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Background: Epithelial ovarian tumors (EOTs) are a group of heterogeneous

neoplasms. It is importance to preoperatively differentiate the histologic

subtypes of EOTs. Our study aims to investigate the potential of radiomics

signatures based on diffusion-weighted imaging (DWI) and apparent diffusion

coefficient (ADC) maps for categorizing EOTs.

Methods: This retrospectively enrolled 146 EOTs patients [34 with borderline

EOT(BEOT), 30 with type I and 82 with type II epithelial ovarian cancer (EOC)]. A

total of 390 radiomics features were extracted from DWI and ADC maps.

Subsequently, the LASSO algorithm was used to reduce the feature

dimensions. A radiomics signature was established using multivariable logistic

regressionmethod with 3-fold cross-validation and repeated 50 times. Patients

with bilateral lesions were included in the validation cohort and a heuristic

selection method was established to select the tumor with maximum

probability for final consideration. A nomogram incorporating the radiomics

signature and clinical characteristics was also developed. Receiver operator

characteristic, decision curve analysis (DCA), and net reclassification index (NRI)

were applied to compare the diagnostic performance and clinical net benefit of

predictive model.

Results: For distinguishing BEOT from EOC, the radiomics signature and

nomogram showed more favorable discrimination than the clinical model

(0.915 vs. 0.852 and 0.954 vs. 0.852, respectively) in the training cohort. In

classifying early-stage type I and type II EOC, the radiomics signature

exhibited superior diagnostic performance over the clinical model (AUC
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0.905 vs. 0.735). The diagnostic efficacy of the nomogram was the same as

that of the radiomics model with NRI value of -0.1591 (P = 0.7268). DCA also

showed that the radiomics model and combined model had higher net

benefits than the clinical model.

Conclusion: Radiomics analysis based on DWI, and ADC maps serve as an

effective quantitative approach to categorize EOTs.
KEYWORDS

epithelial ovarian tumors, diffusion weighted imaging, apparent diffusion coefficient,
radiomics, nomogram
Introduction

Epithelial ovarian tumors (EOTs) are a group of

heterogeneous neoplasms and are subdivided into three

subtypes: benign, borderline, and malignant tumors (1–3). The

importance of the preoperative differentiation of these subtypes

has been gradually recognized due to their differences in lifestyle

and genetic risk factors, patterns of spread, responses to

chemotherapy, and prognoses. Borderline epithelial ovarian

tumor (BEOT) with low malignant potential constitute a

special histological type of EOT. Due to the younger age of

onset, fertility-sparing surgery is a very important topic for

consideration in BEOT patients (4, 5). In addition, adjuvant

chemotherapy or radiotherapy is not recommended even in

patients with advanced BEOT (6, 7). Differing from BEOT,

epithelial ovarian cancer (EOC) accounts for the highest

tumor-related mortality among women diagnosed with

gynecological malignancy (2, 8). The dualistic model further

classifies EOC into type I and type II, referring to the pathways

of tumorigenesis (9, 10). Type I EOC develops in a stepwise

fashion from well-established precursor lesions and has a good

prognosis but low responsiveness to standard treatments such as

platinum chemotherapy and hormonal treatments due to KRAS

and BRAF mutations and high expression levels of c-Fos (11,

12). In contrast, type II EOC tends to present in advanced stages

and has poorer outcomes. The reliable early identification of

these subtypes contributes to the rational choice of treatment

strategies and prognosis prediction (13).

Magnetic resonance imaging (MRI) is now widely applied in

assessment of adnexal masses. As a functional imaging

technique, diffusion weighted imaging (DWI) and the

corresponding apparent diffusion coefficient (ADC) maps hold

promise as additional tools for differentiating between the

benign and malignant conditions of a particular disease and

monitoring the course of therapy (14, 15). Previous studies have

shown great capability of DWI sequences with ADC map for
02
categorizing ovarian tumors (16, 17). However, no consensus

has been reached regarding ADC measurements for the

characterization of ovarian tumors. Radiomics has recently

emerged as a powerful approach for non-invasively capturing

the inter-lesion heterogeneity that can be used to build an

objective and accurate decision support systems for cancer at

low cost (18, 19). Innumerable quantitative features extracted

using high-dimensional data from DWI and ADC map could

reflect the underlying pathophysiology of tissue (20, 21).

