
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Chia-ho Hua,
St. Jude Children’s Research Hospital,
United States

REVIEWED BY

Jing Yuan,
Hong Kong Sanatorium and Hospital,
Hong Kong SAR, China
David Waddington,
The University of Sydney, Australia

*CORRESPONDENCE

Clifton D. Fuller
cdfuller@mdanderson.org
Mohamed A. Naser
manaser@mdanderson.org

SPECIALTY SECTION

This article was submitted to
Radiation Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 22 June 2022
ACCEPTED 21 October 2022

PUBLISHED 08 November 2022

CITATION

Wahid KA, Xu J, El-Habashy D,
Khamis Y, Abobakr M, McDonald B, O’

Connell N, Thill D, Ahmed S,
Sharafi CS, Preston K, Salzillo TC,
Mohamed ASR, He R, Cho N,
Christodouleas J, Fuller CD and
Naser MA (2022) Deep-learning-based
generation of synthetic 6-minute MRI
from 2-minute MRI for use in head
and neck cancer radiotherapy.
Front. Oncol. 12:975902.
doi: 10.3389/fonc.2022.975902

COPYRIGHT

© 2022 Wahid, Xu, El-Habashy, Khamis,
Abobakr, McDonald, O’ Connell, Thill,
Ahmed, Sharafi, Preston, Salzillo,
Mohamed, He, Cho, Christodouleas,
Fuller and Naser. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 08 November 2022

DOI 10.3389/fonc.2022.975902
Deep-learning-based
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Abdallah S. R. Mohamed1, Renjie He1, Nathan Cho2,
John Christodouleas2, Clifton D. Fuller1*

and Mohamed A. Naser1*

1Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center,
Houston, TX, United States, 2Elekta AB, Stockholm, Sweden, 3Department of Clinical Oncology and
Nuclear Medicine, Menoufia University, Shebin Elkom, Egypt, 4Department of Clinical Oncology and
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Background: Quick magnetic resonance imaging (MRI) scans with low

contrast-to-noise ratio are typically acquired for daily MRI-guided

radiotherapy setup. However, for patients with head and neck (HN) cancer,

these images are often insufficient for discriminating target volumes and

organs at risk (OARs). In this study, we investigated a deep learning (DL)

approach to generate high-quality synthetic images from low-quality images.

Methods:We used 108 unique HN image sets of paired 2-minute T2-weighted

scans (2mMRI) and 6-minute T2-weighted scans (6mMRI). 90 image sets

(~20,000 slices) were used to train a 2-dimensional generative adversarial DL

model that utilized 2mMRI as input and 6mMRI as output. Eighteen image sets

were used to test model performance. Similarity metrics, including the mean

squared error (MSE), structural similarity index (SSIM), and peak signal-to-noise

ratio (PSNR) were calculated between normalized synthetic 6mMRI and

ground-truth 6mMRI for all test cases. In addition, a previously trained OAR

DL auto-segmentation model was used to segment the right parotid gland, left

parotid gland, and mandible on all test case images. Dice similarity coefficients

(DSC) were calculated between 2mMRI and either ground-truth 6mMRI or

synthetic 6mMRI for each OAR; two one-sided t-tests were applied between

the ground-truth and synthetic 6mMRI to determine equivalence. Finally, a

visual Turing test using paired ground-truth and synthetic 6mMRI was

performed using three clinician observers; the percentage of images that

were correctly identified was compared to random chance using proportion

equivalence tests.
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Results: The median similarity metrics across the whole images were 0.19,

0.93, and 33.14 for MSE, SSIM, and PSNR, respectively. The median of DSCs

comparing ground-truth vs. synthetic 6mMRI auto-segmented OARs were

0.86 vs. 0.85, 0.84 vs. 0.84, and 0.82 vs. 0.85 for the right parotid gland, left

parotid gland, and mandible, respectively (equivalence p<0.05 for all OARs).

The percent of images correctly identifiedwas equivalent to chance (p<0.05 for

all observers).

Conclusions: Using 2mMRI inputs, we demonstrate that DL-generated

synthetic 6mMRI outputs have high similarity to ground-truth 6mMRI, but

further improvements can be made. Our study facilitates the clinical

incorporation of synthetic MRI in MRI-guided radiotherapy.
KEYWORDS

deep learning, MRI, head and neck cancer, adaptive radiotherapy, generative
adveserial network
Introduction

Head and neck cancer (HNC) is among the most common

malignancies globally (1). A core treatment modality for HNC

patients is radiotherapy (RT) (2). The current clinical standard

for HNC RT planning involves pre-therapy imaging using

computed tomography (CT). However, adaptive RT (ART)

using magnetic resonance imaging (MRI)-guided approaches

offers distinct advantages over the current clinical standard, such

as increased soft-tissue contrast and radiation-free intra-

treatment imaging, which can be leveraged for improved

tumor control and decreased side effects (3, 4). Therefore, it is

predicted that MRI-guided ART will play an increasingly

important role in HNC patient management.

Anatomical MRI sequences, particularly T2-weighted (T2w)

images, are routinely acquired during online and offline MRI-

guided ART and may be used for segmentation of target

structures, i.e., primary tumors and metastatic lymph nodes, and

organs at risk (OARs) (5). Specifically, in the Elekta Unity MR-linac

HNC workflow, quick T2w images with low contrast-to-noise ratio,

typically acquired over 2 minutes, are often used for on-board setup

imaging to minimize treatment times. However, these quick setup

images are not always sufficient for the optimal discrimination of

target structures and OARs, especially when deciding if adaptive re-

planning is necessary (5). Longer scan times, typically performed

over 6 minutes, can be employed to improve image contrast-to-

noise ratio and thus overall image quality, but routine use must be

balanced against the patient’s comfort and the treatment schedule.

Therefore, the rapid acquisition of high-quality T2w scans is an

unmet need in MRI-guided ART workflows.

Deep learning (DL) has found wide success in a variety of

domains for RT-related medical imaging applications such as
02
target and OAR segmentation (6–11) and outcome prediction

(12, 13). One less routinely studied domain is synthetic image

generation, i.e., mapping an input image to an output image.

