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Colorectal cancer (CRC) is the second leading cause of cancer-related

mortality worldwide. The disease still remains incurable and highly lethal in

the advanced stage, representing a global health concern. Therefore, it is

essential to understand the causes and risk factors leading to its

development. Because age-related cellular senescence and type 2 diabetes

(T2D) have been recognised as risk factors for CRC development, the recent

finding that type 2 diabetic patients present an elevated circulating volume of

senescent cells raises the question whether type 2 diabetes facilitates the

process of CRC tumorigenesis by inducing premature cell senescence. In this

review, we will discuss the mechanisms according to which T2D induces

cellular senescence and the role of type 2 diabetes-induced cellular

senescence in the pathogenesis and progression of colorectal cancer. Lastly,

we will explore the current therapeutic approaches and challenges in

targeting senescence.
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Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related mortality

worldwide and the third most common type of cancer (1). In 2020, global CRC cases

increased by 6%, with a mortality rate of 29 per 100,000 people in men and 20 per 100,000

people in women (1). In the UK, there are around 42,900 new colorectal cancer cases

every year (2). However, CRC incidence and mortality rates have decreased by 6% and

12% respectively. In regard to survival, around 52.9% of patients diagnosed with CRC

survive the disease for ten years or more (2). Despite the decline in CRC incidence and

mortality over the last decade, mainly attributed to the improvement in early screening
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methods, CRC still remains incurable and highly lethal in the

advanced stage (3). Because of its magnitude, CRC represents a

global health concern and therefore it is essential to understand

the causes and risk factors leading to its development.

Several risk factors and pathologies, including ageing,

smoking, obesity and diabetes have been associated with poor

prognosis in colorectal cancer patients. Ageing represents the

major risk factor for CRC development. Brenner et al. (2007)

showed that the transition rates from advanced adenoma to CRC

strongly increase with age, from 2.6% in age groups 55-59 years

to 5.6% in age group ≥ 80 years among women, and from 2.6% in

age group 55–59 years to 5.1% in age group ≥ 80 years among

men (4). In addition, Siegel et al. (2020) showed that CRC

incidence rates increase by 30% every 5 years of age in

individuals aged 50 and over (5). The ageing process is

thought to contribute to tumorigenesis via aberrant genome

maintenance and systemic inflammation that result in tissue

damage and occurrence of unfavourable genome modifications

(6). More recently, cellular senescence has been considered as an

additional cause of age-related tumorigenesis. Senescence is a

stress-response cellular state characterised by proliferative arrest

but active metabolism (7). Over lifetime, due to the action of

several stressors such as DNA damage and telomere shortening,

senescent cells accumulate in the organism and release a variety

of pro-inflammatory cytokines responsible for low-

grade inflammation.

This age-related inflammation, also referred to as

inflammaging, increases the risk for tissue damage and genetic

aberrations that cause cellular transformation and cancer

development (8, 9). However, cellular senescence is not

exclusive to ageing. Age-related and metabolic diseases such as

type 2 diabetes (T2D) represent a source of cellular stress due to

their disruptive effect on normal physiological processes and,

therefore, can induce premature senescence (10). In fact, several

studies have shown that T2D induces senescence in multiple types

of cells, including fibroblasts and endothelial cells (11, 12). T2D

has also been recognised as a risk factor for CRC development. For

example, Xiao et al. (2022) showed that diabetes was associated

with increased risk of both right-sided colorectal cancer (Relative

risk [RR] = 1.35, 95% CI = 1.24 - 1.47) and left-sided colorectal

cancer (RR = 1.18, 95% CI = 1.08 - 1.28) using data regarding

1,642,823 individuals and 17,624 colon cancer patients (13). Ma

et al. (2018) also suggested that T2D is associated with increased

risk of CRC development (Hazard ratio [HR]: 1.42; 95% CI: 1.12 -

1.81) (14). The peculiar association between CRC, senescence and

T2D raises the question whether the T2D-induced premature

senescence facilitates the process of CRC tumorigenesis in T2D

patients (15–17).

In addition, the recent finding that T2D patients present a

higher circulating volume of senescent T cells compared to their

age-matched healthy counterparts supports the hypothesis that

T2D pathophysiology is also implicated in premature

immunosenescence (18). T-cells also play a key role in
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i mmun e c o n t r o l o f t h e c o l o r e c t a l c a r c i n om a

microenvironment (19). Considering the importance of T cells

in the response against cancer, T cell senescence would be a

detrimental factor for the organisms because of its tumorigenic

potential as well as reduced anti-cancer response. The distinctive

association between CRC, senescence and T2D is intricate due to

several aspects such as the anatomical location and complexity of

the tumour microenvironment. However, the lack of early CRC

diagnosis reflects the partial understanding of some of the

processes leading to the disease (20). Thus, cellular senescence

could represent a novel mechanism. Despite the supporting

evidence, the correlation between CRC, senescence and T2D

still remains unclear. In this review, we will discuss the

mechanisms according to which T2D induces cellular

senescence, and the potential role of T2D-induced senescence

in the development of colorectal cancer. Particularly, we will

focus on the tumorigenic activity of senescent fibroblasts,

endothe l i a l ce l l s and T ce l l s wi th in the tumour

microenvironment. Lastly, we will explore the current

therapeutic challenges, approaches and future perspectives in

targeting senescence.
Cellular senescence

Cellular senescence is a stress-response process characterised

by changes in gene expression that ultimately lead to the alteration

of cellular phenotype and metabolism (7). The concept of cellular

senescence was discovered approximately 60 years ago byHayflick

and Moorhead (1961) but its roles in physiological processes and

diseases have recently emerged (21, 22).

Senescent cells are denoted by proliferative arrest, alteration

of morphology and secretome, and resistance to apoptosis (7,

23). The arrest in cell division, which is the major hallmark of

senescence, prevents the progression of damaged cells into

malignancy (7). The altered secretome results in the secretion

of pro-inflammatory cytokines, proteases and growth factors

that are collectively referred to as the senescence-associated

secretory phenotype (SASP). SASP exerts paracrine action on

the surrounding environment and is involved in the attraction of

immune cells, stimulation of angiogenesis and cell proliferation

in a process that mimics a wound healing response.