Previous studies have demonstrated the usefulness of

histograms analysis based on ADC for the differential

diagnosis of ovarian cancer (22, 23). Compared to the first-

order features, the higher-order statistical features in DWI and

ADC maps could better describe the diffusion pattern and

heterogeneous distribution of tumor tissues. The present

investigation used imaging features based on DWI and ADC

maps to quantitatively characterize the properties of complex

adnexal masses with the goal of improving the capability of

diagnosing subtypes of EOT and providing guidance for

clinicians to design specialized treatment plans. The complex

ovarian masses often present cystic-solid characteristics. Most

radiomics studies in EOTs have delineated regions of interest

(ROIs) that cover all voxels, including hemorrhagic, necrotic,

and cystic areas within the tumor (24, 25). The cystic

components were relatively homogeneous when compare with

the solid components. Thus, the ADC differences of the solid

components might be compromised by a larger proportion of

cystic components in the whole tumor (26). Therefore, whole-

tumor ROI analysis with a prior ROI focused on the solid

components of the lesion was conducted.

In the present study, a radiomics signature based on DWI

and ADC maps was developed preoperatively to noninvasively

classify EOTs into subtypes. Moreover, a comprehensive

nomogram that incorporated the radiomics signature and

clinical characteristics was established for the preoperative

subtype differentiation of EOTs.
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Material and methods

Patients

A total of 146 patients with surgically confirmed BEOT or

EOC who underwent preoperative magnetic resonance imaging

(MRI) examination between March 2016 and January 2021 were

included. The exclusion criteria were as follows: (1) patients who

received preoperative treatment; (2) MRI performed more than

1 month before surgery; and (3) poor image quality or maximum

diameter of lesions < 1 cm.

Clinical data, including age, menopausal status, and CA-125

level, were obtained from the medical records. Two radiologists

(with 4 and 8 years of experience in MRI interpretation) without

knowledge of the clinical and histologic information evaluated

the MRI data, and discrepancies were resolved by consensus.

Information on tumor configuration, pelvic fluid, and peritoneal

involvement were obtained. Tumor configuration was

characterized as mainly cystic, mixed cystic-solid, and mainly

solid. The institutional ethics committee approved this

retrospective study and the informed consents were waived.
MRI acquisition and tumor segmentation

MRI was performed using a 3.0T MR system (GE, Discovery

750W) with a phased-array coil. The scanning parameters of

axial DWI were as follows: TE 70.5 msec; TR 4000 ms; FOV 34

cm; slice thickness (mm)/gap (mm) 5/1; flip angle 90; acquisition

matrix 128 × 128; and b value 0 and 1000 s/mm2. The DWI

sequence images were transferred to the workstation, and ADC

maps were automatically calculated by a commercially available

software package (Functool, GE Medical Systems). More details

of MR image acquisition are provided in Appendices A. ROIs

were manually segmented along the lesion on the largest slice

using ITK-SNAP software (version 3.8.0, www.itksnap.org).
Frontiers in Oncology 03
Two different ROIs were positioned on the slice (Figure 1): (a)

an ROI encompassing the whole tumor area; and (b) an ROI

encompassing the solid part of the tumor area while avoiding

hemorrhagic, necrotic, or cystic regions on the axial DWI images

(b value of 1000 s/mm2) by referring to the T2-weighted images.

ROIs were copied to the ADC map automatically.
Feature extraction and selection

Before radiomics feature extraction, several preprocessing

techniques were applied to standardized images to improve

texture recognition. Radiomics features were extracted from

ROIwhole and ROIsolid on DWI and ADC maps, respectively,

using PyRadiomics (27). For each ROI, 9 shape features, 18

histogram features, and 75 texture features (24 gray level co-

occurrence matrix (GLCM) features, 16 gray level run-length

matrix (GLRLM) features, 16 gray level size-zone matrix

(GLSZM) features, 14 gray level dependence matrix (GLDM)

features, and 5 neighborhood gray tone difference matrix

(NGTDM) features were calculated. Therefore, a total of 390

features were extracted for each lesion from both DWI and ADC

maps. Detailed descriptions of the image preprocessing and

feature extraction processes are provided in Appendices B.

