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Background: One of the most common nasal external sites in extranodal

Natural Killer/T-cell lymphoma (NKTCL) is in the gastrointestinal (GI) system.

Despite this, reports on gastrointestinal-Natural Killer/T-cell lymphoma (GI-

NKTCL) are very few. To obtain a better understanding of this manifestation of

NKTCL, we conducted a retrospective study on GI-NKTCL to analyze its clinical

features, genomic changes and immune infiltration.

Methods: We retrospectively collected patients diagnosed with GI-NKTCL in

the Sixth Affiliated Hospital of Sun Yat-sen University from 2010 to 2020. From

this cohort we obtained mutation data via whole exome sequencing.

Results: Genomic analysis from 15 patients with GI-NKTCL showed that the

most common driving mutations were ARID1B(14%, 2/15), ERBB3(14%, 2/15),

POT1(14%, 2/15), and TP53(14%, 2/15). In addition, we found the most common

gene mutation in patients with GI-NKTCL to be RETSAT(29%, 4/15) and

SNRNP70(21%, 3/15), and the most common hallmark pathway mutations to

be G2M checkpoint pathway (10/15, 66.7%), E2F targets (8/15, 53.3%), estrogen

response late (7/15, 46.7%), estrogen response early (7/15, 46.7%), apoptosis (7/

15, 46.7%) and TNFA signaling via NFKB (7/15, 46.7%). In the ICIs-Miao cohort,

SNRNP7-wild-type (WT) melanoma patients had significantly prolonged overall

survival (OS) time compared with SNRNP7 mutant type (MT) melanoma

patients. In the TCGA-UCEC cohort, the patients with RETSAT-MT or

SNRNP7-MT had significantly increased expression of immune checkpoint

molecules and upregulation of inflammatory immune cells.

Conclusions: In this study, we explored GI-NKTCL by means of genomic

analysis, and identified the most common mutant genes (RETSAT and

SNRNP70), pathway mutations (G2M checkpoint and E2F targets) in GI-

NKTCL patients. Also, we explored the association between the common
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mutant genes and immune infiltration. Our aim is that our exploration of these

genomic changes will aid in the discovery of new biomarkers and therapeutic targets

for those with GI-NKTCL, and finally provide a theoretical basis for improving the

treatment and prognosis of patients with GI-NKTCL.
KEYWORDS

driver gene, mutation, gastrointestinal-natural killer/T-cell lymphoma (GI-NKTCL), immune
infiltration, genomic analysis
Introduction

Extranodal natural killer/T-cell lymphoma (ENKTCL) is a

rare type of Non-Hodgkin’s Lymphoma (NHL) (1–3). It is

characterized by extranodal involvement, with tumor cells

predominantly from peripheral mature NK cells, and less from

cytotoxic T cells. One site of extranodal involvement is the

gastrointestinal system (GI-NKTCL); however, reports of

patients with primary GI-NKTCL are rare (4, 5). Currently,

the treatment of NKTCL is still based on radiotherapy, or a

combination of radiotherapy and chemotherapy, and stage I/II

NKTCL patients showed locoregional control rates of >90% and

five-year overall survival (OS) rates of approximately 70–90%

(6). Stage III/IV NKTCL patients were treated with combination

chemotherapy that includes menadione enzymes (7–9). The

SMILE protocol (dexamethasone, methotrexate, ifosfamide, l-

asparaginase, and etoposide) can be the standard of care for stage

III/IV NKTCL patients, with one-year OS rates of >50%.

Whole exome sequencing (WES), also known as targeted exon

capture, is a new technology which explores disease-related genes by

studying only the coding regions of the human genome (10–13). It

is comparable to whole genome sequencing (WGS), which samples

the entire human genome. WES, however, only samples 1%, while

still allowing for analysis of single nucleotide variants (SNV),

insertion-deletions (indel), and structural variations (SV) of

pathogenic genes (14, 15). Applying this new generation

sequencing technology to ENKTCL further confirmed the

complexity of gene changes present, including the deletion of

chromosome 6q, and PRDM1, ATG5, AIM1, FOXO3, HACE1 as

common deletion segments on chromosome 6q (16). Additionally,

tumor-related genes with known mutations include some tumor

suppressor genes (such as TP53, DDX3X, and MGA), JAK/STAT

pathway genes (such as JAK3, STAT3, and STAT5), and some

epigenetic modified genes (such as KMT2D, BCOR, ARID1A, and

EP300) (4, 17–20). The proteins encoded by these mutant genes

show a loss of normal original functions, with some increase of

invasive functions. Additionally, the tumor immune

microenvironment (TIME) plays important role in the tumor

development and progression. Although some genetic studies on
02
ENKTCL have been conducted, genomic changes and immune