Consequently, cellular senescence is a key mechanism in

wound healing and tissue repair (23–26). Most senescent cells

also express high levels of the enzyme b-galactosidase at pH 6.

This enzymatic activity, initially described by Dimri et al. (1995),

enabled identification of senescent fibroblasts and keratinocytes

in biopsies of aged human skin, and subsequently the enzyme

became known as senescence-associated b-galactosidase (SA-b-
Gal) (27).

The stressors responsible for the induction of cellular

senescence are categorised into acute and chronic stressors,

each determining a different outcome: acute stressors stimulate
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tissue repair and wound-healing response whereas chronic

stressors can induce persistent senescence activation and

accumulation of senescent cells, leading to continuous SASP

release. As a result, chronic SASP generates low-grade

inflammation, excessive cell proliferation and angiogenesis,

causing tissue damage and potentially contributing to the

promotion of a pro-tumorigenic environment (8, 23, 28, 29).

Therefore, whilst acute senescence seems to be a programmed

process, the switch from a temporary to a persistent senescent

state appears to be unscheduled in nature (8). Some of the

cellular stressors are endogenous and part of the normal cell

cycle such as telomere shortening during DNA replication, DNA

damage and reactive oxygen species (ROS) produced by

mitochondria during normal metabolism (7, 30, 31). These

events arise with age and so does cellular senescence. Other

stressors are environmental factors, obesity, and ongoing

pathologies such as T2D and hypertension (32–35).

In the context of cancer, the senescence-induced

proliferative arrest is an important tumour-suppressive

mechanism. However, the SASP released by senescent cells

possesses both pro- and anti-tumorigenic abilities on the

surrounding environment: acute senescent cells present anti-

tumorigenic potential because the pro-inflammatory component

of their SASP is associated with the recruitment of immune cells

at the site of the tumour, therefore promoting a tumour-specific

immune response. However, acute SASP action is limited and

should be considered as an anti-cancer mechanism against pre-

tumorigenic cells rather than malignant cells. On the other hand,

chronic senescent cells do not present anti-tumorigenic

properties but can instead contribute to the generation of a

pro-tumorigenic environment due to the prolonged

inflammatory state caused by their SASP (9, 29, 36, 37).

Despite the common characteristics, the phenotype of

senescent cells vary depending on the cell type and

senescence-inducing stressor (38). For example, senescent T

cells are characterised by specific surface markers that allow to

detect their differentiation and senescent state. These cells lack

CD27 and CD28 surface markers but express markers such as

CD57 and KLRG-1 which determine a decrease in cellular

proliferation (39–41). Among senescent T cells there are the

effector memory T cells re-expressing the surface receptor

CD45RA, referred to as EMRA T cells. EMRA T cells have

reduced proliferative capacity and display SASP secretion (42,

43). However, whether these cells can be considered fully

senescent cells or not is still under debate (44, 45).
Type 2 diabetes induces premature
cellular senescence

Chronic hyperglycaemia is the major contributing factor to

T2D-associated cardiovascular complications such as
Frontiers in Oncology 03
retinopathy, nephropathy and hypertension (46). Along with

these complications, hyperglycaemia has been shown to induce

cellular senescence in fibroblasts, endothelial cells and more

recently in mesenchymal stem cells such as umbilical cord-

derived mesenchymal stem cells (11, 12, 47). These senescent

stem cells are characterised by multipotentiality loss in addition

to the hallmarks of senescence (47). Here, we propose a general

mechanism according to which hyperglycaemia activates

senescence-inducing pathways.

Intracellular hyperglycaemia induces oxidative stress,

proteostasis alteration and dysregulation of protein kinase C

(PKC) signalling (48–54) (Figure 1). These pathways are

integrated and promote the establishment of the major

characteristics of senescence: cell cycle arrest, changes in

cellular morphology, SASP secretion and SA-b-Gal activity. It
should be emphasised that these pathways are mechanistically

similar in both age-related and T2D-induced cellular senescence,

but the inducing stimuli and time span are different: during

ageing, senescence-inducing stimuli such as telomere erosion

occur over a long period of time while in T2D senescence is

accelerated by stimuli such as hyperglycaemia and hypertension

(55, 56). A pivotal pathway involved in senescence activation is

the p38 mitogen-activated protein kinases (MAPK) pathway.

The p38 MAPK is a stress-response pathway activated by several

stressors among which are ROS and transforming growth factor

b (TGF-b) (54, 57). P38 activation leads to cell cycle arrest and

SASP secretion whereas endoplasmic reticulum (ER) stress

contributes to the changes in cellular morphology and

expression of SA-b-Gal (58–60). However, the process that

leads to intracellular hyperglycaemia is still not fully

understood. For example, activated T cells express insulin

receptors and, unlike naive T cells, insulin signalling increases

GLUTs expression on the plasma membrane (61, 62). As a

result, the T2D hyperinsulinemic environment may induce

GLUT transporters overexpression, leading to intracellular

glucose concentration rising in parallel with serum

hyperglycaemia (48). By contrast, other studies have suggested

that vascular endothelial and smooth muscle cells downregulate

GLUTs expression in response to hyperglycaemia (63, 64).
Oxidative stress

As a part of their normal metabolic activity, mitochondria

produce ROS and reactive nitrogen species by-products via the

complexes of the electron transport chain (30). In a

hyperglycaemic environment, the excessive glucose oxidation

causes mitochondrial overload, resulting in ROS overproduction

and increased ATP/ADP ratio (51, 53). In addition, intracellular

hyperglycaemia promotes polyol pathway activation. In this

pathway, the enzyme aldose reductase converts glucose to

sorbitol, which is then oxidised to fructose. However, in the

conversion from glucose to sorbitol, aldose reductase consumes
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NADPH which is also a cofactor used for the generation of the

antioxidant glutathione (49). Therefore, high glucose

concentration shifts the equilibrium towards the polyol

pathway, resulting in reduced glutathione synthesis. The

reduction in this antioxidant levels reduces the ability of the

cell to counteract ROS overproduction as well as other

free radicals.