The interobserver reproducibility was initially analyzed

using 30 randomly chosen images for ROI segmentation. The

Dice coefficient and Hausdorff distance were applied to estimate

the similarity of ROIs. The features selection procedure included

4 steps. First, the radiomics features with poor reproducibility

were removed. Second, univariate analysis was performed to

select important features by using the Wilcoxon rank-sum test

with a P value less than 0.05; third, the most significant

predictive features were selected by using the least absolute

shrinkage and selection operator (LASSO) logistic regression

algorithm. Fourth, in multivariate logistic regression, backward

stepwise selection was applied using a likelihood ratio test with

Akaike’s information criterion as the stopping rule.
FIGURE 1

Performance of region of interest on the DWI (b = 1000 s/mm2) by referring to T2WI. (A) Whole-tumor ROIs are manually drawn along the edge
of the tumor on the DWI. (B) Solid-tumor ROIs are drawn along the solid components of the tumor. (C) The corresponding ADC map.
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Model construction

The shape features, first-order, and high-order image

features from DWI and ADC maps were selected, and their

performance in the discrimination of EOTs was evaluated

separately. Then, all the important radiomics features were

included in stepwise multivariate logistic regression analysis to

construct a radiomics signature. For each patient, a score named
Frontiers in Oncology 04
as the radscore, was calculated Model construction was followed

by 3-fold cross-validation repeated 50 times. A clinical model

based on clinical characteristics and a nomogram with the Rad-

score and clinical risk characteristics were also established.

Two classification tasks were assessed and shown in Figure 2:

1) BEOT vs. EOC and 2) early-stage (I-II) type I vs. type II EOC.

For the classification of BEOT and EOC, patients with a single

lesion were included in the training cohort, and patients with
FIGURE 2

Flow diagram illustrating the two classification tasks. Task 1 was established for distinguishing BEOT from EOC, and task 2 was established from
early-stage type I from II EOC. A total of 146 patients with 203 epithelial ovarian tumors, including 34 patients with 46 BEOT and 112 patients
with 161 EOC.
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bilateral lesions were included in the validation cohort. Three

distinct strategies were applied for the validation cohort: 1) both

tumors were taken as independent samples; 2) the more complex

tumor based on image features identified by radiologists; and 3)

computer-assisted screening was established to select the tumor

with maximum probability for final consideration. In addition,

the diagnostic performance in differentiating between BEOT and

early-stage EOC was also assessed. For the classification of early-

stage type I and type II EOCs, all single and bilateral tumors were

used as independent samples because of the small sample size.
Statistical analysis

The Mann-Whitney U test and Pearson’s chi-square test

were applied to assess the differences in the clinical

character i s t ics of the pat ients . The interobserver

reproducibility was evaluated using intraclass correlation

coefficients (ICCs), and an ICC value less than 0.75 was

considered poor reproducibility. The area under the receiver

operating characteristic (ROC) curve (AUC), accuracy,

sensitivity, and specificity were employed to quantitatively

measure the discrimination capability of all the models. The

95% CI are computed with 2000 stratified bootstrap replicates.

The Hosmer–Lemeshow test was performed to quantitatively

assess the calibration and agreement between the predicted and

observed results of all models. The DeLong test was used to

determine whether significant differences existed in terms of the

AUC values among these models. Decision curve analysis

(DCA) was applied to compare the net benefits of the different

models at different threshold probabilities. The net

reclassification index (NRI) was applied to measure the

prediction increment of the radiomics signature (28). All

statistical analyses were performed in R software (version
Frontiers in Oncology 05
3.6.3; https://www.rproject.org). Two-tailed p values less than

0.05 were considered statistically significant.
Results

Patients characteristics

The patients’ clinical characteristics are presented in Table 1.