Recent work has highlighted the utility of DL for synthetically

generating CT images from MRI sequences (14–21), MRI

sequences from CT images (22–26), and MRI sequences from

other MRI sequences (27–31). However, to date, no studies have

investigated the feasibility of using DL to generate high-quality

synthetic MRI sequences from low-quality MRI sequences to

decrease the required scan time for HNC-related imaging.

In this study, we evaluated the feasibility of generating

synthetic 6-minute T2w MRI sequences from 2-minute T2w

MRI sequences for use in MRI-guided RT workflows. Using

paired 2-minute and 6-minute scans, we trained a DL network to

generate high-quality synthetic 6-minute scans. We employed

various quantitative and qualitative evaluation techniques,

including a clinician-based visual Turing test, to demonstrate

the potential acceptability of synthetic image generation for use

in MRI-guided RT workflows. An overview of the study is shown

in Figure 1.
Methods

Imaging data

Data were retrospectively collected from a clinical trial

investigating MRI-guided ART (National Clinical Trial

Identifier: NCT04075305) and an internal volunteer imaging

study under HIPAA-compliant protocols approved by The

University of Texas MD Anderson Cancer Center ’s

Institutional Review Board (PA18-0341, PA14-1002, RCR03-
frontiersin.org

https://doi.org/10.3389/fonc.2022.975902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wahid et al. 10.3389/fonc.2022.975902
0800). Paired 2-minute T2w MRI scans and 6-minute T2w MRI

scans, acquired during the same imaging session, were collected

for 53 participants (50 HNC patients; three volunteers). These

MRI sequences have been established for use with the Unity MR-

linac HNC workflow (5). Details of the participants ’

demographic and clinical characteristics are shown in

Appendix A. For a subset of 10 HNC patients, multiple intra-

RT paired image sets were available; the total number of paired

image sets varied from 2-9 for each patient (total number of

paired image sets = 56). One HNC patient had nine intra-RT 2-

minute scans and one pre-RT 6-minute scan available, so a

deformable image registration in ADMIRE v. 3.42 (Elekta AB,

Stockholm, Sweden) was performed between the 6-minute and

2-minute scans to yield nine image sets. One volunteer had two

additional paired image sets available. The remaining 21

participants (19 HNC patients pre-RT; two volunteers) had

one paired image set available. In total, 108 unique paired

image sets were available for use. All participants were

scanned on the same scanner, a 1.5 T Elekta Unity MR-linac

device. The acquisition characteristics of the 2-minute and 6-

minute scans are shown in Table 1. Both the 2-minute and 6-

minute scans were 3D Turbo spin echo acquisitions. Additional

details on these MRI acquisitions can be found in literature by

McDonald et al. (5). All participants were immobilized with a

thermoplastic mask, which minimized differences in anatomical

positioning between sequence acquisitions. Notably, the 2-

minute scans had a slightly longer field of view superiorly and

inferiorly compared to the 6-minute scans. All imaging data
Frontiers in Oncology 03
were collected in Digital Imaging and Communications in

Medicine (DICOM) format.
Data partitioning

For the purposes of model training and evaluation, we split

data into separate training and test sets. The 11 HNC patients with

multiple image sets, three volunteer cases, and a random sample of

21 HNC patients with single image sets were included in the

training set, leading to a total of 90 unique paired image sets, i.e.,
TABLE 1 MRI sequence acquisition parameters for the 2-minute and
6-minute MRI scans used in this study.

Acquisition Parameter 2-minute 6-minute

Repetition time (ms) 1535 2100

Echo time (ms) 278 375

Echo train length 114 150

Flip angle (°) 90 90

Slice thickness (mm) 2.0 2.2

In-plane resolution (mm) 0.83 0.68

Slice gap (mm) 1.0 1.1

Acquisition matrix 268x268 432x433

Pixel bandwidth (Hz/px) 740 459

Number of averages 1 2

Number of axial slices 300 227
fro
FIGURE 1

Study overview. 2-minute MRI scans are used as input to a deep learning model to generate synthetic 6-minute MRI scans. The synthetic
6-minute scans are compared to ground-truth 6-minute scans through various quantitative and qualitative methods.
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~20,000 slices, for model training. The remaining 18 HNC

patients with single image sets were used for the test set, leading

to a total of 18 unique paired image sets for model testing.
Deep learning network

A DL generative adversarial neural network (GAN) (32) model

based on the CycleGAN architecture (33) using paired T2w 2-

minute and T2w 6-minute scans was implemented in Tensorflow

(34). Specifically, our model implementation draws inspiration

from work performed by Johnson et al. (35), which showed

promising results for image translation. The overall structure of

the generative networks is based on the classic 2D Resnet encoder-

decoder structure and a PatchGAN discriminator network (36–38);

inputs and outputs to the model were of size 512x512. Additional

technical details on the DL architecture can be found in Appendix

B. To obtain better quantitative synthetic results, we adopted an

additional mutual information loss in addition to the original

adversarial and cycle-consistency losses. The mutual information

term (39) was calculated between the synthetic and the ground-

truth images, and the negative mutual information was minimized.

The weight parameters for the adversarial loss, cycle-consistency

loss, and mutual information loss were set to 1, 10, and 1,

respectively. The learning rate was fixed as 2e-4 for the first half

of all training epochs and was linearly decayed for the second half of

training; 200 total training epochs were used. Figure 2 shows an

overview of the DL loss functions.
Deep learning data processing

Several simple data processing steps were performed prior to

training the deep learning model. First, 6-minute T2w images were

rigidly registered with corresponding 2-minute T2w images.
Frontiers in Oncology 04
Previous studies have noted the importance of intensity