The oxidative stress caused by this ROS imbalance and

reduced antioxidant determines mitochondrial DNA

oxidative damage, leading to mitochondrial dysfunction

and, as a consequence, impairment of cellular metabolism

(50, 65). Oxidative stress also causes nuclear DNA oxidative

damage and activation of the DNA-damage response (DDR)

pathway. DDR results in cell cycle arrest via the p16INK4a/Rb

pathway and upregulation of the CDK-inhibitor p21 (66–69).

DDR is also involved in the generation of SASP via the

activation of the kinases ataxia-telangiectasia mutated

(ATM) and ATM- and Rad3-Related (ATR) which belong

to the phosphatidylinositol-3 kinase-related kinases (PIKK)

family (70). ATM and ATR have been shown to activate the
Frontiers in Oncology 04
transcription factor GATA4, a novel positive regulator of

senescence that activates NF-kB, ultimately leading to SASP

formation (71).

Increased cellular ROS also activate the p38 MAPK pathway.

Similarly to the DDR, p38 MAPK activation results in cell cycle

arrest via p16INK4a/Rb and p21 pathways (59). In addition, p38

MAPK induces SASP production through NF-kB activation (57,

69). Conversely, p38 MAPK inhibition by the selective inhibitor

SB203580 effectively collapses the senescence-associated

cytokine network, preventing the SASP paracrine effects of

senescent cells (69). The p38 MAPK pathway can also be

activated by intracellular hyperglycaemia via the hexosamine

pathway. In fact, high intracellular glucose levels determine

increased levels of the glycolytic intermediate fructose-6-

phosphate (F6P). Part of this sugar is used in the hexosamine

pathway. In this pathway, F6P is converted into uridine

diphosphate (UDP) and N-acetyl glucosamine (GlcNAc). The

latter can interact with transcription factors that induce the

expression of TGF-b1 which, in turn, activates the p38 MAPK

pathway (49, 72).
FIGURE 1

Mechanism of hyperglycaemia-induced cellular senescence. (A) Hyperglycaemia induces ROS overproduction via mitochondria overload which
results in oxidative stress. ROS causes DNA damage response (DDR) activation, due to DNA oxidative damage, and p38 MAPK pathway
activation. DDR and p38 MAPK determines cell cycle arrest and NF-kB upregulation. NF-kB activation results in SASP secretion. ROS also
generates ER stress via chemical modification of ER proteins. ER stress activates the unfolded protein response (UPR). The activation of the
ATF6a branch of the UPR causes expression of SA-b-Gal and changes in cellular morphology via cytoskeletal vimentin rearrangement. (B)
Hyperglycaemia increases polyol pathway activity, causing reduced antioxidant glutathione synthesis due to reduce NADPH availability.
Glutathione deficiency contributes to the inability of the cell to counteract oxidative stress. (C) Hyperglycaemia causes advance glycation end
products (AGEs) via glycation of intracellular and extracellular proteins. Intracellular AGEs cause ER stress which results in SA-b-Gal activity and
change in cellular morphology. Extracellular ages cause AGE receptor (RAGE) activation which results in ROS production and NF-kB activation.
This ultimately results in cell cycle arrest and SASP secretion. (D) Hyperglycaemia results in increased hexosamine pathway activity due to
increased glucose-6-phosphate production. This pathway produces N-acetyl glucosamine (GlcNAc) which induces TGF-b expression. TGF-b
activates the p38 MAPK which results in cell cycle arrest and SASP secretion. (E) PKC signalling contributes to the activation of senescence
pathways. Hyperglycaemia results in increased diacyl glycerol production and activation of PKC d isoform. PKC d activation causes TGF-b
expression and ROS production which, in turn, activate PKC d in a positive feedback loop mechanism. In addition, ROS also activate PKC h
which induces SA-b-Gal activity. Downregulation of aPKC and cPKC results in inactivation of FoxO3a which results in ROS production. Cell
cycle arrest, SASP secretion, change in cellular morphology and SA-b-Gal activity are the major characteristics of senescence.
frontiersin.org

https://doi.org/10.3389/fonc.2022.975644
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Melia et al. 10.3389/fonc.2022.975644
Proteostasis alteration

Proteostasis can be defined as the ability of the cell to

maintain a functional cellular proteome (50). Loss of

proteostasis due to protein misfolding has detrimental effects

on cellular function. One of the causes of such event is a non-

programmed chemical modification, such as glycation or

carbonylation, of cellular proteins (50).

Glycation is a non-enzymatic reaction of glucose with

proteins that leads to the formation of molecular products

known as advanced glycation end products (AGEs) involved

in diseases and ageing (48). AGEs are formed both intracellularly

and extracellularly and alter cellular proteostasis in T2D. After

cytoplasmic glucose-6-phosphate (G6P) is transported into the

ER via the transporter G6PT, glucose then glycates the proteins

present in the ER lumen, causing protein misfolding and ER

stress. ER stress results in the activation of the unfolded protein

response (UPR) pathway (65, 68, 73, 74). Extracellular AGEs

precursors interact and modify connective tissue components,

such as collagen and plasma proteins, and bind to the AGE

receptor (RAGE) present on the cell surface (75, 76). RAGE

activation has been shown to activate the transcription factor

NF-kB by degradation of the IkB proteins and to induce the

production of cytosolic ROS (75, 77).

