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Breast cancer is a kind of malignant tumor disease that poses a serious threat to

human health. Its biological characteristics of rapid proliferation and delayed

angiogenesis, lead to intratumoral hypoxia as a common finding in breast

cancer. HIF as a transcription factor, mediate a series of reactions in the hypoxic

microenvironment, including metabolic reprogramming, tumor angiogenesis,

tumor cell proliferation and metastasis and other important physiological and

pathological processes, as well as gene instability under hypoxia. In addition, in

the immune microenvironment of hypoxia, both innate and acquired immunity

of tumor cells undergo subtle changes to support tumor and inhibit immune

activity. Thus, the elucidation of tumor microenvironment hypoxia provides a

promising target for the resistance and limited efficacy of current breast cancer

therapies. We also summarize the hypoxic mechanisms of breast cancer

treatment related drug resistance, as well as the current status and prospects

of latest related drugs targeted HIF inhibitors.
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Introduction

Breast cancer is the cancer type with the highest prevalence, and despite therapeutic

advances, still has the second highest cancer-related mortality rate in women (1). One of

the main reasons why tumors are difficult to treat is that tumor cells constantly adapt to

the adverse environment in which they are exposed. Hypoxia is one of the typical adverse

environment, which weakens the function of the tumor. However, malignant tumor cells

are often able to compensate for the process of hypoxia and drive the occurrence of later

more malignant disease behaviors (2).

Oxygen is essential for energy metabolism, which drives cellular bioenergetics (3).

According to Data from a study describing the pretreatment oxygenation status, Oxygen

tensions measured in normal breast tissue revealed a mean pO2 of 65 mmHg, whereas in
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breast cancers of stages T1b-T4, the mean pO2 was 28 mmHg

(4). The regions with low oxygen level is generally termed

as hypoxic region, which is recognized as a typical

microenvironment feature in nearly all solid tumors. Two

mainly reasons leading to microenvironment hypoxia can be

summarized as follows (1):As most tumor cells are in a state of

rapid proliferation and high metabolism, oxygen consumption is

far greater than supply, resulting in continuous decline of

oxygen content in the microenvironment, and finally

formation of hypoxia microenvironment (2, 5).Hypoxia tumor

cells secrete vascular endothelial growth factor(VEGF)and other

pro-vascular factors to accelerate the regeneration of tumor

blood vessels. The density of tumor microvessels was

increased, but these vessels were abnormal in structure, which

made microvessels unable to regulate blood flow, resulting in

hyperperfusion hypoxia (6).

The presence of hypoxic regions is one of the independent

prognostic factors for breast and other cancers. Tumor cells,

while adapting to hypoxia, lead to more aggressive and

therapeutically resistant tumor phenotypes. Hypoxic tumor

microenvironment can promote metastasis of tumor cells,

inhibits the immune response to tumor cells and changes gene

expression, ultimately limiting patient prognosis (7). For

example, tumor-associated macrophages (TAMs) have been

shown to be associated with poor prognosis of cancer and are

predominately localized in the hypoxia regions of tumor. It was

found that hypoxia-induced galectin-3 expression and secretion

from TAMs promotes tumor growth and metastasis the in

orthotopic syngeneic mammary adenocarcinoma model and

metastasis model (8).

Considering such changes taken place in hypoxic tumor

microenvironment, exploiting for selectively targeting hypoxic

areas in breast cancer is an attractive strategy. Some mechanisms

of hypoxia leading to drug resistance are being elucidated and

drug delivery research has been moving to innovative strategies

for breast cancer including engineered nanoparticle based drug/

gene delivery systems (9–11). In this review, we briefly discussed

microenvironmental changes caused by hypoxia, which are

mainly metabolic , genetic and immune levels , and

systematically summarized promising advances in targeted

hypoxia therapy for breast cancer.
Hypoxia-inducible factors and
breast cancer

The response of cancer cells to hypoxia is principally

ascribed to its transcriptional factors HIFs which includes

three members, and they are heterodimers composed of an O2

sensitive a subunits (HIF-1a,or HIF-2a,or HIF-3a) and an O2

insensitive HIF-1b subunit (12, 13). HIF-1a is the most well-

characterized isoform of the HIFs (14). In normoxiais, it is easily
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degraded by the ubiquitin-protease hydrolysis complex.

Therefore, HIF-1a subunit is virtually undetectable in cells

with normal oxygen saturation (15–17). Under hypoxia,

degradation of HIF-1a subunit is inhibited and the 1a and 1b
subunits form active and stable HIF-1, which is transferred into

the nucleus to regulate transcription of multiple genes (18–20).

HIF-2a and HIF-3a are two closely related homologues of

HIF1a. HIF-1a and HIF-2a share very similar characteristics

including their abilities to heterodimerize with HIF-1b, binding
to hypoxia-inducible genes and transcriptional activation, but

they show different specificity in different tissues and

transcriptional targets (21–23). HIF-1a mediated mechanisms

favor up-regulation and down-regulation of genes involved in

tumor growth and malignant progression as well as epigenetic

modification, while HIF-2a stimulates some, but not all, genes

activated by HIF-1a. HIF-3a acts as a negative regulator of HIF-

1a and HIF-2a mediated gene expression where it can dimerize

with HIF-1b and indirectly inhibit HIF-1a and HIF-2a activity

(24, 25).

Breast cancer shows extensive clinical and molecular

heterogeneity. Prognostic factors are very important for

outcome estimation in individual patients. HIF-1 is an

important transcription factor in the adaptation of tumor cells

to hypoxia, and directly or indirectly regulates cell proliferation

and angiogenesis during the progression of tumor hypoxia

microenvironment gene expression related to apoptosis and

energy metabolism, whose transcriptional activity is a

significant positive regulator of tumor progression and

metastasis potential (25, 26). Many studies have shown that

HIF-1a is overexpressed in breast cancer (27), and HIF-1a has

been identified as an independent prognostic factor of breast

cancer, and its high expression is significantly associated with

poor DFS and OS in breast cancer patients (28–31). A meta-

analysis of 5177 patients showed that high HIF-1a expression

was associated with high Ki67 expression and strong VEGF

expression in advanced breast cancer with lymph node

metastasis positive lymph node status negative ER state ductal

advanced histological grade (28).In another population-based

case-control study evaluating breast cancer recurrence, HIF-1a
expression may be associated with early recurrence in patients

with ER-breast cancer (32).Additionally, patients with high

expression of HIF may be resistant to chemotherapy and

endocrine drugs, leading to treatment failure (31, 33).
The growth and metastasis of breast
tumor cells in hypoxic
microenvironment

Hypoxia plays an important role in tumor growth and

development, related processes include aerobic glycolysis,
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angiogenesis, immune cells induced to aggregate, and epithelial-

mesenchymal transition(EMT).

In the microenvironment of breast cancer, hypoxia activates

metabolic changes, from oxidative phosphorylation to a more

aerobic glycolytic metabolism (34). Maximum glucose uptake

and efficient glucose utilization provide a foundation for

glycolysis respiration, thus helping hypoxia cells adapt to the

tumor microenvironment, and supporting biological activities

such as tumor proliferation, invasion and migration (35, 36).

Hypoxia activates transcription factors HIF-1a and FoxO1 and

induces epigenetic reprogramming to up-regulate cytoplasmic

phosphoenolpyruvate carboxylated kinase (PCK1), a key

enzyme that initiates gluconeogenesis, triggering retrograde

carbon flow from gluconeogenesis to glycogen decomposition

and pentose phosphate pathways. The resulting NADPH

promotes the production of reduced glutathione, leading to a

moderate increase in reactive oxygen species (37). Tumor stem

cells (CSCs) are strongly correlated with tumor progression,

metastasis, recurrence and enhanced treatment resistance, and

their maintenance of stemness benefits from glycolysis. Peng F

et al. found that dehydrogenase kinase 1(PDK1), an important

glycolysis enzymes, elevated through the H19/let-7/HIF-1a
signal axis, and that downregulation of PDK1 significantly

inhibits H19-mediated glycolysis and CSC maintenance.