In terms of distinguishing BEOT from EOC, patient age,

menopausal status, CA-125 level, bilaterality, MR-reported

pelvic fluid, tumor configuration, and peritoneal involvement

were significantly different (all P < 0.05), whereas no significant

differences were detected in the bilaterality (P > 0.05). In terms of

distinguishing early-stage type I and type II EOCs, patient age,

CA-125 level, MR-reported pelvic fluid, tumor configuration

and peritoneal involvement were significantly different (all P <

0.05), whereas no significant differences were detected in the

menopausal status of the patients (P > 0.05). Then, the clinical

model and radiomics nomogram were constructed by using the

significant clinical characteristics.
Feature selection and performance of
the radiomics signature for distinguishing
BEOT from EOC

The mean Dice coefficient and Hausdorff distance were

0.810 and 6.750 for DWI and 0.935 and 9.149 for ADC,

respectively. Detailed information regarding the ICCs is shown

in Appendices C. Among 390 radiomics features, 2 shape

features, 4 features from DWI, and 3 features from ADC were

selected using the multivariate LASSO method, and the

prediction performance outcomes of the shape features, DWI
TABLE 1 Patients characteristics.

BEOT (n=34) EOC (n=112) P value Type I EOC (n=30) Type II EOC (n=82) P value

Age (year) 38.5 (27.0;47.0) 57.0 (50.0;64.0) < 0.001 55.0 (47.0;60.0) 58.0 (51.0;66.8) 0.047

CA125 level 18.1 (8.46;40.8) 54.2 (20.2;204) 0.001 36.0 (16.3;76.4) 94.2 (21.5;250) 0.018

Menopausal (%) 7/34 (20.6%) 74/112 (66.1%) < 0.001 18/30 (60.0%) 56/82 (68.3%) 0.551

Early-stage (%) 34/34 (100%) 48/112 (42.9%) – 23/30 (76.7%) 25/82(30.5%) < 0.001

Bilaterality (%) 8/34 (23.5%) 49/112 (43.8%) 0.055 4/30 (13.3%) 45/82 (54.9%) < 0.001

MRI reported fluid (%) 8/34 (23.5%) 68/112 (60.7%) < 0.001 11/30 (36.7%) 57/82 (69.5%) 0.003

MRI reported peritoneal metastasis (%) 2/34(5.9%) 45/112 (40.2%) < 0.001 3/30 (10.0%) 42/82 (51.2%) < 0.001

MRI reported tumor configuration (%)

Mainly cystic 28/42 (66.7%) 52/161 (32.3%) 16/34 (47.1%) 36/127 (28.3%)

Mixed cystic-solid 5/42 (11.9%) 47/161 (29.2%) 0.001 13/34 (38.2%) 34/127 (26.8%) 0.002

Mainly solid 9/42 (21.4%) 62/161 (38.5%) 5/34 (14.7%) 57/127 (44.9%)
front
BEOT, borderline epithelial ovarian tumor; EOC, epithelial ovarian cancer.
iersin.org
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features, and ADC map features were separately evaluated, and

the result are shown in Appendices D. Then, a stepwise

multivariable logistic regression algorithm was applied to build

the radiomics signature by using the selected features. Finally, 3

features, namely, ADC_solid_glszm_LowGrayLevelZone

Emphasis, ADC_solid_glcm_lmc1, and ADC_solid_Skewness,

were included in the radiomics signature. The distribution of

features is shown in Appendices E. Rad-score, menopausal

status, and CA-125 level were identified as independent factors

for discriminating between BEOT and EOC.

Compared with the clinical model, the radiomics signature

and nomogram showed better performance for distinguishing

BEOT from EOC in the training cohort (0.915 vs. 0.852, P =

0.21; 0.954 vs. 0.852, P = 0.01) and in the validation cohort

(0.974 vs. 0.736, P = 0.01; 0.954 vs. 0.736, P = 0.004) by tumor.

The accuracy, sensitivity, specificity, positive predictive value,

negative predictive value and their 95% CI were shown in

Table 2. For the validation cohort by patients, the maximum

probability selection method achieved a higher diagnostic

performance than the two methods mentioned above (more

detailed information is shown in Appendices F). NRI with value

of 0.5791 (95% CI: 0.2162 - 0.942, P = 0.00176) in comparing

between maximum probability selection method and radiologist

selection method. The diagnostic performance for distinguishing

BEOT from EOC in the training and validation cohorts was

presented by ROC curves. DCA showed that using either the

radiomics signature or nomogram adds more benefit than using

the clinical model. Good calibration was observed, and the

Hosmer-Lemeshow test showed the goodness-of-fit of the

radiomics signature (P = 0.074 and 0.663) and nomogram

(P = 0.175 and 0.207) (more detailed information regarding

the calibration curves and DCA are shown in Appendices G).