Carbonylation is an irreversible reaction of ROS with

proteins. Carbonylation of ER enzymes involved in protein

folding, such as protein disulphide isomerase (PDI) and

calreticulin proteins, causes proteins misfolding and

aggregation into structures known as lipofuscin that are

resistant to proteolytic degradation (50, 78). These events

cause accumulation of misfolded proteins and ER stress,

resulting in the activation of UPR. The ATF6a branch of the

UPR pathway has been shown to be involved in cellular

senescence by increasing SA-b-Gal activity and by altering the

cellular morphology via changes in cytoskeletal vimentin (60). It

should be noted that ER stress involves complex signalling

pathways and the cell may reinstate its normal proliferative

activity by resolving the proteostasis alteration rather than

activating senescence-inducing pathways (79). However, it

remains unclear whether UPR downstream signalling results

in either proliferation or senescence as this depends on the

nature and intensity of the stimuli involved (79). It is plausible

that UPR senescence-inducing pathways arise from stimuli that

cause sustained damage which is, however, insufficient to

trigger apoptosis.
PKC signalling

Activation or downregulation of certain PKC isoforms has

been shown to promote senescence. Hyperglycaemia determines

an increase in diacyl glycerol (DAG) production, which is
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such as cPKC, PKC d and PKC h (54, 80). PKC d activation

promotes expression of TGF-b and induces ROS production

which, in turn, activates PKC d in a positive feedback loop

mechanism (54, 81). PKC h activation has been shown to induce

SA-b-Gal expression. For instance, PKC h-knockdown MCF-7

cells showed SA-b-Gal expression reduced by 2-fold compared

to the scrambled controls (p ≤ 0.0001). Importantly, PKC h is

also activated by ROS (82). On the other hand, aPKC or cPKC

downregulation also promotes senescence. The downregulation

of these PKC isoforms has been shown to inhibit the nuclear

import of the transcription factor FoxO3a via AKT-mediated

phosphorylation. Specifically, aPKC or cPKC inhibition in

HCT116 cells resulted in a 10-fold increase in SA-b-Gal
expression compared to the control (p < 0.05). In these cells,

the levels of phosphorylated FoxO3a were increased by two-fold

compared to the controls (p < 0.05) (80). FoxO3a inactivation

has been shown to induce ROS production, therefore

contributing to cellular oxidative stress (83).
Senescent cells modulate the
tumour microenvironment through
SASP release

The tumour microenvironment (TME) is a complex

network of cellular and molecular components consisting

mainly of tumour-infiltrating cells, blood vessels, extracellular

matrix (ECM) and other matrix-associated molecules (84).

Persistent inflammation in the TME has been recognised as a

tumour initiator and promoter because it serves as a

chemoattractant for the recruitment of tumour-infiltrating

cells that support tumour growth and metastasis (85).

Consequently, the chronic systemic inflammation that

characterises T2D represents a risk factor for cancer

development (16). T2D interferes with the normal colon tissue

physiology in multiple processes. Firstly, AGEs accumulation

and TGF-b upregulation determine ECM accumulation, cross-

linking of collagen, thickening of basement membrane, loss of

elasticity and fibrosis [76]. These events result in colon wall

remodelling and change in its biomechanical properties (86, 87).

Secondly, increased levels of insulin determine activation of the

insulin-like growth factor 1 (IGF-1) receptor, which stimulates

cell growth and proliferation (88). For instance, Teng et al.

(2016) showed that the treatment of MC38 cells with 50 ng/mL

of insulin and 50 ng/mL of IGF-1 determined a 2-fold increase in

cell proliferation compared to the negative control (p < 0.001).

In mouse models, the tumour growth of MC38 cells was doubled

in mice that had serum insulin and serum IGF-1 6 times and 5

times higher than the control, respectively (p < 0.001) (88).

Therefore, the extracellular matrix remodelling and the

proliferative stimulation via IGF-1 activation may alter the
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colon tissue into a pro-tumorigenic environment (89). An

additional and less explored role of T2D on CRC

tumorigenesis is represented by T2D-induced cellular

senescence. Chronic senescent cells may have the ability to

modulate and enhance the inflammatory state of the tumour

microenvironment via the release of pro-inflammatory SASP. In

support to this hypothesis, multiple studies demonstrated the

ability of senescent fibroblasts, endothelial cells and T cell to

induce tumour growth and metastasis.
Fibroblasts

Fibroblasts represent the major cell type within the

connective tissue and are involved in ECM production and

maintenance (90). Following fibroblast senescence, SASP

components such as growth factors can promote neoplastic

alterations that initiate and support metastatic development

(Figure 2). The ability of senescent fibroblasts to induce

tumour cell hyperproliferation has been observed in breast and

prostate tumours (91, 92). In regard to colorectal cancer, a study

by Guo et al. (2019) showed that senescent fibroblasts

accumulate in individuals with advanced adenomas and colon

cancer compared to healthy individuals. In vitro, senescent

fibroblasts promoted the proliferation of both adenoma and

colon cancer cells via the secretion of the SASP component

growth differentiation factor 15 (GDF15) (93). GDF15, also
Frontiers in Oncology 06
termed macrophage-inhibiting cytokine-1 (MIC-1), is a

growth factor belonging to the TGF-b superfamily which has

been revealed to accelerate G1-S phase transition, to stimulate

angiogenesis and to promote colon cancer metastasis via

epithelial-to-mesenchymal transition (94–97). Study

investigating co-culture of LT97, AA/C1, Caco‐2, and HT‐29

cells with senescent CCD‐18Co fibroblasts determined a 2-fold

increase in cell migration and invasion compared to the co-

culture with non-senescent CCD‐18Co fibroblasts (p < 0.01)

(93). Real-time PCR analysis of the senescent CCD-18Co cells

revealed that GDF15 mRNA levels were increased by 10-fold

compared to non-senescent CCD-18Co cells (p < 0.05). Western

blot analysis of GDF15 in senescent CCD-18Co cells showed

that GDF15 protein concentration was increased by 2-fold

compared to non-senescent CCD-18Co cells (p < 0.001) (93).

In addition, co-culture of LT97, AA/C1, Caco-2 and HT-29 cells

with senescent CCD-18Co cells which presented GDF15

knockdown via short-hairpin GDF15 (shGDF15) resulted in a

2-fold decrease in cell migration and invasion compared to the

controls (p < 0.05) (93).

