfracture surgery is preferred by the majority of

orthopedic surgeons for its simple single-stage technology and

confined invasiveness (92). Furthermore, this approach was 90%

successful in relieving pain postoperatively in cartilage lesions

(93, 94). After performing microfracture surgery on full-

thickness cartilage defects, histological evaluation of the early

changes of the cartilage showed that the repair was induced by

endochondral ossification in the depths of the microfracture

punctures (95). Furthermore, endochondral ossification could

activate osteoclasts and induce the reconstruction of cartilage,

which regenerates earlier than subchondral bone. The Food and

Drug Administration considers microfracture surgery to have a

good prognosis in the treatment of small-sized cartilage injuries.

Many types of research have shown that microfracture surgery

can postpone cartilage degeneration, regardless of the lesion size

(96, 97). However, some studies have reported that the post-

surgical microenvironment of microfractures failed to induce the

appropriate differentiation of BMSCs, leading to the formation

of relatively unstable fibrous tissue rather than cartilage

tissue (98).

Recently, in an attempt to identify an easy-to-handle cell

substitute for MSCs, the stromal vascular fraction (SVF) was

characterized for application in preclinical and clinical scenarios

(95). The SVF includes not only ADSCs, but also a

heterogeneous group of cells, such as progenitor cells,

endothelial cells, fibroblasts, monocytes, macrophages,

immune cells, muscle cells, pericytes, CD34+ cells, GFs,

adipocytes, and stromal components (99).
FIGURE 3

Regenerative approach for sternum reconstruction. Cell therapy approach specifically based on the transplant of MSCs for sterno-chondral
reconstruction is a method for long term regeneration. Bone marrow (BM) and adipose tissue (AD) as sources for MSCs isolation, using their
capacity to differentiate into both osteogenic and chondrogenic cells.
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L i k e MSC s , t h e SVF i s p r o a n g i o g e n i c a n d

immunomodulatory, and its cellular components can

differentiate and proliferate, all of which make it suitable for

tissue regeneration (97). The advantage of using SVF over

expanded ADSCs becomes immediately apparent because the

SVF, obtained via digestion with collagenase and centrifugation

of autologous adipose tissue, can be easily harvested by the

patient themself through liposuction. It therefore requires

minimal handling and contains ADSCs in a density ranging

from 0.06 to 4 CFU-f. Thus, the SVF could be injected directly

into damaged tissue, reducing inflammation, promoting

regeneration, and resulting in reduced healthcare costs and

fewer hours of hospitalization (99–101). Indeed, SVF allows

for a “one-step” surgical procedure whereby the SVF can be

harvested and implanted in the same surgical session, without

requiring in vitro expansion (101, 102). This procedure involves

minimal cell manipulation and low culture-related risks, with no

specific regulatory requirements for clinical translation, thus

expediting surgery. The process, from surgical harvesting of

adipose tissue to the production of the SVFs and their seeding on

a scaffold, hydrogel, or their direct injection, takes a maximum of

4 hours (101, 102).

The first reported example of successful sternal

reconstruction using adipose-derived SVF stem cells was

reported in 2015 by Zain Khalpey et al., in addition to

traditional techniques (103). They used a 3D-printed model

for setting the sternum and SVF, with the injection of 300

million cells both locally and intravenously, deposited at the level

of the healed area of the sternum (103). The initial results were

almost complete pain reduction and sternum nonunion after 6

months. Future studies will be needed to clarify the use of

autologous stem cells from the SVF in combination with

commonly used surgical approaches (103).

Several protein drugs exploit the fact that bone regeneration

can also occur by stimulating tissue repair using GFs, which can

regulate MSCs to restore the damaged tissues (104). Small

molecules, compared to macromolecules, exert a major effect

as they are less immunogenic and have higher osteoinductive

potential, in addition to reduced manufacturing costs and

contamination risks (105). These benefits have motivated the

increasing number of studies regarding these molecular drugs in

the last decade. However, there are some limitations to their

clinical application: first, they are small enough to also penetrate

non-specific cells and trigger undesirable signaling cascades;

second, they have non-specific adverse effects; and third, they

require an effective delivery strategy, which remains an issue as it

is necessary to develop an engineered scaffold that modulates the

appropriate amount of the drug (106, 107). More sophisticated

studies and examples of drug delivery systems are required to

overcome this limitation and support the use of these small

drugs in regenerative medicine (108).
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Discussion

In addition to defining new approaches and techniques to

reconstruct the chest wall and sternum, there is a need for each

surgeon and to consider the most appropriate clinical course,

which depends greatly on the clinic and material availability. The

scientific community is pushing more and more frequently to

use bioabsorbable materials, and the newest approaches are

represented by computed tomography with reconstructed 3D

images and the production of a 3D printed bioscaffold (67, 68).

These innovations may support different prostheses, tailored

not only for the enhancement of the resection but also to adapt it

to each patient.

Metcalfe and Ferguson suggested that the skin layers may

eventually be replaced with biomaterials or stem cells, although

the current ability to regenerate tissue is still too limited for

large-scale surgery (109).

In particular, one of the most interesting and studied

approach is the use of scaffoldless of neocartilage made by

native tissue using expanded chondrocytes and various

exogenous stimuli. Strategies have been set for the integration,

although several techniques have been developed (109–111).

Specifically, these approaches are set on the hurdles of cartilage

regeneration, with particular attention on the fibroblast growth

factor 18 (FGF-18) which induces cartilage growth and reduces

cartilage degeneration in osteoarthritis (112, 113). New recent

technologies are able to induce juvenile chondrocytes generation

with MSCs (114) and scaffolds now include biphasic,

osteochondral designs that may immediately bear load (115).

The scaffoldless used also allow to the formation of

constructs that can be immediately load-bearing upon

implantation (36, 116). Another emerging approach is

represented by the use of scaffolds with moieties, such as N-

hydroxysuccinimide, that is able to bind collagen (117). The

stimulation of the neocartilage by mechanical (28), anabolic

(65), and, potentially, catabolic stimuli (65) may result in a

synergistic interaction in cartilage formation. For FDA, new

cartilage therapies should be resistant for long time. However,

it is not well defined the calibration of the toughness and

hardness, for the resistance to wear. In addition to

mineralization, data on cartilage crosslinks in engineered or

repair cartilages are not defined and described yet (118, 119).

The next step of the use of new cartilage will be the durability

test. However, though currently healing of cartilage defects

continues to be elusive, given that emerging technologies are

being validated clinically, the field is primed for an explosion of

cartilage regeneration techniques that should excite those

suffering from cartilage afflictions (118). Furthermore, while

osteoarthritis is currently an intractable problem, exciting new

discoveries bode well for the eventual healing of a problem that

afflicts a quarter of our adult population. In conclusion, the
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most important aspect regarding chest wall defects is the

severity of the lesion, including the condition, presence of

infection, and presence or type of cancer. Additionally, the

development and selection of appropriate biomaterials to

reconstruct the thorax may improve the quality of life and

long-term results. The choice to adopt one prosthesis instead of

another one depends on the surgeon and specific clinic

(Figure 4). Ultimately, a multidisciplinary team is necessary

to assure more high-quality decisions.
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