standardization in DL-based MRI image synthesis (40); therefore,

we also applied these steps to our processing pipeline. Specifically,

an N4 bias field correction (41) was applied to remove additional

low-frequency non-uniform artifacts. In addition, a z-score

normalization, where the mean and standard deviation were

calculated from the voxel values in the range of [0.25% 99.75%],

was applied to 2-minute T2w images, followed by an additional

rescaling to a range of [-1.0, 1.0]. The registered 6-minute T2w

images were also rescaled to a range of [-1.0, 1.0]. The final trained

DL model was implemented in ADMIRE v. 3.42 (Elekta AB,

Stockholm, Sweden) and subsequently applied to the 2-minute

test case scans to generate the synthetic 6-minute images for data

analyses. Each synthetic image took approximately 1 second to

generate on a NVIDIA V100 GPU, with an additional approximate

30 seconds after applying the N4 bias field correction. All DL inputs

and outputs for the test set cases are made publicly available on

Figshare: 10.6084/m9.figshare.20099252.
Data analyses

All analyses were performed in Python v. 3.9.7 (42). DICOM

images and RT structure files were converted to Neuroimaging

Informatics Technology Initiative format using the DICOMRTTool

Python package (43). Subsequently, all processing operations were

performed using Numpy (44) arrays. All analysis code is available on

GitHub: https://github.com/kwahid/2min_6min_synthetic_MRI.
Image similarity evaluation

To quantitatively compare image similarity between ground-

truth 6-minute scans and synthetic 6-minute scans, we used

several commonly implemented metrics for image similarity.
FIGURE 2

Overview of loss functions used in deep learning network. For simplicity, only the first half of the CycleGAN is shown where a fake 6-minute
scan is generated from a real 2-minute scan. An analogous process occurs to generate a fake 2-minute scan from a real 6-minute scan.
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Specifically, we implemented the mean squared error (MSE),

structural similarity index (SSIM), and the peak signal-to-noise

ratio (PSNR). The metrics were chosen because of their

widespread ubiquity in contemporary literature. All metrics

were derived from the scikit-image Python package (45). SSIM

was calculated using a window size of 11 as recommended in

literature (46), and the PSNR was calculated using a data range

based on the maximum and minimum value of the ground-truth

image. Image similarity metrics were used to compare images

globally (whole image) and at a region of interest (ROI) level.

ROIs were based on the auto-segmented OAR structures on 2-

minute scans described below (left parotid gland, right parotid

gland, left submandibular gland, right submandibular gland,

mandible, spinal cord, and brainstem) and an external mask of

the head/neck region generated by the Otsu method (47).

Bounding boxes were created around each ROI to perform the

similarity calculation. Before comparison, synthetic images were

resampled to the same image space as the ground-truth images

using an order-3 B-spline interpolator. In addition, ground-truth

images were N4 bias field corrected to ensure a fair comparison

with the N4 bias field corrected synthetic images; N4 bias field

post-processing was performed in ADMIRE v. 3.42 (Elekta AB,

Stockholm, Sweden). Additionally, both images were z-score

normalized before metric evaluation to ensure that the analysis

was independent of the scale of intensity values, as suggested in

previous literature (48), therefore MSE and PSNR calculations

can be interpreted as a normalized MSE and PSNR.
Auto-segmentation evaluation

In Appendix C, we show that clinicians prefer 6-minute

scans over 2-minute scans for OAR visualization. As a proxy for

a human segmentation task, we implemented auto-segmentation

of common HNC OARs. A previously developed DL HNC OAR

auto-segmentation model available in ADMIRE v. 3.42 (Elekta

AB, Stockholm, Sweden) that was trained on 2-minute T2w

scans was used for the analysis. The model had previously shown

superior performance to gold-standard segmentations and

therefore was trusted as a reasonable proxy for clinician-

generated segmentations. Additional details of the auto-

segmentation model can be found in McDonald et al. (49).

The left parotid gland, right parotid gland, left submandibular

gland, right submandibular gland, mandible, spinal cord, and

brainstem were auto-segmented for all test patients on 2-minute,

ground-truth 6-minute, and synthetic 6-minute scans using the

pre-trained model (representative examples shown in Appendix

D). Dice similarity coefficient (DSC) and average surface

distance (ASD) values were calculated between 2-minute scans
Frontiers in Oncology 05
and either ground-truth 6-minute scans or synthetic 6-minute

scans for each OAR. DSC and ASD were selected because of their

general ubiquity in auto-segmentation studies and ability to

discriminate volumetric and surface-level segmentation

quality, respectively (50). Before comparison, OAR masks were

resampled to the same image space as the ground-truth 6-

minute image using a nearest neighbor interpolator. All auto-

segmentation metrics were calculated using the surface-

distances Python package (51). Only OARs with metric values

better than previously reported interobserver variability (IOV)

values derived from 2-minute images, as determined from

McDonald et al. (49), were used for further analysis

(additional details in Appendix D). Paired two one-sided t-

tests (TOST) (52) were applied between metric values of the

ground-truth 6-minute scans and synthetic 6-minute scans for

each OAR to determine equivalence; p-values less than 0.05 were

considered statistically significant. The logic behind this analysis

is that resultant auto-segmented OARs on ground-truth and

synthetic 6-minute scans should be similar, i.e., statistically

equivalent, when measured against a reliable comparator (i.e.,

2-minute scan segmentations). Equivalence bounds were

determined based on the interquartile range of previous

interobserver data from McDonald et al. (49) (Appendix D,

Table 1D). The Python package statsmodels (53) was used to

conduct the TOST analysis. Finally, metrics (DSC and ASD)

were also calculated between OAR segmentations on ground-

truth 6-minute images vs. synthetic 6-minute images and

qualitatively compared to the previously established IOV values.
Manual segmentation evaluation