Figure 3 illustrates the ROC curve and the nomogram for

preoperatively distinguishing BEOT from EOC. In addition,

the predictive performance for distinguishing BEOT from

early-stage EOC was also determined. As shown in Figure 4,

the radiomics signature and nomogram showed better

performance than the clinical model in distinguishing BEOT

from early-stage EOC in the training cohort (AUC: 0.904 vs.
Frontiers in Oncology 06
0827, P = 0.23; AUC: 0.955 vs. 0.827, P = 0.013) and in the

validation cohort (AUC: 0.948 vs. 0.766, P = 0.15; AUC: 0.936 vs.

0.766, P = 0.08). More detailed information regarding the results

is provided in Appendices H.
Feature selection and performance of
the radiomics signature for distinguishing
early-stage type I from II EOC

Among 390 radiomics features, 10 potential features were

selected using the LASSO method. The selected features were

then applied to build the radiomics signature by using a stepwise

multivariable logistic regression algorithm. Finally, 4

radiomics features (whole_MinorAxisLength, DWI_whole_

glrlm_GrayLevelVariance, DWI_solid_gldm_ LargeDependence

HighGrayLevelEmphasis, and ADC_whole_glrlm_ ShortRunLow

GrayLevelEmphasis) were identified for inclusion in the

radiomics signature. The distribution of features is shown in

Appendices I. Table 3 summarizes the diagnostic performance

of the clinical model, radiomics signature, and nomogram. The

radiomics signature showed favorable discrimination, with an

AUCof 0.905with accuracy, sensitivity, and specificity of 88.1%,

94.3% and 79.2%, respectively. Rad-score, pelvic fluid, and

tumor configuration were identified as independent factors for

discriminating between early-stage type I and type II EOC

through univariate and multivariable analyses. The radiomics

signature performed significantly better than the clinical model

(0.905 vs. 0.735, P = 0.007) in distinguishing early-stage type I

EOC from type II EOC. The diagnostic efficacy of the nomogram

was the same as that of the radiomics model with a NRI of

-0.1591 (95%CI: -1.0516 - 0.7334, P = 0.7268). Good calibration

was observed, and the Hosmer-Lemeshow test showed the

goodness-of-fit of the data (P = 0.062). DCA showed that

using the radiomics signature adds more benefit than using

the clinical model. More detailed information regarding the

calibration curves and DCA are shown in Appendices J. Figure 5

shows the ROC for preoperatively classifying early-stage type I

and type II EOCs.
TABLE 2 Diagnostic performance of clinical model, radiomics, and nomogram in differentiating BEOT from EOC.

Training cohort Validation cohort

Clinical model Radiomics Nomogram Clinical model Radiomics Nomogram

AUC (95% CI) 0.852(0.776-0.928) 0.915(0.845-0.986) 0.954(0.901-1.000) 0.736(0.603-0.869) 0.974(0.937-1.000) 0.954(0.896-1.000)

Accuracy (95% CI) 0.753(0.650-0.838) 0.865(0.776-0.928) 0.921(0.845-0.968) 0.596(0.501-0.687) 0.930(0.830-0.981) 0.842(0.721-0.925)

Sensitivity (95% CI) 0.730(0.546-0.864) 0.873(0.698-0.968) 0.937(0.738-1.000) 0.571(0.342-0.778) 0.918(0.898-1.000) 0.837(0.694-1.000)

Specificity (95% CI) 0.808(0.630-0.923) 0.846(0.615-0.962) 0.885(0.731-1.000) 0.750(0.524-0.938) 1.000(0.497-1.000) 0.875(0.625-1.000)

PPV (95% CI) 0.902(0.873-0.916) 0.932(0.917-0.938) 0.952(0.939-0.955) 0.933(0.894-0.950) 1.000(1.000-1.000) 0.976(0.971-0.980)