infiltration in GI-NKTCL have not been fully explored due to the

low number of reported cases.

In this study, we carried out WES on patients diagnosed with

GI-NKTCL in China, explored the genomic-level changes of

these patients, and analyzed the mutational profiles and

common pathway mutation landscapes. Also, we analyzed the

relationship between the top mutated genes and the prognosis of

the immune checkpoint inhibitors (ICIs) treatment, and TIME.

We hope that by deeply studying the molecular mechanism of

the pathogenesis of GI-NKTCL, looking specifically for potential

molecular targets and exploring new treatment methods, we can

improve the prognosis of patients with GI-NKTCL.
Methods

Sample collection and raw data
sequencing of NK/T cell lymphoma

We retrospectively collected 15 samples of NKTCL from

patients diagnosed with GI-NKTCL at the Sixth Affiliated

Hospital of Sun Yat-sen University from 2010 to 2020. The

pathological diagnosis of GI-NKTCL was based on the revised

European and American lymphoma (REAL) classification, and

the classification standard of the World Health Organization

(WHO). The study was approved by the Research Ethics

Committee of the Sixth Affiliated Hospital of Sun Yat-sen

University. The details of the raw data sequencing are listed in

the Supplementary Methods. Additionally, we downloaded the

WES data from the NKTCL cohort reported by Li et al. (21).
Pan-cancer datasets and ICIs
datasets collection

Data sets for the following 33 cancer types were downloaded

from The Cancer Genome Atlas (TCGA) database: adrenocortical

carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast
frontiersin.org
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invasive carcinoma (BRCA), cervical squamous cell carcinoma and

endocervical adenocarcinoma (CESC), cholangiocarcinoma

(CHOL), colon adenocarcinoma (COAD), colorectal cancer

(CRC), lymphoid neoplasm diffuse large B-cell lymphoma

(DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme

(GBM), head and neck squamous cell carcinoma (HNSC), kidney

chromophobe (KICH), kidney renal clear cell carcinoma (KIRC),

kidney renal papillary cell carcinoma (KIRP), acute myeloid

leukemia (LAML), brain lower grade glioma (LGG), liver

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),

lung squamous cell carcinoma (LUSC), mesothelioma (MESO),

non-small cell lung cancer (NSCLC), ovarian serous

cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),

pheochromocytoma and paraganglioma (PCPG), prostate

adenocarcinoma (PRAD), rectum adenocarcinoma (READ),

sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach

adenocarcinoma (STAD), testicular germ cell tumors (TGCT),

thyroid carcinoma (THCA), thymoma (THYM), uterine corpus

endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS),

and uveal melanoma (UVM) (22). Also, we downloaded a pan-

cancer data set published by Zehir et al. from the cBioPortal web

tool (https://www.cbioportal.org/) (23). We downloaded the ICIs-

cohorts reported by the Miao et al. (24). and Allen et al. (25). to

explore the association between the top mutated genes and ICIs-

related prognosis.
Genome analysis

The somatic mutation data of our cohort was subjected to

preprocessing and any synonymous mutations were deleted. Based

on the non-synonymous mutation data, we identified the types and

frequency of gene mutations in GI-NKTCL that had a mutation

frequency greater than or equal to 2. In addition, we downloaded

the Hallmark pathway gene set (h.all.v7.1.symbols.gmt) from the

MsigDB database (http://www.gsea-msigdb.org/gsea/downloads.