In order to further investigate the acceptability of our

synthetic images for use in segmentation workflows, we

compared physician-generated manual OAR segmentations

using ground-truth and synthetic 6-minute images. A subset of

five HNC patients with a primary diagnosis of oropharyngeal

cancer were used for the analysis. Three radiation oncologist

observers provided segmentations for the analysis (D.E., Y.K.,

M.A.). Pairwise metrics (DSC and ASD) were calculated between

all observers to determine the IOV for each image type (ground-

truth, synthetic). Before comparison, OAR masks were resampled

to the same image space as the ground-truth 6-minute image

using a nearest neighbor interpolator. Paired TOST analysis was

performed to determine if IOV of ground-truth and synthetic

scans was equivalent; p-values less than 0.05 were considered

statistically significant. Equivalence bounds for each OAR were

based on the interquartile range of corresponding ground-truth

images. Finally, for each observer, metrics (DSC and ASD) were
frontiersin.org
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calculated between OAR segmentations on ground-truth images

vs. synthetic images and qualitatively compared to the

corresponding ground-truth IOV.
Visual Turing test

To determine whether synthetic images were visually

distinguishable from ground-truth images by human expert

observers, we implemented a visual Turing test inspired by

Gooding et al. (54). A subset of five HNC patients with a

primary diagnosis of oropharyngeal cancer with visible

primary and nodal tumors on imaging were selected for the

Turing test (the same patients used for the manual segmentation

evaluation). Paired image representations were randomly

generated for each slice, i.e., random allocation of images to

either the left or right image. Four axial slices for six ROIs

(parotid glands, submandibular glands, mandible, tumor, node)

were selected for each case, leading to 100 paired images

available for evaluation. Images were randomly shuffled before

evaluation. Moreover, to ensure an equal comparison that is

unbiased by arbitrary MRI voxel units, we applied a z-score

normalization to each presented slice. Three radiation

oncologists (D.E., Y.K., M.A.) were asked to provide their best

guess of which image (left or right) was real (ground-truth) and

synthetic (DL-generated). In addition, clinicians were asked to

denote which image they preferred overall. Finally, clinicians

were asked to provide comments on why they made their

decision. The test was conducted twice: first with the raw DL

outputs and 2 weeks later after applying a 3x3 sharpening kernel

= [[0, -0.5, 0], [-0.5, 3,-0.5], [0, -0.5, 0]] to DL outputs. To

statistically evaluate the Turing test results, for each observer we

implemented a two one-sided test for two proportions using an

expected proportion of 0.5 with equivalence bounds of -0.3 and

0.3; the function was derived from the TOSTER R package (55)

and implemented in Python through the Rpy2 Python package

(56). For all statistical analyses, p-values less than 0.05 were

considered statistically significant.
Frontiers in Oncology 06
Qualitative evaluation of failure cases

We visually evaluated images of a select subset of cases by

comparing ground-truth 6-minute scans and post-sharpened

synthetic 6-minute scans. Low-, medium-, and high-performance

example cases were selected on the basis of whether they were lower

than, equal to, or higher than the median SSIM value of the external

mask across all cases. Pixel-wise difference maps and SSIM maps

between the normalized ground-truth and synthetic scans were

generated to visualize uncertainties in relation to the DL synthesis

process. For comparison, we also displayed the input 2-minute T2w

scan for each case.
Results

Image similarity evaluation

Table 2 shows the values of the various intensity metrics for

the whole image and ROI evaluations. Two cases had surgical

resections which obfuscated normal submandibular gland

anatomy and prohibited the auto-segmentation algorithm

from generating a large enough ROI for similarity analysis;

therefore, these respective auto-segmented submandibular

glands were not used. Generally, the whole image boasted the

best median (interquartile range [IQR]) similarity metric values

of 0.19 (0.05), 0.93 (0.03), and 33.14 (2.30) for MSE, SSIM, and

PSNR, respectively. MSE, SSIM, and PSNR values slightly

worsened when evaluated on the external mask to 0.41 (0.12),

0.80 (0.06), and 30.06 (1.32), respectively. Within the OARs, the

best MSE and PSNR were for the mandible (1.16 [0.50] and

23.33 [1.83], respectively), the worst SSIM was 0.43 (0.12) for the

left submandibular gland, and the worst PSNR was 18.02 (3.34)

for the right submandibular gland. The brainstem

simultaneously achieved the best SSIM of 0.66 (0.09) but the

worst MSE of 4.99 (2.98) among the OARs. Appendix E shows

the impact of applying various processing steps on similarity

values and preliminary analyses on radiomic features.
TABLE 2 Image similarity metric results across the whole image and various subregions.

ROI MSE SSIM PSNR

Whole 0.19 (0.05) 0.93 (0.03) 33.14 (2.30)

External 0.41 (0.12) 0.80 (0.06) 30.06 (1.32)

Mandible 1.16 (0.50) 0.56 (0.09) 23.33 (1.83)

Brainstem 4.99 (2.98) 0.66 (0.09) 19.17 (2.03)

Left Submandibular Gland 1.42 (0.79) 0.43 (0.12) 19.52 (3.56)

Right Submandibular Gland 1.44 (0.84) 0.48 (0.14) 18.02 (3.34)

Left Parotid Gland 1.40 (0.52) 0.46 (0.11) 18.87 (2.64)

Right Parotid Gland 1.20 (0.52) 0.52 (0.11) 19.38 (1.95)

Spinal Cord 1.98 (2.04) 0.51 (0.09) 22.56 (2.45)
fro
Values presented are rounded up to two decimal places. MSE, mean squared error; SSIM, structural similarity index; PSNR, peak signal-to-noise ratio.
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Auto-segmentation evaluation

Figures 3A, B show the distributions of the various auto-

segmented OARs for the ground-truth images compared to the

synthetic images for DSC and ASD, respectively. Only the right

parotid gland, left parotid gland, and mandible were included in

the analysis since they crossed previously recorded IOV cutoffs

in ground-truth images (see details in Appendix D). One case

had a right parotidectomy; therefore, it was excluded from the

right parotid analysis. The median (IQR) DSC values and

equivalence test p-values comparing ground-truth vs. synthetic

OARs were 0.86 (0.06) vs. 0.85 (0.07) (p=0.001), 0.84 (0.10) vs.