In support to the hypothesis that T2D, senescence and

cancer are related, T2D patients present circulating GDF15

levels that are three times higher compared to the healthy

controls (p < 0.001) (98). Although the upregulation of the

SASP component GDF15 has been associated with many types

of cancers, including colon cancer, its pro-tumorigenic role

remains unclear and context-dependent (99). Yang et al.
FIGURE 2

SASP activity within the tumour microenvironment. (A) Angiogenesis is stimulated by CCL23, VEGF and GDF15. CCL23 is secreted by senescent
T cells, while VEGF and GDF15 are secreted by senescent fibroblasts. (B) Metastasis is promoted by GDF15 and CCL5, which are secreted by
senescent fibroblasts and T cells, respectively. Senescent T cells contribute to tumorigenesis by inducing inflammation via the release of TNF-a.
Metastasis is also induced in tumour cells that express the receptor CXCR3 via the SASP component CXCL11 secreted by senescent endothelial
cells. However, CXCL11 also presents anti-tumorigenic activity by recruiting T cells and NK cells at the site of tumour. (C) Tumour apoptosis is
induced by IL-29 secreted by senescent T cells. In addition, IL-29 contributes to cancer-specific immune response via the recruitment of NK
cells. (D) Senescent tumour cells evade the immune system via the secretion of elevated CXCL12 levels, inducing CXCR4 internalisation in T
cells and impairing T cell directional migration.
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(2020) showed that senescent fibroblasts expressing

galactosylceramidase (GALC) enhance the migration ability of

CRC cells. Specifically, the co-culture of LoVo cells with GALC-

expressing fibroblasts determined a 2-fold increase in LoVo cells

migration ability compared to the controls (p < 0.05) (100).

Coppé et al. (2006) showed that WI-38 senescent fibroblasts

secrete high levels of vascular endothelial growth factor (VEGF)

and increase tumour vascularization. The VEGF mRNA and

protein levels in senescent WI-38 cells were increased by 2-fold

and 5-fold, respectively, compared to the pre-senescent WI-38

cells (p < 0.05). In vivo, treatment of tumour-bearing nu/nu mice

with senescent fibroblasts determined a 3-fold increase in the

number of large blood vessels compared to mice treated with

pre-senescent fibroblasts (p < 0.05) (101).
Endothelial cells

Research concerning the effect of endothelial senescence on

cancer has been scarce. Nevertheless, there is some evidence that

endothelial senescence promotes tumour growth and metastasis.

Borovski et al. (2013) showed that senescent tumour

microvascular endothelial cells (tMVEC) favour the growth of

glioblastoma (GBM) cells (102). Specifically, co-culture of GBM

cells with senescent tMVEC resulted in the 10-fold increase in

GBM cell number compared to the negative control (p < 0.05)

(102). Hwang et al. (2020) showed that senescent human

umbilical vein endothelial cells (HUVEC) secrete the

chemokine CXCL11, which promotes breast tumour migration

both in vitro and in vivo (103). Specifically, the co-culture of

MDA-MB-231 cells with senescent HUVEC cells transfected

with CXCL11 small interfering RNA (siRNA) determined a 10-

fold decrease in MDA-MB-231 cell migration compared to the

negative control (p < 0.001). In vivo, mice xenografts were

treated with conditioned medium containing CXCL11 secreted

from senescent HUVEC. The tumour volume of MDA-MB-231

cells was increased by 4-fold compared to the volume of MDA-

MB-231 cells treated with conditioned medium from senescent

HUVEC transfected with CXCL11 siRNA (p < 0.05) (103).

Significantly, CXCL11 is involved in CRC growth and

metastasis. Gao et al. (2018) showed that CXCL11

downregulation inhibits cell growth and invasion in CRC.

Specifically, the cell growth of SW480 cells transfected with

CXCL11 siRNA was reduced by 6-fold compared to the negative

control (p < 0.01). In addition, the migration of SW480 cells

transfected with CXCL11 siRNA was reduced by 5-fold

compared to the negative control (p < 0.01) (104). CXCL11 is

among the ligands that activate the CXCR3 receptor, which is

mainly expressed on effector T cells and NK cells and promotes

infiltration into an inflammatory site (105). Although CXCL11

has anti-tumour activity via the recruitment of innate and

adaptive immune cells at the site of tumour, some colorectal

tumours express CXCR3 receptors that function as a metastatic
Frontiers in Oncology 07
mediator (106). Kawada et al. (2007) showed that CXCR3

activation on Colo205 cells resulted in approximately a 2-fold

increase in cell migration compared to the controls (p < 0.01)

(107). In addition, Cambien et al. (2009) showed that the

treatment of C26 cells with CXCL11 and the CXCR3 inhibitor

AMG487 resulted in almost a 2-fold decrease in cell migration

compared to the negative control (p < 0.001) (108). Therefore,

CRC is plausibly affected by endothelial senescence (Figure 2).
T lymphocytes

Similar to endothelial cells, the effect of T cell senescence on

CRC has been scarcely investigated. In support of the idea that

T2D-induced T cell senescence is implicated in cancer,

Broadway et al. (2021) suggested that T2D-associated T cell

senescence has a potential tumorigenic role in ovarian cancer

metastasis (109). Because the intestine contains the largest

number of immune cells in the human body, including T cells,

it is probable that T cell senescence also affects this anatomical

location (110). The presence of senescent cells such as EMRA T

cells in the TME can contribute to the generation of a pro-

inflammatory environment that supports tumorigenesis,

therefore contrasting the action of non-senescent tumour-

infiltrating cells (TILs) against the tumour as a part of the

normal host’s immunity (111). EMRA CD4+ and CD8+ cells,

which have been found to be elevated in T2D patients, possess a

unique inflammatory SASP repertoire – proteases, chemokines,

interleukins, growth factors and insoluble factors such as

extracellular matrix components (29, 43). Particularly, the

gene expression of CCL5, CCL23, tumour necrosis factor a
(TNF-a) and IL-29 and are upregulated in the EMRA CD8+

subset (43). Cambien et al. (2011) showed that CCL5 promotes

cell migration and invasion in colon cancer: in vitro experiments

showed that treatment of CT26 and HT29 cells with 50 ng/ml of

CCL5 determined a 2-fold increase in cell proliferation

compared to the controls treated with base medium only (p <

0.01). In vivo, treatment of CT26-inoculated mice with anti-

CCL5 resulted in the 2-fold decrease in tumour incidence (p

<0.05) (112). Hwang et al. (2005) showed that CCL23 has pro-

tumorigenic potential via induction of angiogenesis. Specifically,

in chick chorioallantoic membrane (CAM) assay, injection of 10

ng per egg of CCL23 determined a 3-fold increase in blood

vessels number compared to the negative control (p < 0.01)

(113). The role of TNF-a in tumour growth has been

controversial: Carswell et al. (1975) showed that TNF-a was

capable of inducing tumour necrosis (114). However, over the

years multiple studies demonstrated the pro-tumorigenic

activity of TNF-a via inflammation (115). For instance,

treatment of HCT-116 cells with 20 mg/L of TNF-a
determined a 2-fold increase in cell number compared to the

control (p = 0.001) (115). In addition, the IL-6 and IL-8 levels in

HT-29 cells treated with 5ng/ml of TNF-a were approximately 3
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times and 5 times higher, respectively, compared to the controls

(p < 0.05) (116).