Interestingly, aspirin can significantly attenuate glycolysis and

cancer stem-like features by inhibiting H19 and PDK1,

providing a potential therapeutic strategy for breast cancer

(38). IL-32, known as a pro-inflammatory cytokine, is

overexpressed in many types of cancer and enhances tumor

cell migration and invasion. Hypoxia-induced reactive oxygen

species (ROS) enhances the expression of IL-32b, leading to the

activation of IL-32b prolongation of Src, which is involved in the

increase of glycolysis and the production of vascular endothelial

growth factor (VEGF) under hypoxia (39). Therefore, inhibition

of the above targets and pathways may be a therapeutic strategy

for inhibiting glycolysis in breast cancer, thereby inhibiting the

proliferation and metastasis of tumor cells (40).

Tumor cells grow out of control in tumor tissues, and their

internal neovascularization network cannot be established in a

timely and effective manner. Therefore, hypoxia controls tumor

angiogenesis and malignant progression by regulating the

expression of various carcinogenic molecules (41). HIF1a can

directly induce the expression of VEGF at the transcriptional

level and promote angiogenesis (42). Non-receptor protein

tyrosine kinases Syk and Lck play an important role in signal

transduction mechanisms of various cellular processes. And

their cross-talk regulates hypoxia/reoxygenation (H/R) induces

breast cancer progression and further regulates the expression of

melanoma cell adhesion molecule (MelCAM) urokinase-type

plasminogen activator (uPA) matrix metalloproteinase-9

(MMP-9) and VEGF (43). Immunohistochemistry of 45

patients of breast cancer showed that high levels of HIF1a
were positively correlated with increased microvascular density
Frontiers in Oncology 03
(a measure of angiogenesis) (P=0.023) and with expression of

angiogenic growth factors bFGF and PDGF-BB and receptor

EGFR (44). Thus, drugs targeting HIF-1 may bind to different

pathways that inhibit breast cancer growth, including

angiogenesis and growth factors. Tumor-associated immune

cells in the hypoxic microenvironment, also play a role in the

expression of angiogenesis related signals. HIF-1a/VEGF-A axis

is an important pathway for T cells to adapt to the hypoxia

microenvironment Analysis of human breast cancer showed that

VEGF-A expression was negatively correlated with CD8+ T cell

infiltration, and there was a relationship between T cell

infiltration and vascular formation (45). TAMs preferentially

migrate to the hypoxic region and not only mediate the

inhibition of T cells (46), but also directly upregulate

angiogenic molecules(VEGF, FGF2, CXCL8, IL-8, type I

receptor for VEGF, angiopoietin) or though upregulating of

angiogenic modulators (COX2, iNOS, MMP7) to promote

angiogenesis (47). In addition, under hypoxia, CAFs can

activates VEGF promoters though a transduction pathway

formed by HIF1a and its target gene, G-protein estrogen

receptor (GPER) (48). Therefore, T cell, TAMs and CAFs play

a role in hypoxia-dependent tumor angiogenesis.

Cell culture in vitro found that breast cancer cells under the

condition of hypoxia training than the cells cultured under the

condition of constant oxygen has significant motility (49). EMT

is an important biological process for malignant tumor cells to

acquire the ability of invasion and metastasis (50). Complete

EMT made the epithelial cancer cells transforming into

mesenchymal cells and occurring mesenchymal migration or

amebic migration. Partial EMT retained the properties of both

epithelial cells (cell adhesion) and mesenchymal cells (motility),

leading to collective migration of cells, characterized by the

presence of leader cells (mixed E/M state) and follower cells

(epithelial state) at the front of the invasion, forming the body of

the cell population (51). HIF-1a regulated many molecules

involved in EMT, for example, HIF-1a regulated TGFb1/
SMAD3 signaling pathway, promoting breast cancer metastasis

(52). E-cadherin promoted collective migration of mixed E/M

phenotypes by inhibiting TGF-b, while activation of TGF-b
leaded to single cell migration (53). Colony stimulating factor

1(CSF-1) played a key role in the control of EMT. Under

hypoxia, HIF-1a induced a mixed E/M phenotype through its

target gene CSF-1, promoting collective migration (54). Hypoxia

leaded to the activation of EMT genes, including TWIST1, SLUG

and SNAIL, by degrading PER2, which was considered to be a

tumor suppressor, and disrupting the PER2 repression complex

(55). X-C Motif chemokine Ligand 1 (XCL1) enhanced

expression of HIF-1a and phosphorylation of extracellular

signal-regulated kinase (ERK) 1/2, which induces EMT and

imposes migration of breast cancer cells (56). Therefore,

hypoxia-induced EMT is essential for invasion and metastasis

of breast cancer cells. And EMT phenotypes are also associated

with stem cell and drug resistance, so further exploration of the
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molecular details of this process could help develop new

therapeutic targets.
Genomic instability of hypoxia

Intratumoral hypoxia promotes genomic instability, another

hallmark of most cancers. It is estimated that up to 1.5% of the

human genome is transcriptional responsive to hypoxia (57). In

recent years, many genomic changes identified as responsive to

hypoxia, may serve as prognostic or predictive markers or even

as new therapeutic targets (58). Since increased activity of the

HIF-1a pathway is associated with more severe intratumor

hypoxia in basal-like breast tumors compared to other

subtypes, the gene signature may guide the potential use of

future antihypoxia drugs (59–61).
Hypoxia related DNA

Tumor cells adapt to the hypoxia microenvironment by

activating hypoxia-inducible factors to induce the expression

of gene products, which are involved in angiogenesis, metabolic

reprograming, tumor invasion and metastasis resistance, etc

(62). In order to evaluate the changes of hypoxia-induced

transcription profile of breast cancer cells, I Chae Ye exposed

31 breast cancer cell lines or normal human breast epithelial cells

to either 20% or 1% oxygen. The result showed that in each cell

line, more than 1000 genes are induced or inhibited in response

to hypoxia, of which 42 genes have conserved responses to

hypoxia (63). And all these gene responses under hypoxia

were induced by HIF-1a or HIF-2a. Therefore, HIF, as

the most important transcription factor in the hypoxic

microenvironment, induces a series of changes at the gene

level. These hypoxia gene features are meaningful prognostic

markers for breast cancer patients and may provide a group of

powerful hypoxia treatment targets for the clinic (59, 64, 65).

Studies showed that human breast cancer cells exposed to

hypoxia are enough to induce the expression of ADAM12 in a

HIF-dependent manner, leading to the shedding of HB-EGF

outfield, enhancing EGFR signaling pathway propagation and

downstream activation of focal adhesion kinase (FAK) to trigger

the breast cancer cells of motility, invasion and metastasis (66).