0.84 (0.10) (p=1.08e-7), and 0.82 (0.03) vs. 0.85 (0.08) (p=3.48e-

5) for the right parotid gland, left parotid gland, and mandible,

respectively. The median (IQR) ASD values and equivalence test

p-values comparing ground-truth vs. synthetic OARs were 1.45

(0.88) vs. 1.65 (1.65) (p=0.048), 1.56 (1.14) vs. 1.68 (1.83)

(p=4.99e-5), and 0.86 (0.25) vs. 0.67 (0.41) (p=1.57e-7) for the

right parotid gland, left parotid gland, and mandible,

respectively. Figures 3C, D show the distributions of ground-

truth vs. synthetic auto-segmented OAR overlap using DSC and

ASD, respectively. Median metric values surpassed 2-minute

IOV cutoffs for all investigated OARs. The median (IQR) DSC

values were 0.84 (0.07), 0.86 (0.09), and 0.82 (0.07) for the right

parotid gland, left parotid gland, and mandible, respectively. The
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median (IQR) ASD values were 1.36 (0.61), 1.27 (0.80), 0.87

(0.30) for the right parotid gland, left parotid gland, and

mandible, respectively. Direct metric comparisons for the

OARs that did not cross IOV cutoffs are shown in Appendix D.
Manual segmentation evaluation

Figures 4A, B show the distributions of the IOV values for the

various manually segmented OARs for the ground-truth images

compared to the synthetic images for DSC and ASD, respectively.

The median (IQR) DSC IOV values and equivalence test p-values

comparing ground-truth vs. synthetic OARs were 0.69 (0.23) vs.

0.65 (0.16) (p=0.007), 0.66 (0.20) vs. 0.65 (0.12) (p=6.44e-5), 0.69

(0.18) vs. 0.69 (0.21) (p=0.001), 0.84 (0.07) vs. 0.80 (0.30)

(p=0.43), 0.83 (0.09) vs. 0.80 (0.23) (p=0.49), 0.89 (0.09) vs. 0.91

(0.08) (p=0.02), and 0.76 (0.21) vs. 0.77 (0.29) (p=2.85e-9) for the

right parotid gland, left parotid gland, mandible, right

submandibular gland, left submandibular gland, brainstem, and

spinal cord, respectively. The median (IQR) ASD IOV values and

equivalence test p-values comparing ground-truth vs. synthetic

OARs were 1.93 (1.82) vs. 2.03 (1.12) (p=0.004), 2.07 (1.88) vs.

2.48 (1.50) (p=3.68e-6), 1.43 (1.04) vs. 1.31 (2.07) (p=0.007), 0.68

(0.41) vs. 1.27 (1.91) (p=0.88), 0.64 (0.38) vs. 0.99 (0.89) (p=0.84),

0.55 (0.57) vs. 0.67 (0.61) (p=0.04), and 1.23 (1.43) vs. 0.91 (2.21)
A

B D

C

FIGURE 3

Auto-segmentation results. Auto-segmented organs at risk (left parotid gland, right parotid gland, and mandible) were generated on ground-
truth ([GT], green) or synthetic (yellow) 6-minute images and compared against 2-minute images using the (A) Dice similarity coefficient (DSC)
and (B) average surface distance (ASD). Segmentations generated on GT and synthetic images were then directly compared using the (C) DSC
and (D) ASD. Stars above plot indicate paired two one-sided t-tests (equivalence test) level of significance: ns: p > 0.05; *: 0.005 < p <= 0.05;
**: 0.0005 < p <= 0.005; ***: p<= 0.0005. Red dotted lines correspond to median interobserver variability (IOV) metric values derived from
clinical experts from previous literature investigating 2-minute images.
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(p=0.001) for the right parotid gland, left parotid gland, mandible,

right submandibular gland, left submandibular gland, brainstem,

and spinal cord, respectively. Figures 4C, D show the distributions

of ground-truth vs. synthetic OAR overlap for each observer using

DSC and ASD, respectively. Generally, median metric values

surpassed IOV cutoffs for most observers for most OARs.

Notable exceptions where IOV metric values were not crossed

included the right parotid gland (DSC and ASD for observer 2),

left submandibular gland (DSC and ASD for all observers), right

submandibular gland (DSC and ASD for all observers), spinal

cord (DSC for all observers, ASD for observer 2), and brainstem

(DSC for observer 3, ASD for all observers).
Visual Turing test

Table 3 shows the Turing test and clinician preference

results. Significance testing for both proportions of images

correctly identified and image preferences revealed equivalence

between the ground-truth images and the synthetic images for

all observers (p < 0.05). Figure 5 stratifies the clinician preference

results by the predominant ROI contained in each slice. All
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clinicians preferred the ground-truth for slices with primary

tumors present, while there was no clear consensus for other

regions. Observer comments for the Turing test generally

focused on the ability to discriminate margins between

structures (raw comments are shown in Appendix F).

Additionally, in Appendix F, we show that without the

application of the sharpening filter, clinicians made a clearer

distinction between the synthetic and ground-truth images.
Qualitative evaluation

To help visualize image similarity results, we inspected

paired ground-truth and synthetic images for a few select cases

based on SSIM scores of the external mask in Figure 6. In

general, larger differences in areas of relative hyperintensity

present on both 2-minute scans and ground-truth 6-minute

scans were found between the ground-truth and synthetic

images, e.g., fat and cerebrospinal fluid. For the low-

performance case (SSIM = 0.68), which corresponds to a

patient with an unknown primary tumor, a large level VI

lymph node demonstrated hyperintensity on the ground-truth
A

B D

C

FIGURE 4

Manual segmentation results. For three clinician observers, manually segmented organs at risk (left parotid gland, right parotid gland, mandible,
left submandibular gland, right submandibular gland, spinal cord, brainstem) were generated on ground-truth or synthetic 6-minute images;
interobserver variability (IOV) values were calculated pairwise between each observer for ground-truth (green) and synthetic (yellow) images
using the (A) Dice similarity coefficient (DSC) and (B) average surface distance (ASD). Segmentations generated on ground-truth and synthetic
images were then compared for each observer using the (C) DSC and (D) ASD. Stars above plot indicate paired two one-sided t-tests
(equivalence test) level of significance: ns: p > 0.05; *: 0.005 < p <= 0.05; **: 0.0005 < p <= 0.005; ***: p<= 0.0005. Red dotted lines
correspond to median IOV metric values derived from clinical experts on ground-truth 6-minute images in this study.
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6-minute scan. However, the difference map demonstrated a

large discrepancy in the nodal area on the synthetic scan, likely

due to a lack of visible contrast on the 2-minute scan input. An

inability to synthesize the borders of the vocal folds was also

noted. Relative differences were minor for most other areas of

the image. For the medium-performance (SSIM = 0.81) and

high-performance (SSIM = 0.86) cases, which corresponded to

patients with glandular and oropharyngeal primary tumors,

respectively, there were no major deviations in specific regions

with the exception of previously mentioned hyperintense areas.