By contrast, other SASPs such as IL-29 have tumour

inhibitory effects via the induction of caspase-mediated

apoptosis and increase in NK cell activity (117). Specifically,

Sato et al. (2006) showed that the caspase activity of B16/F0 cells

transfected with IL-29 was doubled compared to both the

control and transfected B16/F0 cells treated with the caspase

inhibitor Z-VAD-fmk (p < 0.05). In addition, following hepatic

injection with IL-29 in two independent experiments, the CD3-

NK1.1+ cell number increased from 10.9% to 26.9%, whereas the

CD3+ NK1.1+ cell number increased from 1.0% to 11.0% (117).

Therefore, the overall outcome of senescent T cell activity on

TME depends on the type and amount of SASP released. At

present, however, the degree of infiltration of senescent T cells

and their influence on the tumour microenvironment is still

unclear (118, 119).

The tumorigenic action of EMRA T cells is not limited to the

colon/rectum. In fact, the enhanced expression of the protease

ADAM28 and the receptor CX3CR1 has the potential to alter the

migration of these cells to other tissues (43). Shimoda et al.

(2007) showed that ADAM28 binds to the P-selectin

glycoprotein ligand-1 (PSGL-1) and enhances PSGL-1/P-

selectin-mediated cell adhesion to endothelial cells in vitro.

Specifically, immunolocalization of HL-60 cells with the

recombinant ADAM28 protein rpro-ADAM28s determined

the 3-fold increase in P-selectin binding compared to the

control (p < 0.01) (120). As a result, the ability of these cells to

adhere to the endothelial wall in the absence of stimulation

increases the possibility of cell migration to other tissues.

CX3CR1 expression in EMRA T cells is three times higher

than the control (p < 0.001) (43). CX3CR1 allows cell

adhesion to fractalkine-expressing endothelial cells: in two

independent experiments, Imai et al. (1997) showed that

expression of CX3CR1 in K562 cells determined a 5-fold

increase in adhesion to fractalkine-expressing ECV304

endothelial cells compared to the control (121).
Tumour cells

Cellular senescence is not restricted to only healthy cells but

has been observed in several tumour cells: primary neoplastic

cells from different types of cancer, including colon cancer,

appear to be senescent in-vitro and express high levels of SA-

b-gal (122, 123). Choi et al. (2021) showed that senescent

colorectal cancer cells generate a cytokine shield through their

SASP that inhibits intratumoral CD8+ T cell infiltration. This is

achieved via the secretion of high CXCL12 concentration, which

induces internalisation of the CXCR4 receptor and results in

impaired directional migration (124). Specifically, the CXCL12

mRNA levels in senescent SW480 cells were increased by 6-fold
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compared to the control (p < 0.01). When CD8+ T cells were co-

cultured with senescent SW480 cells overexpressing CXCL12,

the number of migrated T cells was reduced by almost 2-fold

compared to the CD8+ T cells cultured with non-senescent

SW480 cells (p <0.001). In order to demonstrate that CXCL12

causes downregulation of CXCR4 expression on the plasma

membrane, Jurkat cells were treated with 1 mg/mL of

recombinant human CXCL12 (rhCXCL12) for 30 minutes and

then analysed via fluorescence-activated cell sorting (FACS). As

a result, the number of CXCR4-expressing cells was reduced

from 104-105 cells to 103-104 cells (124). Therefore, tumour

senescence represents an additional ability of tumour cells to

evade and suppress the host’s immune response (125) (Figure 2).
Detection and therapies

As previously mentioned, CRC still remains incurable and

highly lethal in the advanced stage. Thus, improvements in

therapies are required to reduce the disease burden. In this

section, we will discuss the limitations regarding the traditional

chemotherapy and will review some of the recent therapeutic

approaches that have shown promising outcomes in targeting

both senescent and cancer cells.
Current chemotherapy and its challenges

The use of conventional CRC chemotherapeutic drugs such

as leucovorin and 5-Fluorouracil (5-FU) poses multiple

problems in that a patient can develop severe side-effects

such as nausea, alopecia, diarrhoea and neutropenia (126,

127). In addition, cytotoxic drugs that provide a cure to

metastasis are effective in only a few types of tumours. In

tumours such as colorectal, gastric, ovarian and breast cancer,

chemotherapy limits to prolong patient’s survival but does not

provide a definitive cure. The phenomenon of tumour drug

resistance is also observed, suggesting the emergence of

mechanisms that counteract the cytotoxic drugs action,

leading to the lack of tumour cells sensitivity despite optimal

exposure to the drugs (128, 129). An additional effect of

chemotherapy is the induction of senescence on the tumour

and surrounding cells, a phenomenon referred to as

chemotherapy-induced senescence or therapy-induced

senescence (TIS) (130, 131). Although TIS is beneficial

because it restricts tumour growth, it also has negative

consequences. Firstly, the SASP released by senescent tumour

cells support tumour growth in the TME, as discussed before.

Secondly, senescent tumour cells can escape the senescent

state, increasing the risk of tumour relapse (131).
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Importantly, tumour cells that escape senescence manifest an

increased malignancy, drug resistance and a stem-like

phenotype. This increased malignancy seems to be associated

with the activation of Wnt signalling as a result of TIS (131,

132). As a consequence, while TIS gives an advantage in

restricting tumour growth, this advantage is limited to a

short period. Therefore, improvements in cancer therapeutic

approach are required.
Senolytic therapy

Chronic senescent cells and tumour senescent cells have great

potential to favour tumour growth and metastasis. Senescent cells

can be targeted and killed by senolytic drugs. There are several types

of senolytics and some of them have been shown to decrease the

number of senescent cells in human clinical trials (133). For this

reason, senolytics represent a promising therapeutic approach.