jsp) and used this to count the number of gene mutations in

different Hallmark pathways in each patient. We calculated the

number of gene mutations in different Hallmark pathways for each

cancer type in both the TCGA-Pancancer and Zehir-Pancancer

cohort and, using the MutationMapper function in the cBioPortal

web tool (https://www.cbioportal.org/mutation_mapper), visualized

the mutation sites of the two genes with the highest frequency of

mutation in GI-NKTCL. Additionally, we counted the proportion

of six single base substitution types in our GI-NKTCL cohort.
Immune infiltration

The gene lists of the immune checkpoint molecules were

downloaded from the previous study (25). The proportion of the

immune cells was estimated by CIBERSORT (25).
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Statistical analysis

Fisher’s exact test was used to analyze the mutual exclusion

and co-occurrence of gene mutations. Heatmaps were visualized

using the ComplexHeatmap (26) and pheatmap (27) R packages,

and histograms were visualized using the ggplot2 (28) R package.

The Maftools (29) R package was used for mutual exclusion and

co-occurrence between gene mutations. All analyses in this study

were carried out using R software (Version 3.8.1). A P value of

less than 0.05 was regarded as statistically significant, and the

P value was bilateral.
Results

Overview of the mutational spectrum
and pattern of GI-NKTCL

In this study, we collected data from 12 male and 3 female

patients with GI-NKTCL, with an average age of 49.6 years old

(comparable to the general characteristics reported by ENKTL)

(30). The basic clinical features of our cohort are shown in

Table 1. Of the primary tumor sites, six cases were colonic

(40.0%), four cases were ileocecal (26.7%), and five cases were

small intestinal (33.3%). Five cases were treated with surgery

(33.3%), and ten cases were treated with combined surgery and

chemotherapy (66.7%). One patient survived (6.7%), and the

remaining 11 patients died (93.3%). Supplementary Figure 1

shows the overall survival (OS) time of GI-NKTCL. Also, We

calculated and counted the proportion of six single base

substitution types for the SNV detection results of all samples,

and found that C>T/G>A accounted for the most single base

substitution types in each patient (Figure 1A), which was

analogous to the somatic SNV spectrum in other cancers

(including B-cell acute lymphoblastic leukemia and NKTCL)

(31, 32). On the other hand, T>A/A>T had the least proportion

of single base substitution types in each patient. Clustering the

samples according to the distribution of mutation types resulted

in the cluster heat map seen in Figure 1B, representing the

mutation spectrum in the cohort. A variety of mutation

processes, such as mismatching in the process of DNA

replication, induction of endogenous or exogenous mutagens,

and defects of DNA repair mechanism, were responsible for

producing somatic mutations. These processes give rise to

specific combinations of mutation types, which can be seen as

mutation patterns. Point mutations can be divided into 96 types

by considering the base types at the 1bp positions upstream and

downstream of the point mutation site. The mutation pattern of

the 96 mutation types in all samples is presented in Figure 1C.

Based on cosine similarity, we clustered the mutation pattern

with 30 known mutation features in the COSMIC website

(https://cancer.sanger.ac.uk/signatures/signatures_v2/). We
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found the mutation pattern of GI-NKTCL was highly correlated

with COSMIC signature 1 (cosine similarity score: 0.91)

(Figure 1D). COSMIC signature 1 was the result of an

endogenous mutational process initiated by spontaneous

deamination of 5-methylcytosine and associated the age of

cancer diagnosis (33).
Panoramic overview of mutations in
GI-NKTCL

We analyzed and visualized the data of non-synonymous

somatic mutations from patients diagnosed with GI-NKTCL.

The genes with the highest mutation frequency in these patients

were identified as RETSAT (29%, 4/15); SNRNP70 (21%, 3/15);

and ADGRL3, AHNAK2, ARID1B, C8orf44, CAMSAP1,

DNAH5, DNM3, DSCAML1, ERBB3, FLG, HELZ2, IDUA,

LRRIQ1, MUC17, NOP9, NT5C1B, PDE3A, POT1, PTPN22,

SLC35G5, SOX11, TNXB, TP53, UBE3C, and USP34 (each

being 14%, 2/15) (Figure 2A). Additionally, the main type of

gene mutation was found to be missense, followed by inframe

ins/del, splice site, and finally frameshift mutation. Following
Frontiers in Oncology 04
this, we analyzed the mutual exclusion and co-occurrence of the