ZMYND8 is acetylated by HIF coactivator P300 in breast cancer

cells. And then through the ZMYND8/P300/BRD4/HIF axis,

increases angiogenesis, promotes breast tumor progression and

metastasis (67). High mobility group box 1 (HMGB1), an

important factor in cancer occurrence and development was

up-regulated in breast cancer tissues. It regulated hypoxia-

inducible factor 1 through the PI3K/AKT signaling pathway,

resulting in angiogenesis and tumor migration of breast cancer

cells (68). Analysis of previous clinical data shows that basal-like

tumors which have the highest rates of metastasis and recurrence
Frontiers in Oncology 04
are among breast cancer tumors, are associated with higher JFK

expression levels and poorer overall survival (69). HIF-1a
protein can directly activate JFK transcription, which in turn

leads to HIF-1a-induced glycolysis and make hypoxic breast

cancer cells insensitive to chemo-radiotherapeutic treatment. In

general, the HIF-1a-JFK axis enhances cell tolerance to hypoxia,

promotes breast cancer cell survival (70). XBP1 drove TNBC

tumorigenicity by regulating the expression of HIF-1a targets

through RNA polymerase II recruitment (71). CLDN6 is a

tumor suppressor gene for breast cancer. CLDN6, up-

regulated by HIF-1a transcription, prevents HIF-1a
desulfidation and ultimately leading to HIF-1a degradation

through binding the transcription factor b-catenin in the

cytoplasm (72).
Hypoxia related non-coding RNA

MicroRNAs(miRNAs) are endogenous, small non-coding

single-stranded RNAs that negatively regulate gene and protein

expression primarily by binding to their selective messenger

RNAs (mRNAs) (73, 74). Currently, several miRNAs expressed

in the hypoxic microenvironment of breast cancer have been

identified, which may indicate greater prognostic and

therapeutic potential (75). MiR-210 is widely regarded as a

powerful HIF target, which is a direct result of decreased

oxygen tension in the microenvironment (75, 76). Its

expression level in breast cancer samples can be used as an

independent prognostic factor (77–79), playing a role in

glycolysis, DNA repair, cell survival, immune prediction,

chemotherapy resistance, etc. Du Y et al. found that miR-210-

3p specifically participated in the Warburg effect (aerobic

glycolysis) in TNBC through modulating the downstream

glycolytic genes of HIF-1a and p53 (80). In addition, miR-210

inhibits the expression of e-cadherin by targeting the open

reading frame region of E-cadherin mRNA and upregulation

of e-cadherin transcriptional inhibitor Snail in hypoxic

microenvironment, thereby promoting the metastasis,

proliferation and self-renewal of breast cancer stem cells (81).

Trastuzumab is part of the standard treatment for patients with

HER-2 positive breast cancer, but not all patients respond to

trastuzumab. An analysis of miRNA expression levels in plasma

samples from breast cancer patients showed that circulating

miR-210 levels were significantly higher in patients with residual

disease than in patients with pathological complete response

before neoadjuvant chemotherapy combined with trastuzumab

(P =.0359). Therefore, circulating miR-210 level may be

associated with trastuzumab sensitivity, tumor presence

and lymph node metastasis (82). Chemotherapy resistance is

also a serious clinical challenge in breast cancer. MiR-210

regulates JAK-STAT signal transduction pathway by targeting

PIAS4, thus affecting the sensitivity of breast cancer to

chemotherapy (83).
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Most studies on miRNAs in hypoxic microenvironments

focus on miR-210, but there are still other miRNAs that respond

to hypoxia. Emma Gervin et al. showed that hypoxia can up-

regulate miR-655 expression in human breast tumors, which is

associated with poor prognosis. In MCF7-miR655 cell lines, the

expression of PTEN(negative regulator of HIF-1a) and NFkB1
(positive regulator of COX-2 and EP4) were regulated by down-

regulating transcription factors NR2C2, SALL4 and ZNF207,

thereby enhancing oxidative stress induced EMT and vascular

mimicry (84). In addition, hypoxia and tumor stem cells (CSCs)

contribute to paclitaxel (PTX) resistance, the molecular

mechanism may be related to miRNA. The experimental data

of Liu JH et al. showed that miR-526b-3p attenuates breast

cancer stem cell characteristics and chemotherapy resistance by

targeting HIF-2a/Notch signaling pathway, which may be used

to alleviate chemotherapy resistance in breast cancer (85). MiR-

135b may act as a regulatory factor of hormone receptor a(ERa).
MiR-135b regulates the protein levels of ERa and HIF1AN by

interacting with the 3’UTR region of ERa and HIF1AN (86).

Also, miR-153 finely regulated HIF-1a/VEGFA axis by binding

to the 3 UTR of HIF1A mRNA, which directly inhibits HIF-1a
expression. In this respect, miR-153 can be used for anti-

angiogenesis therapy in breast cancer (87).

Long Noncoding RNAs (lncRNAs) are transcripts with more

than 200 nucleotides in length but limited protein-coding

capacity (88). In the hypoxic microenvironment of breast

cancer, some lncRNAs affect the survival and growth of breast

cancer cells by regulating HIFs related pathways, providing

directions for the possibility of selectively targeted hypoxia

therapy (89). TNBC is the most urgent pathological type to be

explored, among which three lncrnas are related to hypoxia:

IHAT, GHET1 and MIR210HG. LncIHAT promotes the

survival of mouse TNBC cells and lung metastasis through the

expression of proximal adjacent oncogenes PDK1 and ITGA6 in

TNBC cells (90). LncRNA GHET1 leads to over activation of

Hippo/YAP signaling pathway, promoting hypoxia-induced

glycolysis proliferation and invasion of TNBC (91).

MIR210HG directly binds to the 5’-UTR of HIF-1a mRNA,

leading to an increase in HIF-1a protein level, thereby

upregulating glycolytic enzyme expression (92). In addition to,

Zheng F et al. demonstrated that HIF-1a antisense lncRNA

HIFAL is essential for maintaining and enhancing HIF-1a
mediated retrotranscriptional activation and glycolysis by

introducing the PKM2/PHD3 complex into the nucleus.

Clinically, targeting lncRNA HIFAL and HIF-1a significantly

reduced their impact on tumor growth (93). LncRNA PCAT-1,

elevated in breast cancer patients, directly interacts with the

activated protein C kinase-1 (RACK1) protein to prevent

RACK1 binding to HIF-1a, thereby protecting HIF-1a from

RACK1-induced oxygen-dependent degradation of lncRNA

(94). Rab11b-as1 enhances the expression of angiogenic factors

including VEGFA and ANGPTL4 in hypoxia breast cancer cells
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by increasing the recruitment of RNA polymerase II, promoting

tumor angiogenesis and distant metastasis of breast cancer in

vitro (95). Hypoxia-induced lncRNA KB-1980E6.3 is

abnormally up-regulated in clinical breast cancer tissues. The

KB-1980E6.3/IGF2BP1/C-MYC axis maintained the stemness

of BCSCs (96). LncRNA NEAT1 is a direct transcription target

of HIF-2. It is induced by hypoxia to accelerate the proliferation

of breast cancer cells, improve clone survival rate, and reduce

apoptosis (97). One of the important mechanisms of lncRNA in

hypoxia-related pathways is to antagonize the biological

function of miRNA like a sponge (98). LncRNA MALAT1 in

hypoxia response can be transcriptionally activated by HIF-1a
and HIF-2a, acting as a molecular sponge for miR-3064-5p to

promote tumor growth and migration of breast cancer cells (99).

LncRNA Vcan-as1 compete with miR-106a-5p, promoting its

progression by regulating the miR-106a-5P-mediated STAT3/

HIF-1a pathway (100). Phosphoglycerate kinase 1 (PGK1) is an

important part of the glycolysis pathway. Zhong Chu et al. found

that hypoxia inhibits the expression of LINC00926 which

activates the expression of PGK1 mainly through FOXO3A

(101). Above, lncRNAs play an important regulatory role in

the relevant pathways of breast cancer cells adapting to hypoxia,

especially in triple negative breast cancer (102). Therefore,

focus on hypoxia related lncRNAs of their potential impact

on prognosis and treatment will help predicting new

therapeutic agents and exploring mechanisms of drug

intervention strategies.

Circular RNAs(CircRNAs) are single-stranded RNA

transcripts without 5 caps or 3 polya-tails, but covalently

closed ring structures formed by pre-mrna passage and

delivery after delivery. CircRNAs mainly target miRNA, act as

miRNA sponges, indirectly regulate functional proteins, and

participate in cancer progression and hypoxia regulation (103).