NPV (95% CI) 0.553(0.491-0.585) 0.733(0.667-0.758) 0.852(0.826-0.867) 0.222(0.167-0.263) 0.667(0.498-0.667) 0.467(0.385-0.500)
BEOT, borderline epithelial ovarian tumor; EOC, epithelial ovarian cancer; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; 95% CI, 95% confidence
interval.
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Discussion

EOTs are a group of tumors consisting of dissimilar cell

types with different biological behaviors. Subtype differentiation

is beneficial for the individualized treatment of EOTs because of

the different disease courses. BEOT is characterized by mild

nuclear atypia and a lack of stromal invasion, whereas EOC is

characterized by high cellularity and abundant stromal invasion.
Frontiers in Oncology 07
According to the concept of radiomics, these differences could be

reflected by quantitative analysis and radiomics methods. Our

results demonstrated that the radiomics signature and the

nomogram showed higher performance than the clinical

model in differentiating BEOT and EOC and in classifying

type I and type II EOCs. In addition, the maximum

probability selection method achieved excellent diagnostic

performance for distinguishing BEOT from EOC. Therefore,
B

C

A

FIGURE 3

The receiver operating characteristic (ROC) curves and the nomogram for preoperatively distinguishing borderline epithelial ovarian tumor from
epithelial ovarian cancer. (A–B) The ROC curves of clinical, radiomics and nomogram in training and validations cohorts. (C) The DWI-based
radiomics nomogram.
TABLE 3 Diagnostic performance of clinical model, radiomics, and nomogram in classification between early-stage type I and II EOC.

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Clinical model 0.735(0.615-0.854) 0.712(0.579-0.822) 0.743(0.486-0.873) 0.667(0.375-0.834) 0.765(0.680-0.793) 0.640(0.500-0.690)

Radiomics 0.905(0.818-0.991) 0.881(0.771-0.951) 0.943(0.457-1.000) 0.792(0.542-0.958) 0.868(0.762-0.875) 0.905(0.867-0.920)

Nomogram 0.905(0.818-0.991) 0.881(0.771-0.951) 0.943(0.485-1.000) 0.792(0.500-0.958) 0.868(0.772-0.875) 0.905(0.857-0.920)
EOC, epithelial ovarian cancer; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; 95% CI, 95% confidence interval.
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radiomics signatures derived from DWI and ADC maps may be

powerful noninvasive imaging biomarkers for the subtype

differentiation of EOTs.

Morphological changes in EOT can be observed by

conventional ultrasound and MRI examination. However, it

remains a challenge for differentiation diagnosis of EOT due to

morphological complexity and overlap.The Assessment of

Different NEoplasias in the adneXa model and Ovarian-Adnexal
Frontiers in Oncology 08
Reporting and Data System based on ultrasound appearances

achieved good performance for the discrimination between

benign and malignant adnexal tumor, but depending on an

experienced examiner and high-end ultrasound equipment (29).

The reproducible and noninvasive nature of radiomics provides

clinician with a favorable approach to predict clinicopathological

variables. Theoretically, radiomics features morphological and

features decode subtype of EOTs differently. Several radiomics
FIGURE 5

The receiver operating characteristic curves of clinical model and radiomics for distinguishing early-stage type I and type II EOC.
FIGURE 4

The receiver operating characteristic curves of clinical model, radiomics and nomogram for distinguishing BEOT from early-stage EOC.
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studies based on DWI have been established for ovarian cancer

classification and histological grade evaluation. Mimura et al. (28)

found that the 10th percentile of ADC values had the highest AUC

for differentiating borderline ovarian tumors from malignant

ovarian tumors. Li et al. (22) studied the potential of histogram

features in the ADC map for grading serous ovarian carcinoma.