gene mutations with the highest mutation frequency. As can be

seen in Figure 2B: mutations in MUC17 gene and POT1 gene

often occur together (P < 0.05); mutations in NT5C1B gene and

NOP9 gene usually occur together (P < 0.05); and mutations in

PTPN22 gene and ARID1B gene will occur at the same time (P <

0.05). The protein structural mutation points in the two genes

with the highest mutation frequency (RETSAT and SNRNP70)

in patients with GI-NKTCL were visualized in the form of

lollipop plots. In the GI-NKTCL cohort, we found the protein

mutation site of RETSAT to be mainly p.Ala533Val (Figure 3A),

while in the TCGA-Pancancer cohort, it is mainly p.Arg125Leu/

His (Figure 3B). In the GI-NKTCL cohort, we found the protein

structural mutation site of SNRNP70 to be mainly

p.Asp236_Arg237del (Figure 3C), and in TCGA-Pancancer

cohort, it is mainly p.Arg155Gln/Pro, occurring predominantly

in the RRM_1 domain (Figure 3D). The genes with the highest

mutation frequencies in NKTCL (Li-cohort) are shown in

Supplementary Figure 2. The genes with the highest mutation

frequency in these patients were identified as FSIP2 (22%),

GNAQ (22%), USP8 (22%), IGFN1 (19%), KMT2D (19%),

LOC401052 (19%), MUC21 (19%) and TTN (19%)

(Supplementary Figure 2).
Overview of abrupt change of Hallmark
pathway signaling in GI-NKTCL

Hallmark pathways are landmark gene sets which can

represent biological processes and states and may also play a

vital role in tumor development. Therefore, we explored the

mutations of each GI-NKTCL patient in a variety of hallmark

pathways (Figure 4A). We found mutations in the G2M

checkpoint pathway 66.7% of patients (10/15). The next most

common mutated pathways were E2F targets (8/15, 53.3%),

estrogen response late (7/15, 46.7%), estrogen response early

(7/15, 46.7%), apoptosis (7/15, 46.7%), and TNFA signaling via

NFKB (7/15, 46.7%). The mutation of various cancer types in

different hallmark pathways in the TCGA-Pancancer and Zehir-

Pancancer cohorts are shown in Figures 4B, C respectively.

Found in all samples (41/41, 100%) were mutations in

apoptosis, E2F targets, mitotic spindle, myogenesis, p53

pathway, PI3K-AKT-mTOR signaling, TGF beta signaling, UV

response DN, UV response UP, andWNT beta catenin signaling.
Association between most frequently
mutated genes (RETSAT and SNRNP70)
and immune infiltration

We explored the effect of the most frequently mutated genes

(RETSAT and SNRNP70) on the prognosis of the two ICI-

treated cohorts (Allen-Melanoma and Miao-Melanoma). We
TABLE 1 Clinical features of GI-NKTCL cases (N = 15).

Characteristics N

Age

≤60 10

>60 5

Sex

Female 3

Male 12

Primary Site

Rectum 5

Colon 6

Small intestine 4

LDH Status

Increase 6

Normal 9

CD56

(+) 7

(-) 7

Missing 1

Surgery

YES 15

NO 0

Treatment

Surgery 10

Surgery+Chemotherapy 5

Survival status

Dead 14

Alive 1
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found that SNRNP70-MT melanoma had a significantly

decreased OS time compared to SNRNP70-WT melanoma

(Figure 5A). In the TCGA cohort, we found that RETSAT was

the most frequently mutated gene in the UCEC (5.9%,31/525),

DLBC (5.6%,2/36), CHOL (3.9%,2/51), STAD (3.7%,16/435),

COAD (3.0%,12/395), and SKCM (3.0%,14/465) subtypes

(Figure 5B). Figure 5C shows that SNRNP70 was the most

frequently mutated gene in the UCEC (6.3%,33/525), ESCA
Frontiers in Oncology 05
(2.9%,5/173), CHOL (2.0%,1/51), COAD (1.5%,6/395), and

READ (1.5%,2/134). In the TCGA-UCEC cohort, RETSAT-

MT was associated with higher expression of immune

checkpoint molecules (including PD-L1, HAVCR2, LAG3,

CTLA4, TIGIT, PD-1, and PDCD1LG2; Figure 5D) and

immune cell enrichment (including CD8+ T cells, activated

memory CD4+ T cells, and M1-macrophages; Figure 5E).