For example, circDENND4C, which is verified as a sponge for

mir-200b and mir-200c, is up-regulated in hypoxia, boosting

glycolysis, migration and invasion of breast cancer cells (104).

CircRNF20 is highly expressed in BC under hypoxia, through

circRNF20/miR-487a/HIF-1a/HK2 axis promoting Warburg

effect (105). CircZFR acts as a sponge for miR-578 in BC

tissues and cells, promotes the progression of BC malignancy

by regulating miR-578/HIF-1a axis (106). Furthermore, Yanxia

Zhan et al. screened circRNA differentially expressed between

hypoxic and normoxic cancer-associated fibroblasts(CAFs)

exosomes by array analysis. The expression of circHIF1A up-

regulated in hypoxic CAFs. By which, miR-580-5p has been

sponged to modulate dryness of breast cancer cells (107). In

addition to competitively antagonizing miRNA, circRNA also

has other mechanisms to play a role. CircWSB1 was up-

regulated by HIF1a transcription and competitively binds to

the deubiquitinase USP10, preventing p53 access to USP10 in

BC cells, leading to the degradation of p53 and tumor

progression of BC (108). Table 1
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Hypoxia-mediated
immunosuppressive activity
Extreme hypoxia and aberrant HIF-1 activity in the tumor

TME are obstacles to effective immunotherapy. In this setting,

infiltration and activity of CD8+ T cells are reduced, whereas
Frontiers in Oncology 06
tumor associated macrophages(TAMs), regulatory T cells

(Tregs) and bone marmo-derived suppressor cells (MDSCs)

show higher activity. Hypoxic TME also impages cancer-

associated fibroblasts (CAFs) and natural killer (NK) cell

maturation and activity. Furthermore, hypoxic TME is

positively correlated with immune checkpoint expression.

These alterations suggest the need for hypoxic regulation as a
TABLE 1 Coding and non-coding transcriptome in hypoxic TME.

DNA/RNA Expression under
hypoxia

Signaling pathways Function Reference

DNA

ADAM12 Up-regulated EGFR/FAK signaling pathway Triggering motility, invasion and metastasis (66)

ZMYND8 Up-regulated ZMYND8/P300/BRD4/HIF axis Angiogenesis (67)

HMGB1 Up-regulated PI3K/AKT signaling pathway Angiogenesis (68)

JFK Up-regulated HIF-1a-JFK axis Enhancing cell tolerance to hypoxia (69, 70)

XBP1 Up-regulated Recruitment RNA polymerase II Driving TNBC tumorigenicity by regulating HIF-1a
targets

(71)

CLDN6 Up-regulated Binding the transcription factor b-catenin Leading to HIF-1a degradation (72)

miRNAs

miR-210 Up-regulated in TNBC Downstream glycolytic genes of HIF-1a
and p53

Activating aerobic glycolysis (80)

Up-regulated in BCSC E-cadherin mRNA Up-regulating Snail, promoting the self-renewal of BCSC (81)

Up-regulated in patients with
residual disease

– Associated with trastuzumab sensitivity (82)

Up-regulated JAK-STAT signaling pathway Affecting the sensitivity to chemotherapy (83)

miR-655 Up-regulated Regulating PTEN and NFkB1 by NR2C2,
SALL4 and ZNF207

Enhancing EMT and vascular mimicry (84)

miR-526b-3p Up-regulated HIF-2a/Notch signaling pathway Alleviate chemotherapy resistance (85)

miR-135b Up-regulated 3’UTR region of ERa and HIF1AN Regulating the protein levels of ERa and HIF1AN (86)

miR-153 Up-regulated HIF-1a/VEGFA axis Angiogenesis (87)

lncRNAs

IHAT Up-regulated in TNBC PDK1 and ITGA6 Promoting the survival of TNBC cells and lung metastasis (90)

GHET1 Up-regulated in TNBC Hippo/YAP signaling pathway Promoting hypoxia-induced glycolysis, proliferation and
invasion

(91)

MIR210HG Up-regulated in TNBC 5’-UTR of HIF-1a mRNA Upregulating glycolytic enzyme expression (92)

HIFAL Up-regulated antisense RNA of HIF-1a Enhancing HIF-1a mediated retrotranscriptional
activation and glycolysis

(93)

PCAT-1 Up-regulated RACK1 Protecting HIF-1a from RACK1-induced oxygen-
dependent degradation of lncRNA

(94)

Rab11b-as1 Up-regulated RNA polymerase II Enhancing the expression of angiogenic factors (95)

KB-1980E6.3 Up-regulated KB-1980E6.3/IGF2BP1/C-MYC axis Maintaining the stemness of BCSCs (96)

NEAT1 Up-regulated a direct transcription target of HIF-2 Accelerating proliferation, reducing apoptosis (97)

MALAT1 Up-regulated miR-3064-5p Promoting tumor growth and migration of breast cancer
cells

(99)

Vcan-as1 Up-regulated miR-106a-5P-mediated STAT3/HIF-1a
pathway

Activating the STAT3 pathway reversed miR-106a-5p-
mediated antitumor effects

(100)

LINC00926 Down-regulated FOXO3A/PGK1 signaling pathway Promoting hypoxia-induced glycolysis (101)

circRNAs

circDENND4C Up-regulated mir-200b and mir-200c Boosting glycolysis, migration and invasion (104)

circRNF20 Up-regulated mir-487a/HIF-1a/HK2 axis Promoting Warburg effect (105)

circZFR Up-regulated mir-578/HIF-1a axis Boosting malignant progression (106)

circHIF1A Up-regulated in CAF mir-580-5p Modulating dryness of BC cells (107)

circWSB1 Up-regulated deubiquitinase USP10 Leading to the degradation of p53 and tumor progression (108)
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complementary targeting strategy for immune checkpoint

inhibitor (ICI) therapy.
Innate immunity

Hypoxia can negatively regulate innate antitumor cells in the

microenvironment and some key mechanisms. TAMs adopt M1-

like proinflammatory phenotypes in the early stages of

tumorgenesis and mediate immune responses that inhibit tumor

growth. Hypoxia induces the production of a large number of

migration stimulators, such as VEGF, EGFR, CCL2, CCL5, CSF-1,

oncostatin M, succinate, eotaxin and GM-CSF, produced in the

stroma of tumor cells and hypoxic regions (109–112). These

stimulators lead to the recruitment of TAM and transformation

of M2-like (113), which further promotes its involvement in

tumor support processes such as immunosuppressive

angiogenesis. Hypoxic TAMs strongly upregulate the expression

of REDD1. REDD1-mediated inhibition of mTOR can hinder

glycolysis of TAMs and inhibit their excessive angiogenic

response, thus forming abnormal blood vessels (114). HIF-1a is

a positive regulator of macrophage-derived VEGF. Knockdown

the HIF-1a in TAMs attenuates its pro-angiogenic response (115).

In addition, it has been recently reported that HIF-1a can up-

regulate the expression of PD-L1 in tumor-infiltrating

macrophages, thereby promoting the immunosuppressive TME

(116, 117).

NK cells are immune cells that kill both virus-infected and

tumor cells without antigenic stimulation. The studies of

Solocinski and Teng showed that hypoxic stress impaired NK

cell cytotoxicity by reducing ERK and STAT3 phosphorylation

(118, 119). Ni et al. found that the transcription factor HIF-1a
can inhibit NF-KB signaling in tumor-infiltrating NK cells,

which is drived by IL-18 to exert antitumor activity (120).