Their results showed that all ADC histogram features except

kurtosis are effective in distinguishing high-grade serous ovarian

carcinoma from low-grade serous ovarian carcinoma. In contrast

to previous studies that focused on histogram features, we

extracted a large number of quantitative and minable imaging

features to find more valuable information related to the subtype

differentiation of EOTs. Our results showed that the features of

Skewness , GLCM_lmc1 and GLSZM_LowGrayLevel

ZoneEmphasis were the key features for categorizing EOTs. The

skewness features revealed that malignant EOT exhibited greater

asymmetry with respect to value distributions about the mean as

compared with borderline EOT. The high-order features of

GLCM and GLSZM could quantify the spatial relationships and

interactions between pixel intensities to capture the distinctive

intratumour heterogeneity and subtle alterations in subtypes of

EOTs. Our results demonstrated that radiomics presents a

clinically applicable and cost-effective decision-making tool for

personalized medicine in EOTs. The radiomics signature and

nomogram showed better performance than the clinical model in

discriminating BEOT from EOC, indicating that radiomics may

help improve the diagnostic accuracy before invasive procedures.

For patients with bilateral tumors, maximum probability selection

was established and achieved excellent diagnostic performance for

distinguishing BEOT from EOC. It is worth noting that the

radiomics signature performed better than the nomogram, but

without a significant difference. This discrepancy, however, may

be due to the instability of clinical characteristics. In clinical

practice, it is more difficult to distinguish between BEOT and

early-stage EOC with limited tumor spread because advanced

EOC tends to show more aggressive characteristics, such as

peritoneal involvement, distant metastases, and ascites.

Therefore, a subtask of distinguishing between BEOT and early-

stage EOC was also performed and achieved a high overall

classification performance, with an AUC value of 0.904 in the

training cohort.

A dualistic model classifies EOC into two broad categories

designated type I and type II based on the pathogenesis and origin.

Zhang et al. (25) reported that radiomics features extracted from

MRI yielded excellent performance in classifying type I and type II

ovarian cancers. However, only intensity information in the ADC

map was analyzed. Jian et al. (24) constructed a multiparametric

MRI model for differentiating between type I and type II EOC.

Although some algorithms have been proposed for the

classification of type I and type II EOC, clinical characteristics

were not incorporated. In this study, a radiomics signature

achieved better performance than the clinical model in
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discriminating early-stage type I EOC from type II EOC.

However, the nomogram comprising radiomics features and

clinical characteristics showed same diagnostic efficacy as the

radiomics with NRI value of -0.1591. These results indicate that

clinical factors have little effect on the nomogram for

distinguishing the early-stage type I EOC from type II EOC and

the radiomics features could be an effective quantitative approach

to categorize EOTs. Radiomics provides a more objective and

accurate way for gynecologists to develop a customized process to

maximize the success of preventive and therapeutic interventions

with minimum side effects in patients with EOT.

In addition, the ROI methods have varied between ovarian

radiomics studies and have not achieved consensus. The

accuracy of EOT classification often depends on the feature

expression of the ROI. As a complex mass comprising solid and

cystic components, the features from the whole tumor or the

solid components alone may not be sufficiently accurate to

distinguish the subtypes of EOTs. In this study, whole-tumor

ROI analysis with a prior ROI focused on the solid components

of ovarian lesions was performed. The present results

demonstrate that ROIs reflect the different characteristics of

tumors, and their combination can more comprehensively

reflect the internal heterogeneity of ovarian tumors.

Several limitations should be noted. First, for a radiomics

study, the sample size of a single center, such as ours, is arguably

somewhat small. A multicenter, large-scale trial should be

performed to validate our preliminary results. Second, lesion

segmentation was manually outlined on a single slice.

Undoubtedly, volumetric tumor delineation could provide a

more comprehensive evaluation of the underlying spatial

heterogeneity, but the analysis is time-consuming for clinical

application. A two-dimensional analysis may be more highly

recommended for clinical application (30). More studies are

warranted to explore the optimal tumor segmentation approach

for clinical application. Finally, the ADC values used in this

study were derived from a monoexponential diffusion model,

and features of other parameter maps derived from DWI images

using the biexponential or stretched-exponential diffusion mode

will be considered in our future work for ovarian tumors.

In this present study, imaging features were extracted from

DWI scans of ovarian tumors. The results demonstrated that the

subtype of EOTs could be predicted based on imaging features

from DWI and the nomogram. Future studies with larger sample

sizes and more radiomic features should be conducted to refine

our findings.
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