SSIMmaps were generally correlated with difference maps for all

cases and had lower similarity values for internal tissue

structures and near tissue-background boundaries.
Discussion

In this proof of principle study, we demonstrated the

feasibility of using DL to reduce overall HNC MRI scan time

by generating a 6-minute quality synthetic scan from a 2-

minute scan input. A variety of evaluation techniques were

performed, including similarity metric analysis, OAR

segmentation, and a clinician-based visual Turing test, which

demonstrate the reasonable quality of our synthetically

generated scans and potential for integration into clinical

workflows. To our knowledge, this is the first study

investigating the impact of DL-based synthetic image

generation in the context of decreased MRI scan time in
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HNC and the first study to investigate synthetic image

acceptability for MRI-guided RT applications.

While it is difficult to directly compare metric values

between different studies due to variability in datasets and

model training, our models boast similar performance to

current state-of-the-art methods in related literature. Notably,

we ensured image normalization before metric calculation, but

since MSE and PSNR are highly dependent on the scale of the

intensity values investigated we avoid direct comparisons to

other work. However, SSIM provides an intensity scale-invariant

method of calculating similarity, which allows for a surface-level

comparison with other investigations. To our knowledge, the

only investigation of DL-generated synthetic MRI from input

MRI sequences in HNC was performed by Li et al. (31). In their

study, the authors sought to generate synthetic post-contrast T1-

weighted (T1w) scans from pre-contrast T1w and T2w scans,

which yielded average whole-image SSIM values of 0.88 in their

test set for their best-performing model. Moreover, several

studies synthesizing T1w or T2w scans also reported similar

SSIM values, often in the range of 0.85-0.95 (22, 25, 29, 30).

Therefore, it is encouraging that our whole-image SSIM values of

0.93 are comparable or even superior to those currently reported.

It should be noted that metric values tended to worsen when

evaluating specific subregions compared to the whole image. As

seen in the SSIM maps of our qualitative analysis, SSIM tended

to be lower for internal tissue regions. These regions may have

greater intricate details that are difficult to replicate accurately.

However, this trend was also noted in Li et al., where SSIM
FIGURE 5

Clinician image preferences stratified by region represented in the presented image slice. Green bars correspond to ground-truth 6-minute MRI
slices, while yellow bars correspond to synthetic 6-minute MRI slices.
TABLE 3 Visual Turing test and image preference results for three physician expert observers.

Observer % Correct p-val % Ground-Truth Preference p-val

1 51 2.05e-05 66 0.02

2 56 3.29e-4 46 1.12e-4

3 59 1.37e-3 61 3.26e-3
frontier
Each observer was asked to determine the image identity of blinded paired ground-truth or synthetic 6-minute scan slices in a randomized fashion and provide their preference. Two one-
sided tests for two proportions were applied to determine whether observer estimates were equivalent to chance.
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decreased from 0.86 in the whole image to 0.64 in the tumor

region. Importantly, SSIM is also a function of the window size

parameter, which is not currently standardized across synthetic

image analysis studies. Interestingly, within the OAR regions

investigated, the brainstem achieved the best SSIM but the worst

MSE, indicating that the synthetic brainstem was structurally

similar to the ground-truth brainstem but had a greater relative

difference in intensity values than other OARs.

One of the main end-uses of anatomical MRIs in an ART

workflow is for ROI segmentation (3). In proposed future

workflows for MRI-guided ART, it is envisioned that

anatomical sequences will be used to segment OARs, while

functional sequences, such as diffusion-weighted and dynamic

contrast-enhanced imaging, will provide greater useful

information for segmenting target structures. Therefore, we

have chosen to focus this study on investigating OAR-specific

ROIs. Moreover, we have established physician preference for

visualizing OARs on 6-minute scans compared to 2-minute

scans in our supplementary analysis; therefore, it can be

reasonably assumed that synthetic scans which demonstrate

equivalent scan quality to a 6-minute scan would be clinically

useful for OAR segmentation. While manual segmentation of

OARs is still the current clinical standard, increasing effort has

shown promising results for automatic OAR segmentation
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through DL methods (57). Our results indicate that certain

auto-segmented OARs (parotid glands and mandible) are not

significantly different in segmentation quality between ground-

truth and synthetic scans. In essence, the previously trained

auto-segmentation algorithm faced its own “artificial Turing

Test” when using synthetic or ground-truth 6-minute scans as

input. Moreover, direct comparison of auto-segmented OARs

crossed previous IOV thresholds. Subsequently, it stands to

reason that a synthetic 6-minute MRI may be able to replace a

real 6-minute MRI for auto-segmenting these OARs. In addition

to auto-segmentation based quality analysis, we have also

included an investigation of manual segmentation for a subset

of cases. IOV measured across 3 physician observers was found

to be equivalent for all OARs with the exception of

submandibular glands, which exhibited higher variability on

synthetic images when compared to ground-truth images.