However, Seon et al. presented evidence that NK cells

stabilized and upregulated their target genes BNIP3, PDK1,

VEGF, PKM2 and LDHA by HIF-1a under hypoxia, which

activate the ERK/STAT3 pathway to reprogram preactivated NK

cells. These reverse the impaired NK effector phenotype and

generate necessary number of functional NK cells for adoptive

cell therapy (121).

MDSCs have immunosuppressive activity, allowing cancer

to escape immune surveillance and not respond to immune

checkpoint blockade. HIF-1a enhances the expression of miR-

210 in tumor-localized MDSC. MiR-210 regulates Arg1, Cxcl12

and IL16 at both mRNA and protein levels to enhance the

immunosuppressant activity of MDSC in vivo (122). Deng et al.

found that HIF-1a binding to a conserved hypoxic response

element in the VISTA promoter, thereby upregulated VISTA in

MDSCs. Antibody targeting or gene ablation of VISTA could

alleviate MDSC-mediated T-cell inhibition and may mitigate the

harmful effects of hypoxia on anti-tumor immunity (123).
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Stromal fibrosis is a common event in hypoxic TME. CAFs

are considered to be the main component of fibrous matrix and

can be activated by tumor hypoxia (124). Hypoxia up-regulates

the transcription target of HIF-1a, namely G protein estrogen

receptor (GPER), that makes CAF-induced IL-1b to express

IL1R1 in breast cancer cells (125, 126). HIF-1a/GPER signaling

pathway is also involved in the regulation of VEGF expression in

breast cancer cells and CAFs exposed to hypoxia (48).

Knockdown GPER in CAFs inhibited the invasion of breast

cancer cel ls induced by CAF condit ioned medium

(125). Figure 1
Acquired immunity

Hypoxic TME inhibits the proliferation and differentiation

of CD4+T cells and CD8+T cells mainly by inducing the

recruitment and activation of regulatory T cells (T(reg)),

initiating autophagy and depletion of T cells, jointly resulted

in acquired immune suppression (127, 128). HIF-1 is a key

metabolic sensor regulating the balance of T(reg) cells and T(H)

17 differentiation. HIF-1 enhances T(H)17 development

through tertiary complex formation by recruiting IL-17

promoters with RORgt and P300. At the same time, HIF-1

weakens the development of T(reg) by binding Foxp3 for

proteasomal degradation (129). In addition, tumor hypoxia

induces the expression of CCL28, CXCL12 and CXCR4,

selectively enhanced the recruitment of T(reg) cells, thereby

inducing tumor tolerance and new angiogenesis (130–132).

Hypoxia impaired the ability of CD8+T cells in differentiation,

proliferation, infiltration and lethality. VEGF-A is the main factor

contributor to differential secretion from depleted CD8+T cells

under hypoxia. It can promote the differentiation of PD-1+TIM-

3+CXCR5+ exhausted-like CD8+T cells and significantly affect the

transport and killing ability of CD8+T cells (133). Reports have

further shown that anti-VEGF treatment enhances CD8+T cell

effector function and provides a mechanistic basis for combining

anti-angiogenic and immunotherapeutic drugs in cancer

treatment (134). Hypoxia reduces the O2 tension of CD8(+)T

cells during activation, upregulates the expression of CD137(4-

1BB) and CD25, secrets the immunosuppressive cytokine IL-10.

These processes induces the phenotype of CD8+T cells conversing

from effector cells to poor proliferation (135).

Hypoxia leads to T cell dysfunction, upon further antigenic

stimulation, leads to a state similar to exhaustion. Hypoxia

upregulates miR-24 in tumor cells and T cell, both

endogenous and exogenous. Mir-24 inhibits the expression of

MYC and FGF11 in T cells, thereby disrupting MFN1-mediated

mitochondrial fusion. Loss of mitochondrial function generates

intolerable levels of ROS, which promotes induction of T-cell

exhaustion through phosphatase inhibition (136, 137).

Adenosine and adenosine receptors(AR) are important

components of hypoxia-related signaling pathways. Hypoxic
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TME up-regulates the expression of CD39 and CD73. The

former is an exonucleoside triphosphate dihydrophosphate

hydrolase (ENTPD1) that converts ATP/ADP to AMP. The

latter is an exonucleoside 50 enzyme that converts AMP to

adenosine (136, 138). Thus, hypoxic adenosine signaling

negatively affects T cell activation and effects through

adenosine A2A receptor (A2AR), inducing T cell apoptosis

(139). At present, preclinical observations have shown that

A2AR blockers and immune checkpoint inhibitors cooperate

to induce tumor rejection with considerable results (140).
Role of immune checkpoint blockade

Several important immune checkpoints have their own

regulatory pathways. In hypoxic TME, almost all of them are

directly transcriptional regulated by HIF. In the hypoxic

adenosine pathway, CD73 encoded by NT5E gene is a key

enzyme for adenosine production and has been considered as

a potential immune checkpoint (141). Adenosine receptor has

been found in DC, TAM, MDSC and NK cells, implying that

adenosine produced by NT5E can inhibit cellular immune

responses (142). Thus, NT5E has been identified as a target
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checkpoint molecule for novel tumor immunotherapy

approaches (143). CD47 is an immunoglobulin overexpressed

on the surface of cancer cells. CD47 forms a signaling complex

with SIRPa expressed on phagocytes and other immune cells,

which enables cancer cells to escape macrophage-mediated

phagocytosis (144, 145). CD47 is directly regulated by HIF-1

in hypoxic breast cancer cells and plays an immune escape

through the CD47-SIRPa axis (146). At present, 23 related drugs

targeting CD47 have entered clinical trials and shown good

effects (147). MiR-25 and miR-93 are two hypoxic response

microRNAs. By targeting NCOA3, they down-regulate the

expression of DNA sensor cGAS. This allows hypoxic tumor

cells to escape the immune response elicited by the release of

mitochondrial DNA, reveals direct link between hypoxic

miRNAs and adaptive immune responses to hypoxic tumor

microenvironment (148). Programmed death ligand 1(PDL1),

which is expressed on the surface of cancer cells, binds to the

receptor PD1 on the surface of CD8+T cells, thereby inactivating

the antitumor response of CD8+T cells. Hypoxia significantly

increases the expression of PD-L1 on MDSCs, TAMs and tumor

cells. In addition, the upregulation of PD-L1 under hypoxia

depends on the direct binding of HIF-1a to the transcriptional

active HRE. Blocking PD-L1 under hypoxia enhances MDSC
FIGURE 1

Diagram of the innate immunosuppression in hypoxic TME. Hypoxia induces the production of VEGF, EGFR, CCL2, CCL5, CSF-1 and other
stimulators, leading to the recruitment and aggregation of TAMs. Oncostatin M, succinate, eotaxin and GM-CSF polarize M1 macrophages into
M2 macrophages which demonstrate tumor-supporting and immunosuppressive functions. Hypoxia strongly up-regulates the expression of
REDD1, it could inhibit mTOR to promote abnormal angiogenesis. HIF-1 directly up-regulates CD47, making breast cancer cells escape from
macrophage-mediated phagocytosis through CD47-SIRPa axis. Hypoxia up-regulates GPER in CAFs, which is involved in the control of IL1R1,
IL-b and VEGF, resulting angiogenesis and invasion of breast cancer cells. Hypoxia damages the cytotoxicity of NK cells by reducing the
phosphorylation levels of ERK and STAT3. While Under 1.5% PO2, the ERK/STAT3 pathway reprograms preactivated NK cells through HIF-1a
stabilization and higher expression of its target genes BNIP3, PDK1, VEGF, PKM2, LDHA to restore the cytotoxicity of NK cell. HIF-1a increases
the expression of miR-210 in MDSC, regulating Arg1 Cxcl12 and IL16 to enhance immunosuppression of MDSC. Also, HIF-1a up-regulates VISTA
in MDSCs mediating T cell inhibition.
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mediated T cell activation. Therefore, blocking both PD-L1 and

HIF-1a may be a promising approach for cancer

immunotherapy (116). Figure 2
Hypoxia-induced treatment
resistance

Clinical studies have demonstrated that the components in

the tumor hypoxic microenvironment are associated with poor

prognosis in patients and can promote apoptosis and autophagy

or inhibit DNA damage and mitochondrial activity through a

number of signaling pathways associated with the failure of

immunotherapy, chemotherapy, or radiation therapy (149, 150).