However, because senescent cells possess a large variety of

phenotypes, it has been challenging to find a biomarker that is

consistent across cellular senescence in all organ systems (134). One

potential biomarker for senescence as well as senolytic drug target is

SA-b-Gal (135, 136). Cai et al. (2020) developed the prodrug

“senescence-specific killing compound 1” (SSK1) that is

specifically cleaved by lysosomal b-gal into cytotoxic gemcitabine

(137). SSK1 effectively induced apoptosis and cleared senescent cells

in different tissues. Specifically, SSK1 reduced the viability of

senescent human umbilical vein endothelial cells (HUVECs) and

mouse lung fibroblasts by 2-fold and 8-fold, respectively, compared

to the non-senescent controls (p < 0.0001) (137). Importantly, SSK1

eliminated mouse and human senescent cells independently of the

senescence inducers. In fact, compared to non-senescent controls,

SSK1 determined a 2-fold decrease in the viability of senescent

human oesophageal fibroblasts in which senescence has been

induced by replication, etoposide, H2O2, and oncogene-induced

senescence (p < 0.0001) (137). In addition, SSK1 determined at least

the 2-fold decrease in serum levels of SASP such as IL-6 and CXCL1

in mice (p < 0.01). Therefore, SSK1 has the ability to attenuate

SASP-associated inflammation (137). Despite the promising results,

currently there are no potent and specific markers of senescent cells

(138). In fact, the staining method for SA-b-Gal detection proposed
by Dimri et al. (1995) presents some limitations due to its time

consumption and lack of sensitivity (27, 139). Cahu et al. (2013)

proposed a faster and more sensitive senescence detection method

based on flow cytometry. This technique is based on the detection

of green fluorescence emitted from the hydrolysis of the molecule 5-

dodecanoylaminofluorescein di-b-D-galactopyranoside (C12FDG)

by the SA-b-Gal (140).
Another potential biomarker characterising both colorectal

cancer cells and senescent cells is the mitochondrial enzyme

glutaminase 1 (GLS1) which is involved in the conversion of

glutamine into glutamic acid (141, 142). Importantly, cancer cells
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depend on glutamine metabolism for metabolic and anabolic

processes – glutamic acid is involved in ATP production and

biosynthesis of amino acids, nucleotides and lipids via the

conversion of glutamate to a-ketoglutarate (143, 144). Senolytics
that inhibit GLS1 represent an alternative therapeutic approach

compared to the SA-b-Gal-associated senolytics. Huang et al.

(2014) showed that expression of GLS1 is increased in human

colorectal cancer tissues and that GLS1 inhibition decreases

tumour growth rate, suggesting that GLS1 may be associated

with the progression of colorectal cancer. Specifically, GLS1 was

strongly expressed in approximately 54% of T3 colorectal tumour

tissues (p < 0.001, N = 128) and approximately 46% of T4

colorectal tumour tissues (p < 0.001, N = 78). On the other

hand, GLS1 was strongly expressed only in approximately 23% of

T1/T2 colorectal tumour tissues (p < 0.001, N = 31). After

treatment with the GLS1 inhibitor 6-diazo-5-oxo-L-norleucine

(DON) for 48 hours, the growth rate of HT29 cells was reduced by

2-fold (p < 0.0001) (142).

Since the current chemotherapy for cancer is responsible for

TIS in several cases, it has been reasoned that senolytics should

be used to avoid tumour relapse and to reduce the undesired

tumour-promoting effects deriving from the SASP. This led to

the proposal of the one-two punch therapeutic strategy for

cancer: a first compound is used to induce senescence in

cancer cells followed by the use of senolytic drugs to

specifically kill those senescent cancer cells (131). However, it

is necessary to acknowledge that TIS is not limited to tumour

cells: TIS in non-malignant cells has been associated with

dysfunction of the heart, kidneys, bone, bone marrow and

nervous system, which contribute to the adverse effects of

cancer therapy (132). Therefore, while the adoption of

senolytics in cancer therapy carries potential promise, there

are still several concerns regarding the lack of senolytic action

universality, the potential for systemic toxicity, senolytic drug

resistance and damage to healthy senescent cells like those

contributing to wound-healing (132).
CAR T cell immunotherapy

Cancer immunotherapy is an innovative therapeutic

approach that modulates the host’s immune system to

specifically target cancer cells (145). Immunotherapy is

particularly important considering that cancer cells use several

mechanisms to evade immune surveil lance such as

downregulation of MHC molecules, Fas ligand-induced

apoptosis and upregulation of immune checkpoint molecules

(146–148). As such, CAR T cell therapy has been in development

to target tumours in various settings with successes (149–151),

including in CRC (149, 152–156) (Figure 3).

A novel therapeutic approach has been proposed by Amor

et al. (2020), who suggested to use CAR T cells as a senolytic
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therapy. These CAR T cells have been engineered to target the

receptor urokinase-type plasminogen activator receptor (uPAR)

(157) (Figure 3). uPAR is a regulator of ECM proteolysis and it is

upregulated in senescence as well as many human cancers (157,

158). In two independent experiments, uPAR-specific CAR T

cells completely lysed uPAR-expressing NALM6 cells when the

E:T ratio was 1:1. By contrast, with the same E:T ratio, the

negative control lysed less than 20% of uPAR-expressing

NALM6 cells. In addition, uPAR-specific CAR T cells lysed

80% of senescent KP cells when the E:T ratio was 25:1 (157). In

vivo, senescence was induced in hepatocytes of immunodeficient

NSG mice via oncogene-induced senescence, detected through

bioluminescence imaging. The treatment with uPAR-specific

CAR T cells resulted in the 3-fold decrease in bioluminescence

signal compared to the negative control (p = 0.0182). This

suggests that uPAR-specific CAR T cells effectively cleared the

senescent hepatocytes in NSG mice. Importantly, in support to

the one-two punch therapeutic strategy, the authors evaluated

the combination of TIS and CAR T cell therapy. Mice with KP

lung adenocarcinomas were treated with a combination of MEK

and CDK4/6 inhibitors with the purpose to induce KP cell

senescence. Treatment for 7 days with uPAR-specific CAR T

cells determined a 2-fold increase in the number of infiltrated

CD69+ CD45.1+ CD8+ T cells compared to the control (p =

0.0021). This suggests that CAR T cell treatment enhances

activated CD8+ T cell infiltration within a senescent tumour

(157). Thus, CAR T cell immunotherapy against CRC showed

favourable results both in vitro and in vivo, representing a

potential candidate for combination therapy.
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Future directions