When directly comparing segmentations performed on

ground-truth with synthetic images, IOV thresholds were

crossed for most observers across most OARs, but there were

several notable exceptions, chief of which was particularly poor

performance for submandibular gland segmentation. Therefore,

while overall segmentation results are encouraging, there should

still be caution in implementing synthetic images for OAR

segmentation purposes.
FIGURE 6

Qualitative evaluation of select cases from the test set. Cases correspond to high (green), medium (blue), and low (orange) performance relative
to the median structural similarity index (SSIM) for the entire test set. Paired 2-minute scans, ground-truth 6-minute scans, synthetic 6-minute
scans, absolute difference intensity maps between the ground-truth and synthetic 6-minute scans, and SSIM maps between the ground-truth
and synthetic 6-minute scans are shown for each case. The high-, medium-, and low-performance cases correspond to patients with glandular
(post-resection), oropharyngeal, and unknown (metastatic lymph node) primary tumors, respectively.
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Unlike CT imaging, where voxel-level quantitative

information can be used in the RT workflow, e.g., dose

calculations, MRIs are currently mainly utilized for human-

level decision making, e.g., segmentation. Arguably, the most

important facet of MRI quality in current RT workflows is

clinician interpretation of image quality. Therefore, the passing

of a clinician-based visual Turing test for synthetic 6-minute

scans is paramount to determining the preliminary clinical

utility of this technology. In aggregate across all observers,

there was no major preference given to either the ground-

truth or synthetic 6-minute images, indicating a similarity in

the human interpretation of image quality. Moreover, observers

were at most only able to correctly determine the true identity of

the blinded image 59% of the time, compared to the assumed

50% if clinicians were randomly guessing. It should be noted that

clinicians did have a slight preference for visualizing slices

containing target volumes on ground-truth images. However,

as previously noted, OAR regions are of greater interest in these

anatomical sequences; therefore, whether this preference would

be clinically meaningful could be debated.

Our qualitative analysis revealed that across most patients

observed, there was a larger disparity in regions of relatively high

intensity on ground-truth imaging, e.g., fat and cerebrospinal

fluid. The larger absolute range of values may make it more

difficult for the DL network to synthesize these regions precisely.

Moreover, SSIM maps indicated model difficulties with

approximating certain tissue and background boundaries,

secondary to visually imperceptible signal differences, i.e.,

noise, in these areas. However, as the goal of this work is to

improve clinician workflows, these perceived differences are

likely not clinically significant. Moreover, these issues have

been echoed in similar work (31). Consistent with clinician

preferences, our DL model generally had difficulties in

successfully synthesizing pathologic tissue, i.e., primary and

nodal tumor volumes. This is likely secondary to the relative

lack of representation of pathologic tissue in the training set

since models are trained at a slice-by-slice level. Our models

were trained using patients from a variety of HNC subsites (i.e.,

oropharynx, nasopharynx, glandular, etc.), so there was

substantial heterogeneity in nodal appearance and location,

which likely made model training difficult for these

subregions. However, while the contrast in these nodal regions

was often visibly different in synthetic images, their relative size,

shape, and texture may remain similar to the ground-truth

image. It has been suggested that geometrical properties, i.e.,

size, shape, and texture, are often particularly important for

image segmentation (58, 59). Therefore, cases where tumor

volume synthesis “fails” may not necessarily render these

images clinically unusable, but additional research should be

performed to verify these claims.

Previous work by McDonald et al. investigating the Unity

online adaptive workflow in HNC patients has demonstrated

total treatment times ranging from 31 to 85 minutes (5). This
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raises the important question of whether the ~4 minutes saved

using our method is justified. While on a patient-by patient basis

these time savings may not seem significant, it is important to

note that patients are fixed in immobilization devices, often with

intraoral mouth pieces, which may be claustrophobic and highly

uncomfortable for patients (60). Therefore, presumably, every

minute saved adds to an improvement in patient comfort during

their already harrowing treatment process. Furthermore, an

important merit of decreased image acquisition time is a

reduced probability of voluntary or involuntary patient

movement (61), therefore our method could potentially save

time by avoiding repeated imaging induced by motion artifact.

Moreover, given current treatment times, it is common to treat

6-8 patients per day at our institution, so over the course of one

day, these time savings could accumulate and lead to another full

treatment that could be delivered during clinic hours. In

addition, it warrants noting that image acquisition is the first

step in treatment. Accordingly, no other imaging or planning

activities can take place while the initial MRI sequence is

acquired, unlike other steps in the workflow. Therefore,

efficiency is further improved, and additional compounding

timesaving’s may be possible due to the shorter initial

acquisition times. Finally, while our method has only been

applied to the standard 6-minute sequence utilized in the

Unity workflow, future studies using analogous methods could

be applied to superior high-quality MRI sequences acquired over

periods infeasible for the current workflow (e.g. > 6-minutes). In

a similar vein, future work could also investigate the use of MRI

sequences acquired over 1-minute or less to generate synthetic

high-quality sequences, thereby further improving time savings.

Our study is not without limitations. Although our total

number of unique image sets was larger than most in the existing

HNC synthetic imaging literature (16, 18, 20, 21, 24, 31), our

model training and evaluation was limited to a small cohort

from the same institution. However, since model training

occurred on a slice-by-slice basis, we utilized on the order of

~20,000 training data points, which allowed us to leverage DL

approaches effectively. Moreover, we only tested one DL

approach; several architectural modifications have been

proposed that could improve our models in terms of similarity

metric performance (31). These architectural improvements

may be particularly salient for improving synthesis of specific

regions such as challenging OARs that were unable to be

appropriately manually segmented by clinicians, e.g.,

submandibular glands. A further limitation of our study is that

we used a previously trained DL OAR auto-segmentation model

that was developed for 2-minute T2w scans, which limited its

generalizability to 6-minute T2w scans. However, the

performance of the model on the 6-minute scans was above

the expected clinical interobserver variability for several OARs

(both when considering measurements previously obtained on

2-minute scans and new measurements performed on 6-minute

scans) and we were therefore confident in its use for the analysis;
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interestingly, these results offer evidence for the generalizability

of MRI auto-segmentation models, but future studies should

further investigate how to optimally translate models developed

for different sequences. On a related note, while we have not

utilized auto-segmented structures with obfuscated anatomy

(e.g., surgically resected glands) in our analysis, additional

studies should examine model performance on outlier cases

with irregular anatomical presentations. Additionally, it

warrants mentioning that the raw outputs of the DL model

were often blurrier than their ground-truth counterparts. This

effect has been widely documented in synthetic image studies

(15, 20, 22, 24, 25, 30), often driven by a lower spatial resolution

input image up-sampled to match a higher spatial resolution

output image. While this slight blurring effect is unlikely to affect

underlying image quality (as evidenced by metric performance),

in supplementary analyses we demonstrated that this difference

was perceived by the clinicians and added bias to the analysis.