This emphasizes that we need to decode the mechanism of

hypoxia leading to drug resistance and take measures to promote

sensitivity to treatment.
Hypoxia and radiotherapy

There are good clinical evidences and systematic evaluations

that hypoxia is a major negative factor influencing tumor

radiation response (150). Preclinical studies in the early 1950s
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showed that cells can resist radiation damage when oxygen

partial pressure is reduced below about 20 mmHg during

irradiation (151). Radiation therapy kills cancer by producing

ROS, which leads to DNA damage of recipient cells. However, in

the case of hypoxia, free radicals produced by DNA under

radiotherapy are reduced by molecules containing sulfhydryl

group (SH), leading to DNA repair (152, 153). A great deal of

efforts have been made to identify ways to overcome radiation

resistance caused by hypoxia, including improving the

availability of oxygen, increasing the sensitivity of radiotherapy

or killing of hypoxia cells to improve the efficacy of radiotherapy.

Hypoxic activated prehaps (HAPs), also known as

bioreduction prehaps, are chemically reduced to active

compounds at low oxygen levels and target radiation-resistant

hypoxic cells. Nevertheless, desirable results have not been

achieved in HAPs coupled with radiation therapy (154),

possibly due to the failure of the drugs to reach tumor hypoxic

areas. Abbasi et al. designed a clinically applicable formulation of

mixed manganese dioxide (MnO2) nanoparticles (MDNP) that

uses biocompatible materials to react with endogenous H2O2 to

regulate TME hypoxia. In a mouse model, approximately 40% of

tumor-borne mice were tumor-free after a single treatment of

MDNPs plus radiotherapy, 2.5 times lower than the dose

required for treatment without MDNPs to achieve the same
FIGURE 2

Diagram of the acquired immunosuppression in hypoxic TME. In the hypoxic TME, HIF-1 directly activates RORgt gene transcription in T cells,
and then recruits P300 to the RORgt transcription complex to act as the promoter of the TH17 gene (IL-17). These activities promote TH17
differentiation. At the same time, HIF-1 attenuates T(reg) development by binding Foxp3 and targeting T(reg) for proteasomal degradation.
Besides, tumor hypoxia induces CCL28, CXCL12, CXCR4 expression, enhancing T(reg) cell recruitment. VEGF-A is a major factor in differential
secretion of depleted CD8+T cells under hypoxia, which can promote the differentiation of PD-1+TIM-3+CXCR5+ terminally depleted CD8+T
cells. In addition, hypoxia up-regulates the expression of CD137 and CD25, which secretes immunosuppressive cytokine IL-10, eventually
inducing adverse T cell phenotype. MiR-24 upregulates in tumor cells and TIL, and inhibits MYC and FGF11 in CD8(+)T cell. Through the
destruction of MFN1-mediated mitochondrial fusion, the generation of intolerable ROS levels, causing T cell exhaustion. Further, hypoxic TME
up-regulates the expression of CD39 and CD73, which negatively affect T cell activation through adenosine signaling pathway.
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efficacy (155). A newly prepared single-nanometer oxygen

nanobubble water can overcome hypoxia-induced radiation

resistance of cancer cells. Under hypoxia, MDA MB231 cells

treated with oxygen nanobubble medium significantly inhibited

hypoxia-induced HIF-1a and radiation resistance compared

with normal medium (156). The upconversion nanoparticle

coremesoporous silica shell structure (UCHMs) with the

hypoxia activated pro-drug tirapazamine (TPZ) loaded within

the cavity between the core and shell could act as excellent

delivery vehicles of TPZ to the hypoxic centers of tumors, serve

as highly effective radiosensitizer in the meantime, and

subsequently kill hypoxic cells during culture. TPZ@UCHMs,

this specially designed treatment can also effectively prevent

potential hypoxia and reoxygenation, thus effectively inhibiting

hypoxia and radiation-induced cell metastasis and tumor

regeneration (157). In addition, hyperthermia (heat treatment

at 39-45°C) can increase blood flow to improve tissue

oxygenation, sensitize radiation through DNA repair

inhibition, and can directly or indirectly kill cells by causing

vascular damage. This combination therapy has potential

clinical applications in the future, but the timing and sequence

between radiation and hyperthermia and different action

mechanisms caused by heating temperature and heating time

need to be further explored (158).
Hypoxia and chemotherapy

A large number of studies have found that HIF-1 was a

necessary condition for chemotherapy resistance of breast

cancer stem cells, and HIF-1a expression was correlated with

pathological complete response (pCR) in chemotherapy patients

(159, 159). Chemotherapy-induced HIF activity accumulated

breast cancer stem cell populations through IL-6 and IL-8

signaling pathways and increased expression of multidrug

resistance 1 (160). Samanta et al. demonstrated that the

combination of HIF inhibitors can overcome breast cancer

stem cell resistance to paclitaxel or gemcitabine in vitro and in

vivo, leading to tumor eradication (160). Additionally, hypoxic

TME can lead to drug resistance through down-regulation of

chemotherapeutic drug targets by HIF-1, reducing the level of

topoisomase IIalpha, an enzyme that generates DNA strand

breaks when poisoned with etoposide, resulting in

chemotherapy resistance of etoposide (161).

Treatment regimen based HIF-1 inhibition has been shown

to rescue hypoxia-mediated chemotherapy resistance. Hypoxic-

responsive polymeric drug nanoparticles(ICG@CPTNB) release

camptothecin CPT by self-combustion in hypoxic regions,

significantly improving the tumor growth inhibition efficiency

of traditional chemotherapy (162). Based on the high reactivity

of manganese dioxide (MnO2) to hydrogen peroxide (H2O2), a

bioconjugated manganese dioxide nanoparticles (MAN-HA-

MNO2) were targeted to the tumor hypoxia region. It could
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enhance chemotherapy response by stimulating TAMs to an

M1-like phenotype and alleviating tumor hypoxia (163). A

hypoxia-activated prodrug can be activated under hypoxia

named YC-DOX. It’s self-immolation releases doxoruin (Dox)

and YC-1 cysteine, which respectively performs chemotherapy

and down-regulates HIF-1a (164).
Hypoxia and endocrine therapy

About 70% of breast cancer is caused by estrogen through

estrogen receptor-a(ERa) (165). Therefore, aromatase inhibitor

based endocrine therapy is an important treatment for breast

cancer. HIF-1a gene has a typical ER binding element that

responds to estrogen signaling, suggesting a direct regulatory

link between ERa and HIF-1a pathway in breast cancer (166).

Several studies have shown that HIF-1a makes tamoxifen

(TAM) resistant to breast cancer cells of ERa+ (167–169).