Similarly, we found that SNRNP70-MT cases in the TCGA-
B

C

D

A

FIGURE 1

A barplot (A) and heatmap (B) depicting the mutation spectrum of the GI-NKTCL cohort. (C) The mutation pattern of the GI-NKTCL cohort
obtained via Nonnegative Matrix Factorization (NMF). (D) Heatmap showing the correlation between the COSMIC signatures.
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UCEC cohort had increased expression of immune checkpoint-

related genes (Figure 5F). Compared with SNRNP70-WT,

SNRNP70-MT UCEC patients had significant enrichment of

CD8+ T cells, activated memory CD4+ T cells, follicular helper T

cells, and M1-macrophages (Figure 5G).
Discussion

The prevalence of ENKTCL is highest in Asian and Latin

American countries. Primary GI-NKTCL is extremely rare (1–3),

with a limited number of reported cases and very few studies

specifically focused on this subtype of NKTCL (34–37). Due to

the rarity of the disease, the clinical, genomic and immune

characteristics have not yet been clarified. Thus, we carried out
Frontiers in Oncology 06
this study to explore the genomic changes, mutation panorama,

and common pathway mutations present, utilizing WES data

from 15 Chinese GI-NKTCL patients. We have provided a

comprehensive description of the genomic features of GI-

NKTCL through bioinformatics, such as gene mutation

patterns (base pair alterations, COSMIC signature), high-

frequency mutations, and common pathology-related pathways

with high-frequency mutations. Additionally, we explored the

relationship between the high-frequency mutations and ICIs-

related prognosis, and immune infiltration (including immune

checkpoint inhibitors and immune cells). The discovery of

commonly mutated genes and signaling pathways can offer

salient theoretical guidance for the prevention and treatment of

future cancer patients (10, 38). We hope that by deeply studying

the molecular mechanism of the pathogenesis of GI-NKTCL,
B

A

FIGURE 2

(A) The top 27 mutations of the GI-NKTCL cohort. The clinical feature of each patient is annotated in the top panel. (B) The co-occurrence and
mutually exclusivity of the top 27 mutations (shown in Panel A).
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looking for potential molecular targets and exploring new

treatment methods, we can improve the prognosis of patients

with GI-NKTCL.

Gene and pathway mutations may be related to the

occurrence and development of GI-NKTCL, and as such, may

also be indicative of potential targets for treatment. In this study,

we found common driving mutations in the tumor suppressor

gene TP53 (mainly in exons 5–8) (39), and oncogenes ARID1B,

ERBB3, and POT1. TP53 acts as a tumor suppressor by inducing

G1 cell cycle arrest in DNA damaged cells. Other functions of

TP53 include the regulation of DNA repair, apoptosis, aging,
Frontiers in Oncology 07
and metabolism (4). In NKTCL, the mutation rate of TP53 is 20–

60% (18), and is one of the potential reasons for the low survival

rate of NKTCL patients (40). ErbB3 belongs to the ErbB family

of receptor tyrosine kinases, and regulates the proliferation and

survival of epithelial cells (41). It is highly expressed in common

tumors such as breast cancer, melanoma, and pancreatic cancer

(42–44), and when activated, can cause resistance to a range of

anticancer drugs (45). One example is through the activation of

PI3K/AKT and JAK/STAT signaling pathways, which has been

shown to produce drug resistance in colon and non-small cell

lung cancer patients (46–48). POT1 is an important gene that
B

C

D

A

FIGURE 3

Lollipop plot illustrating RETSAT mutations in the GI-NKTCL (A) and TCGA-Pancancer (B) cohorts. Lollipop plot illustrating SNRNP70 mutations
in the GI-NKTCL (C) and TCGA-Pancancer (D) cohorts.
frontiersin.org

https://doi.org/10.3389/fonc.2022.976762
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.976762
protects telomeres by inhibiting DNA damage and regulates