Therefore, we applied a sharpening filter to synthetic images for

the Turing test to remove bias associated with blurry DL outputs,

which yielded improved results. While the application of a

sharpening filter serves as an effective mitigation technique, as

shown in the supplementary analysis, it slightly decreased

similarity metric performance. Therefore more sophisticated

approaches to decrease image blurriness without the cost of

image quality should be investigated, such as the use of super-

resolution DL networks (62). Furthermore, the role of imaging

biomarkers, i.e., radiomics (63), is predicted to play an

increasing role in MRI-guided ART (3, 4). While we have

provided minor supplementary analyses on this issue, future

work should investigate the feasibility of using synthetic images

for radiomic-related analyses. Finally, dosimetric differences

between ground-truth and synthetic images have not been

investigated in this work, but should be the focus of future,

ideally prospective, studies.
Conclusions

In summary, using 2-minute MRI inputs, we designed a

CycleGAN DL model to generate synthetic scans that were

similar to ground-truth 6-minute scans. As evidenced in

quantitative and qualitative analysis, our synthetic scans are of

comparable quality to ground-truth 6-minute scans, but

particular caution should be noted for segmentation

applications of certain OARs such as submandibular glands.

This model could act as a starting point for the generation of

high-quality scans at a reduced acquisition time, thereby

improving patient comfort and scanner availability in an MRI-

guided ART workflow. Future studies should include external

validation of our model, DL architectural improvements, and

investigating synthetic images in the context of imaging

biomarkers. Moreover, while we study the generation of high-
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quality output images from standard 2-minute input images,

potentially these methods could be extrapolated to input images

acquired over an even shorter period (e.g., < 1-minute

acquisition) and with higher quality output images (e.g., > 6-

minute acquisition) to further improve time-savings.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: 10.6084/m9.figshare.20099252.
Ethics statement

The studies involving human participants were reviewed and

approved by the University of Texas MD Anderson Cancer

Center’s Institutional Review Board. The patients/participants

provided their written informed consent to participate in

this study.
Author contributions

Study Conceptualization: JX, NO’C, JC, BM, CF, MN, AM;

Data collection: DE, YK, MA, BM, SA, CS, KP; Experiments:

KW, MN, JX, NO’C, DT, NC; Analysis: KW, JX, NO’C, TS, RH,

MN; Manuscript Writing: KW, JX; Manuscript Editing: KW,

DE, YK, MA, TS, AM.
Funding

This work was supported by the National Institutes of

Health (NIH)/National Cancer Institute (NCI) through a

Cancer Center Support Grant (P30CA016672-44). KW is

supported by the Dr. John J. Kopchick Fellowship through

The University of Texas MD Anderson UTHealth Graduate

School of Biomedical Sciences, the American Legion Auxiliary

Fellowship in Cancer Research, and an NIH/National Institute

for Dental and Craniofacial Research (NIDCR) F31 fellowship (1

F31DE031502-01). TS is supported by The University of Texas

Health Science Center at Houston Center for Clinical and

Translational Sciences TL1 Program (TL1 TR003169). MN is

supported by an NIH grant (R01DE028290-01). CF received

funding from the NIH/NIDCR (1R01DE025248-01/

R56DE025248); an NIH/NIDCR Academic-Industrial

Partnership Award (R01DE028290); the National Science

Foundation (NSF), Division of Mathematical Sciences, Joint

NIH/NSF Initiative on Quantitative Approaches to Biomedical

Big Data (QuBBD) Grant (NSF 1557679); the NIH Big Data to
frontiersin.org

https://doi.org/10.3389/fonc.2022.975902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wahid et al. 10.3389/fonc.2022.975902
Knowledge (BD2K) Program of the NCI Early Stage

Development of Technologies in Biomedical Computing,

Informatics, and Big Data Science Award (1R01CA214825);

the NCI Early Phase Clinical Trials in Imaging and Image-

Guided Interventions Program (1R01CA218148); an NIH/NCI

Pilot Research Program Award from the UT MD Anderson

CCSG Radiation Oncology and Cancer Imaging Program

(P30CA016672); an NIH/NCI Head and Neck Specialized

Programs of Research Excellence (SPORE) Developmental

Research Program Award (P50CA097007); and the National

Institute of Biomedical Imaging and Bioengineering (NIBIB)

Research Education Program (R25EB025787).
Acknowledgments

We thank Ms. Ann Sutton from the Editing Services Group

at The University of Texas MD Anderson Cancer Center

Research Medical Library for editing this article. The authors

also acknowledge the following individuals for their

contributions to the NIH-funded academic-industrial

partnership grant (R01DE028290) that funded this work and

for their general support and feedback regarding this project:

Spencer Marshall, Hafid Akhiat, Michel Moreau, Edyta Bubula-

Rehm, Chunhua Men, and Etienne Lessard of Elekta and Alex

Dresner of Philips.
Frontiers in Oncology 13
Conflict of interest

CF has received direct industry grant support, speaking

honoraria, and travel funding from Elekta AB. JX, NO’C, DT,

NC, and JC are employees of Elekta AB.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.975902/full#supplementary-material
References
1. Rettig EM, D’Souza. Epidemiology of head and neck cancer. Surg Oncol Clin
N Am (2015) 24:379–96. doi: 10.1016/j.soc.2015.03.001

2. Alterio D, Marvaso G, Ferrari A, Volpe S, Orecchia R, Jereczek-Fossa
BAModern radiotherapy for head and neck cancer. Semin Oncol (2019) 46:233–
45. doi: 10.1053/j.seminoncol.2019.07.002

3. Mulder SL, Heukelom J, McDonald BA, Van Dijk L, Wahid KA, Sanders K,
et al. MR-guided adaptive radiotherapy for OAR sparing in head and neck cancers.
Cancers (2022) 14:1909. doi: 10.3390/cancers14081909

4. Kiser KJ, Smith BD,Wang J, Fuller CD. “Après mois, le déluge”: Preparing for
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