Baicalein helps overcome TAM resistance by promoting the

interaction between HIF-1a and PHD2 and pVHL to reduce

HIF-1a expression, thereby reducing aerobic glycolysis and

reversing mitochondrial dysfunction (168). In addition,

hypoxia further down-regulated ERalpha transcription through

MAPK signaling and activation of ERK1/2. MEK1/2 inhibitors

(U0126 or PD184352) could partially restore ERalpha

expression through inhibition ERK1/2. Kronblad et al.

demonstrated that U0126 combined with tamoxifen enhanced

anti-estrogen effect in hypoxia (169). In a word, the direct and

indirect regulatory pathways between ERa and HIF-1a may

regulate hormonal responses in endocrine therapy, and it is

significant to explore the targets in these pathways for

overcoming endocrine resistance and enhancing of efficacy.
Hypoxia and immunotherapy

Immunotherapy is a promising treatment for triple negative

breast cancer (TNBC), but relapse and drug resistance are

common (170). Baldominos et al. found that in primary breast

cancer, tumor cells resistant to T cell attack are quiescent cancer

cells (QCCs). Transcriptomic analysis revealed that QCCs block

the function of T cells by regulating the local hypoxic

immunosuppressive environment, thus forming a drug library

of immunotherapy (171). As described above, adenosine

signaling inhibits the activity of T cells and induces apoptosis

of T cells through A2AR in hypoxic microenvironment.

Inhibition of this pathway plays an important role in

improving tumor immunotherapy which mainly through two

mechanisms:(a)blocking immunosuppressive adenosine-A2AR

mediated intracellular signaling via A2AR inhibitors; (b)

attenuating HIF-1a mediated extracellular adenosine

accumulation by oxygen mixture (142). A2AR blockers,

adenosine inhibitors (e.g. CD39 and CD73), as well as hypoxia
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targeting agents, are currently in clinical phase demonstrated

that blocking the hypoxic adenosine-A2AR axis synergistically

induces tumor rejection with immune checkpoint inhibitors,

providing new hope for the majority of patients who do not

respond to immunotherapy (172, 173). Wang Y et al. designed a

hemoglobin-poly(Hb-PCL) conjugate self-assembled

biomimetic nano red blood cell system(V(Hb)). The V(Hb)

@DOX can bind to endogenous plasma haptoglobin (Hp) and

specifically target the M2-type TAMs via the CD163 surface

receptor. The O2 released by the Hb alleviates tumor hypoxia,

which further augments the antitumor immune response by

recruiting fewer M2-type macrophages (174). In addition, the

PFC@lipo modified liposomes can effectively load and release

oxygen, helping PD-1 antibody to break through the treatment

bottleneck, significantly inhibiting the progression of breast

cancer (175). Table 2
HIF inhibitors

Targeting the HIF pathway is a direct and effective strategy

for alleviating hypoxia in the tumor microenvironment (176).

Especially triple negative breast cancer, which has high HIF
Frontiers in Oncology 11
transcriptional activity but poor response to existing therapies

(177). There are two main classes of HIF inhibitors: Direct HIF

inhibitors affect the expression or function of the HIF molecule,

and indirect HIF inhibitors regulate other molecules in upstream

or downstream pathways (such as AMPK, PHD, etc.), ultimately

affecting HIF signaling (178). Compared with direct inhibitors,

they affect many other pathways, so they are generally less

selective for HIF-1a (149). Therefore, direct acting inhibitors

of HIF-1a are receiving increasing attention as potential

therapeutic agents that specifically target HIF-1 pathways in

tumors. Direct HIF inhibitors act through a variety of

mechanisms, including inhibiting mRNA expression and

inhibiting HIF protein synthesis, affecting heterodimerization

of HIF-1a and HIF-1b, inhibiting transcriptional activity of

DNA, etc (179, 180). Several promising direct-acting small

molecule inhibitors currently under study include: Acriflavone,

which can affect HIF-1a dimeration and transcription activation

(181), YC-1, Chetomin and Bortezomib, which can inhibit the

interaction between HIF-1a and P300/CBP (182–184), and

Echinom Ycin and NSC-50352 affect HIF-1a binding to DNA

(185). In addition, FIH-1 regulation controls the transcriptional

activity of HIF-1a through c-TAD (FIH-1-regulated domain),

which is also a potential strategy to target hypoxia-induced
TABLE 2 Hypoxia-induced resistance related mechanisms and therapies.

Hypoxia-
induced
resistance

Resistance mechanisms Therapies Function Reference

Radiotherapy 1.Free radicals reduced by molecules
containing SH group, leading to DNA
repair

HAPs Chemical reduction to become active compounds that target
radiation-resistant hypoxic cells

(154)

MDNP Reacting with endogenous H2O2 to regulate TME hypoxia (155)

Oxygen
nanobubble

Inhibited hypoxia-induced HIF-1a and radiation resistance compared
with normal medium

(156)

TPZ@UCHMs UCHMs loaded with the hypoxic pre-activation drug TPZ is
transported to the tumor hypoxic center, and at the same time serves
as a highly effective radiosensitizer

(157)

Hyperthermia Increasing blood flow to improve tissue oxygenation, sensitizing
radiation through DNA repair inhibition

(158)

Chemotherapy 1. Accumulating breast cancer stem cell
populations through IL-6 and IL-8
signaling pathways
2. Increasing expression of multidrug
resistance 1
3. Down-regulation of chemotherapeutic
drug targets by HIF-1

ICG@CPTNB Releasing CPT by self-combustion in hypoxic regions (162)

MAN-HA-
MNO2

Enhancing chemotherapy response by stimulating TAMs to an M1-
like phenotype

(163)

YC-DOX Releasing doxoruin and cysteine, respectively performing
chemotherapy and down-regulating HIF-1a

(164)

Endocrine
therapy

1. HIF-1a gene has a typical ER binding
element that responds to estrogen
2. Hypoxia down-regulates ERalpha
transcription through MAPK signaling and
activation of ERK1/2

Baicalein Overcoming TAM resistance by promoting the interaction between
HIF-1a and PHD2 and pVHL to reduce HIF-1a expression

(168)

MEK1/2
inhibitors (U0126
or PD184352)

Restoring ERalpha expression, enhancing anti-estrogen effect through
inhibition ERK1/2

(169)

Immunotherapy 1. Blocking the function of T cells by QCCs
2. Adenosine signaling induces apoptosis of
T cells

A2AR blockers
(CD39 and
CD73)

Blocking adenosine-A2AR mediated intracellular signaling (172, 173)

V(Hb)@DOX Targeting the M2-type TAMs via the CD163, releasing O2 and
recruiting fewer M2-type macrophages

(174)

PFC@lipo Effectively loading and releasing oxygen (175)
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malignancy (185). Although many direct inhibitors of HIF-1a
have been proposed, none has entered clinical trials. The reasons

for their lack of efficacy in vivo may be related to the

heterogeneity of tumor cells, the complexity of hypoxic

microenvironment, and the fact that only HIF-1a targets have

been studied while few HIF-2a inhibitors (149). There is still a

long way to go before HIF inhibitors can be used in the clinic.
Conclusion

Hypoxia of the TME in breast cancer and other solid tumors

are widespread phenomenon. In response to reduced oxygen

tension, HIF1 and HIF-2 stabilize and mediate the hypoxic

response, primarily by acting as transcription factors. HIF-1

influences important tumor characteristics, including: cell

proliferation, apoptosis, angiogenesis, metabolism, genetic

instability and immune response in TME. Therefore, hypoxia

mediates resistance to radiotherapy, chemotherapy, endocrine

therapy and immunotherapy, and is associated with poor

prognosis in cancer patients. The elucidation of this important

mechanism of hypoxia also brings new strategies for reversing

resistance to current therapies and improving the efficiency of

cancer treatment. At present, the main methods for targeting

hypoxia are to improve the delivery efficiency by nanocarriers

and directly or indirectly inhibit HIF, so as to alleviate tumor

hypoxia and prevent HIF from causing tumor support and

immunosuppressive effects through a series of signaling

pathways. However, these specific targeted hypoxia drugs are

still far from clinical practice. In the era of personalized precision

medicine, more precise measurements are needed to distinguish
Frontiers in Oncology 12
between responders and nonresponders to hypoxia-targeted

drugs, and more clinical trials are needed to determine

whether hypoxia-targeted drugs alone or in combination with

existing treatment regimens can increase survival in breast

cancer patients.
Author contributions

WC, XX, and YL designed the manuscript. WC wrote the

manuscript. XX and YL drew the figures and tables. QC and CW

revised the manuscript. All authors contributed to the article and

approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Ahmad A. Breast cancer statistics: Recent trends. Adv Exp Med Biol (2019)
1152:1–7. doi: 10.1016/j.ccell.2016.07.004