telomere length via telomerase activity (49). Studies have shown

that mutations in POT1 are often found in patients with B-cell

lymphoma (50), and that POT1 gene mutation can lead to the

occurrence of various tumors, such as lymphomas (51). Apart

from these driving mutations, the gene with the highest

mutation frequency in patients with GI-NKTCL was found to

be the RETSAT gene(4/15, 29%). Research has indicated that

this gene is important for promoting adipogenesis and normal

adipocyte differentiation, and it follows that mutation of this

gene may affect adipogenesis and differentiation of adipocytes

(52). Many studies suggest that lipid metabolism plays a role in

the occurrence and development of tumors, regulates cell
Frontiers in Oncology 08
proliferation (53) and invasion (54, 55), and influences the

development of drug resistance (56, 57). Regarding pathway

mutations in our study cohort, we found mutations in the G2M

checkpoint pathway in 66.7% (10/15) of patients. The results

from Song et al. are consistent with this, showing that the

application of histone deacetylase (HDAC) inhibitor

chidamide, and DNA damage agent etoposide to NKTCL cells

not only played a synergistic role in anti-proliferation and

enhanced apoptosis, but also made the cell cycle stop at the

G2/M phase (58). Also of note, we found changes in TNFA

signaling due to mutation in the NFKB pathway in 46.7% (7/15)

of GI-NKTCL patients. This is consistent with the results of

Zhong et al., who found that a relationship exists between an
B

C

A

FIGURE 4

(A) The mutation counts of hallmark signaling pathways for each patient in the GI-NKTCL cohort. The mutation counts of hallmark signaling
pathways for each cancer type in the TCGA-Pancancer (B) and Zehir-Pancancer (C) cohorts.
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B C

D E

F G

A

FIGURE 5

(A) The univariable cox regression model of the top mutated genes (RETSAT and SNRNP70) in the two ICIs-treated cohorts (Allen-Melanoma
and Miao-Melanoma). (B) The mutation frequencies of the RETSAT in the 33 cancer types of TCGA database. (C) The mutation frequencies of
the SNRNP70 in the 33 cancer types of TCGA database. (D) Heatmap depicted the logFC of the expression levels of the immune checkpoint
molecules between the RETSAT-MT and RETSAT-WT among multiple cancer types (TCGA database). (E) Heatmap depicted the logFC of the
immune cells scores estimated by the CIBERSORT method between the RETSAT-MT and RETSAT-WT among multiple cancer types (TCGA
database). (F) Heatmap depicted the logFC of the expression levels of the immune checkpoint molecules between the SNRNP70-MT and
SNRNP70-WT among multiple cancer types (TCGA database). (G) Heatmap depicted the logFC of the immune cells scores estimated by the
CIBERSORT method between the SNRNP70-MT and SNRNP70-WT among multiple cancer types (TCGA database).
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imbalance of TNFA receptor signal and the poor clinical

characteristics of patients with diffuse large B-cell

lymphoma (59).

There were some limitations in this study: 1) The number of

GI-NKTCL samples included in this study was limited to 15

cases; and 2) No follow-up functional analysis of high-frequency

gene mutations and signaling pathway mutations in GI-NKTCL

was conducted in this study. 3) We were unable to validate the

relationship between RETSAT and SNRNP70 and the prognosis

of immunotherapy in patients in the GI-NKTCL cohort due to

the lack of survival data for immunotherapy in the GI-NKTCL

cohort. Furthermore, the relationship between RETSAT and

SNRNP70 and the prognosis of immunotherapy in patients

with different cancers may be different due to tumor

heterogeneity among different cancer types. In the future, we

hope to further validate this by collecting data from patients with

multiple cancer types receiving immunotherapy.
Conclusions

In this study, we discovered the most common mutant genes

and pathway mutations in a cohort of GI-NKTCL patients by

analyzing genome level data obtained viaWES. The most common

mutated genes in GI-NKTCL patients are RETSAT and SNRNP70.

Additionally, in G2M checkpoint and E2F targets are the most

commonly mutated signaling pathways. In-depth exploration of the

genomic changes of GI-NKTCL is helpful in understanding the

pathogenesis of this disease, and we hope that the results of this

study can be beneficial for providing a theoretical basis for finding

new biomarkers and therapeutic targets.
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