Further research assessing the efficacy and cost-effectiveness

of combination therapy with senolytics and/or CAR T cells is

required. These therapies are preferable compared to those

focussing exclusively on tumour senescence induction:

although Wang et al. (2018) showed that treatment of

HCT116 cells with 40 mM of the compound Baicalin reduced

the colony survival by 5 fold (p < 0.001), senescent cells have

been shown to be resistant to apoptosis (159–161). As shown in

Figure 3, chemotherapy-treated tumour cells could become

senescent and that some could escape and relapse. Moreover,

there is a risk that these cells could become resistant to apoptosis,

conferring senescent tumour cells a pro-survival advantage and

therefore could promote tumour resistance to therapy.

Therefore, it may be a better approach to utilise senolytics as a

therapeutic strategy rather than tumour senescence induction.

However, further investigation is needed to confirm this.

Further research should also assess the use of metformin to

treat CRC patients with T2D. Metformin has been associated

with decreased risk of CRC in diabetic patients and prognosis

improvement in CRC patients with diabetes (162). For instance,

Tarhini et al. (2020) showed that the use of metformin in

patients with both CRC and T2D is associated with improved

overall survival (adjusted hazard ratios [aHR] = 0.45, 95% CI =

0.21 - 0.96) and disease-free survival (aHR = 0.31; 95% CI = 0.18

- 0.54) (163). Furthermore, metformin can be considered as a

senolytic drug: metformin treatment has been associated with

increased tumour cell apoptosis and inhibition of SASP secretion
FIGURE 3

Potential combination therapies for colorectal cancer. After chemotherapeutic treatment, tumour cells are either killed or become senescent.
CAR T cell immunotherapy or senolytic therapy can be used to avoid escape from the senescent state and tumour relapse. CAR T cell
immunotherapy targets antigens present on colorectal cancer cells such as NKG2DLs, HER-2, GUCY2C and uPAR. Senolytic therapy targets the
SA-b-Gal via the compound SSK1 or inhibits the mitochondrial enzyme GLS1, which is important for tumour cell metabolism.
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(164–166). Thus, should metformin be considered as a

therapeutic choice in patient with CRC and T2D?

Another area to explore is CRC immunology. Previously, we

showed that tumour infiltrating T-, B- and IgA+ plasma cells

play key roles in rectal cancer tumour microenvironment (19).

For instance, CD20+ TIL-B and IgA+ cells demonstrated

significant associations with long-term survival of patients

with rectal cancer. Although we did not investigate T2D, in

the future, it would be important to understand whether these

immune cells are present in the tumour microenvironment of

CRC patients with T2D. Additionally, Saito et al. (2020) reported

that CRC and T2D patients treated with metformin induced

structural changes and immune cell profile in the tumour

microenvironment. It has been shown that metformin

increases the immune cell (CD3+CD8+) infiltration and

reduces the rate of M2‐type tissue associated macrophages,

and promotes stromal fibrosis in human CRC, which may

result in an immunocompetent microenvironment from an

immunosuppressive one (167). Thus, along with its senolytic

activity, metformin could be utilised as a pro-immunogenic anti-

tumour agent.
Conclusions

Cellular senescence represents a risk factor for colorectal cancer

development in type 2 diabetic patients. The pathophysiological

events occurring in type 2 diabetes contribute to the generation of

premature cellular senescence. Research shows that senescent

fibroblasts, endothelial cells and T cells release proinflammatory

SASP that favours tumorigenesis, tumour growth and metastasis.

However, some SASP have tumour inhibitory effect and therefore

the overall outcome of senescence activity on the tumour

microenvironment depends on the type and amount of SASP

released. Senescence also occurs in tumour cells and enhances the

ability of colorectal cancer cells to suppress and evade the host’s

immune response. Because conventional chemotherapy increases

the risk of tumour senescence and relapse, new therapeutic

approaches are required. Senolytic drugs showed favourable

results in their ability to clear senescent cells, reducing the

likelihood of tumour relapse and cancer immune resistance. In
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addition, CAR T cell immunotherapy against colorectal cancer

showed promising outcomes in their tumour-killing ability both in

vitro and in vivo. Thus, senolytic compounds and CAR T cells

represent a potential candidate for combination therapy. Further

research with the purpose to expand the knowledge in the field of

senescence and cancer is required, allowing improvements for the

diagnosis and treatment of senescence-associated diseases.
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F, Collado M. Senotherapy of cancer. In: D Muñoz-Espin, M Demaria, editors.
Senolytics in disease, ageing and longevity, Cham: Springer International Publishing
(2020). p. 85–99.

132. Carpenter VJ, Saleh T, Gewirtz DA. Senolytics for cancer therapy: Is all that
glitters really gold? Cancers (2021) 13(4):723. doi: 10.3390/cancers13040723

133. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N,
Hashmi SK, et al. Senolytics decrease senescent cells in humans: Preliminary
report from a clinical trial of dasatinib plus quercetin in individuals with diabetic
kidney disease. EBioMedicine (2019) 47:446–56. doi: 10.1016/j.ebiom.2019.08.069

134. Wang AS, Dreesen O. Biomarkers of cellular senescence and skin aging.
Front Genet (2018) 9. doi: 10.3389/fgene.2018.00247

135. Sikora E, Mosieniak G, Alicja Sliwinska M. Morphological and functional
characteristic of senescent cancer cells. Curr Drug Targets. (2016) 17(4):377–87.
doi: 10.2174/1389450116666151019094724
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