2. Gan ES, Ooi EE. Oxygen: Viral friend or foe? Virol J (2020) 17(1):115.
doi: 10.1186/s12985-020-01374-2

3. Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor
hypoxia using pO2 histography. Antioxid. Redox Signal (2007) 9(8):1221–35.
doi: 10.1089/ars.2007.1628

4. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G. Tumor and its
microenvironment: A synergistic interplay. Semin Cancer Biol (2013) 23:522–32.
doi: 10.1016/j.semcancer.2013.08.007

5. Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, et al. Mechanisms of
vasculogenic mimicry in hypoxic tumor microenvironments.Mol Cancer (2021) 20
(1):7. doi: 10.1186/s12943-020-01288-1

6. Li L, Yu R, Cai T, Chen Z, Lan M, Zou T, et al. Effects of immune cells and
cytokines on inflammation and immunosuppression in the tumor
microenvironment. Int Immunopharmacol. (2020) 88:106939. doi: 10.1016/
j.intimp.2020.106939

7. Wang L, Li YS, Yu LG, Zhang XK, Zhao L, Gong FL, et al. Galectin-3
expression and secretion by tumor-associated macrophages in hypoxia promotes
breast cancer progression. Biochem Pharmacol (2020) 178:114113. doi: 10.1016/
j.bcp.2020.114113

8. Vilaplana-Lopera N, Besh M, Moon EJ. Targeting hypoxia: Revival of old
remedies. Biomolecules (2021) 11(11):1604. doi: 10.3390/biom11111604
9. Liu J, Ai X, Cabral H, Liu J, Huang Y, Mi P. Tumor hypoxia-activated
combinatorial nanomedicine triggers systemic antitumor immunity to effectively
eradicate advanced breast cancer. Biomaterials (2021) 273:120847. doi: 10.1016/
j.biomaterials.2021.120847

10. Chou YT, Lin CY, Wen JW, Hung LC, Chang YF, Yang CM, et al. Targeting
triple-negative breast cancer with an aptamer-functionalized nanoformulation: A
synergistic treatment that combines photodynamic and bioreductive therapies. J
Nanobiotechnol. (2021) 19(1):89. doi: 10.1186/s12951-021-00786-8

11. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I.. Hypoxia:
Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes.
Int J Mol Sci (2019) 20(24):6140. doi: 10.3390/ijms20246140

12. Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and
their novel inhibitors in cancer therapy. Expert Opin Drug Discovery (2019) 14
(7):667–82. doi: 10.1080/17460441.2019.1613370

13. Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, et al.
Up-down regulation of HIF-1a in cancer progression. Gene. (2021) 798:145796.
doi: 10.1016/j.gene.2021.145796

14. Han HJ, Saeidi S, Kim SJ, Piao JY, Lim S, Guillen-Quispe YN, et al.
Alternative regulation of HIF-1a stability through phosphorylation on Ser451.
Biochem Biophys Res Commun (2021) 545:150–6. doi: 10.1016/j.bbrc.2021.01.047

15. Satija S, Kaur H, Tambuwala MM, Sharma P, Vyas M, Khurana N, et al.
Hypoxia-inducible factor (HIF): Fuel for cancer progression. Curr Mol Pharmacol
(2021) 14(3):321–32. doi: 10.2174/1874467214666210120154929
frontiersin.org

https://doi.org/10.1016/j.ccell.2016.07.004
https://doi.org/10.1186/s12985-020-01374-2
https://doi.org/10.1089/ars.2007.1628
https://doi.org/10.1016/j.semcancer.2013.08.007
https://doi.org/10.1186/s12943-020-01288-1
https://doi.org/10.1016/j.intimp.2020.106939
https://doi.org/10.1016/j.intimp.2020.106939
https://doi.org/10.1016/j.bcp.2020.114113
https://doi.org/10.1016/j.bcp.2020.114113
https://doi.org/10.3390/biom11111604
https://doi.org/10.1016/j.biomaterials.2021.120847
https://doi.org/10.1016/j.biomaterials.2021.120847
https://doi.org/10.1186/s12951-021-00786-8
https://doi.org/10.3390/ijms20246140
https://doi.org/10.1080/17460441.2019.1613370
https://doi.org/10.1016/j.gene.2021.145796
https://doi.org/10.1016/j.bbrc.2021.01.047
https://doi.org/10.2174/1874467214666210120154929
https://doi.org/10.3389/fonc.2022.978276
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cheng et al. 10.3389/fonc.2022.978276
16. Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-
inducible transcription factor depends primarily upon redox-sensitive stabilization
of its alpha subunit. J Biol Chem (1996) 271(50):32253–9. doi: 10.1074/
jbc.271.50.32253

17. Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell
Metab (2018) 27(2):281–98. doi: 10.1016/j.cmet.2017.10.005

18. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol (2006)
70(5):1469–80. doi: 10.1124/mol.106.027029

19. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman
ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors
for oxygen-dependent proteolysis. Nature (1999) 399(6733):271–5. doi: 10.1038/
20459

20. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors–
similar but not identical. Mol Cells (2010) 29(5):435–42. doi: 10.1007/s10059-010-
0067-2

21. Loboda A, Jozkowicz A, Dulak J. HIF-1 versus HIF-2–is one more
important than the other? Vascul. Pharmacol (2012) 56(5-6):245–51.
doi: 10.1016/j.vph.2012.02.006

22. Koizume S, Yokota N, Miyagi E, Hirahara F, Tsuchiya E, Miyagi Y.
Heterogeneity in binding and gene-expression regulation by HIF-2alpha.
Biochem Biophys Res Commun (2008) 371(2):251–5. doi: 10.1016/
j.bbrc.2008.04.042

23. Yamashita T, Ohneda O, Nagano M, Iemitsu M, Makino Y, Tanaka H, et al.
Abnormal heart development and lung remodeling in mice lacking the hypoxia-
inducible factor-related basic helix-loop-helix PAS protein NEPAS. Mol Cell Biol
(2008) 28(4):1285–97. doi: 10.1128/MCB.01332-07

24. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, et al. Multiple
splice variants of the human HIF-3 alpha locus are targets of the von hippel-lindau
E3 ubiquitin ligase complex. J Biol Chem (2003) 278(13):11032–40. doi: 10.1074/
jbc.M208681200

25. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in
tumorigenesis. Cell Death Differ (2008) 15(4):678–85. doi: 10.1038/cdd.2008.21

26. Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-
1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and
progression. Cancer Res (2007) 67(2):563–72. doi: 10.1158/0008-5472.CAN-06-
2701

27. Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM,
et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl
Cancer Inst (2001) 93(4):309–14. doi: 10.1093/jnci/93.4.309

28. Zhao Z, Mu H, Li Y, Liu Y, Zou J, Zhu Y. Clinicopathological and prognostic
value of hypoxia-inducible factor-1a in breast cancer: A meta-analysis including
5177 patients. Clin Transl Oncol (2020) 22(10):1892–906. doi: 10.1007/s12094-020-
02332-8

29. Shamis SAK, McMillan DC, Edwards J. The relationship between hypoxia-
inducible factor 1a (HIF-1a) and patient survival in breast cancer: Systematic
review and meta-analysis. Crit Rev Oncol Hematol (2021) 159:103231. doi: 10.1016/
j.critrevonc.2021.103231
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