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Integration of ultrasound
radiomics features and clinical
factors: A nomogram model for
identifying the Ki-67 status in
patients with breast carcinoma

Jiangfeng Wu1*†, Qingqing Fang2†, Jincao Yao3, Lifang Ge1*,
Liyan Hu1*, Zhengping Wang1* and Guilong Jin1*

1Department of Ultrasound, Dongyang People’s Hospital, Dongyang, China, 2Department of
Ultrasound, Tianxiang East Hospital, Yiwu, China, 3Department of Ultrasound, Zhejiang Cancer
Hospital, Hangzhou, China
Objective: The aim of this study was to develop and validate an ultrasound-based

radiomics nomogram model by integrating the clinical risk factors and radiomics

score (Rad-Score) to predict the Ki-67 status in patients with breast carcinoma.

Methods: Ultrasound images of 284 patients (196 high Ki-67 expression and 88

low Ki-67 expression) were retrospectively analyzed, of which 198 patients

belonged to the training set and 86 patients to the test set. The region of

interest of tumor was delineated, and the radiomics features were extracted.

Radiomics features underwent dimensionality reduction analysis by using the

independent sample t test and least absolute shrinkage and selection operator

(LASSO) algorithm. The support vector machine (SVM), logistic regression (LR),

decision tree (DT), random forest (RF), naive Bayes (NB) and XGBoost (XGB)

machine learning classifiers were trained to establish prediction model based

on the selected features. The classifier with the highest AUC value was selected

to convert the output of the results into the Rad-Score and was regarded as

Rad-Score model. In addition, the logistic regression method was used to

integrate Rad-Score and clinical risk factors to generate the nomogrammodel.

The leave group out cross-validation (LGOCV) method was performed 200

times to verify the reliability and stability of the nomogram model.

Results: Six classifier models were established based on the 15 non-zero

coefficient features. Among them, the LR classifier achieved the best

performance in the test set, with the area under the receiver operating

characteristic curve (AUC) value of 0.786, and was obtained as the Rad-

Score model, while the XGB performed the worst (AUC, 0.615). In

multivariate analysis, independent risk factor for high Ki-67 status was age

(odds ratio [OR] = 0.97, p = 0.04). The nomogrammodel based on the age and

Rad-Score had a slightly higher AUC than that of Rad-Scoremodel (AUC, 0.808

vs. 0.798) in the test set, but no statistical difference (p = 0.144, DeLong test).

The LGOCV yielded a median AUC of 0.793 in the test set.
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Conclusions: This study proposed a convenient, clinically useful ultrasound

radiomics nomogram model that can be used for the preoperative

individualized prediction of the Ki-67 status in patients with BC.
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Introduction

Breast carcinoma (BC) is the most commonly diagnosed

carcinoma and the main cause of cancer-associated mortality

among women all over the world (1). The Ki-67 protein has

repeatedly been confirmed as a significant clinical indicator for

BC diagnosis and clinical decision-making, which is a nuclear

antigen detected in all phases of the cell cycle, with the exception

of the G0 phase (2). The Ki-67 is a well-established marker of

tumor aggressiveness and proliferative activity, in which a higher

Ki-67 expression reliably indicates not only more aggressive

growth but also a greater risk of poorer prognosis and recurrence

of BC (3–5). Hence, early detection of Ki-67 expression level is

significant to improve and personalize treatment in patients

with BC.

Preoperative assessment of the Ki-67 status is mainly

detected by immunohistochemistry (IHC), which requires

tissue sample typically obtained by core needle biopsy, and

routinely evaluated by visual assessment by a pathologist (2, 6,

7). Whereas, the assessment of Ki-67 status based on a needle

biopsy sample might not be representative of the whole tumor

because of the tumor heterogeneity and relatively small sample

size. Furthermore, in many critical cases, Ki-67 assessment can

be unavailable where core needle biopsy is infeasible. Hence,

creating an alternative, noninvasive method for predicting the

Ki-67 status in patients with BC is clinically desirable.
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Radiomics involves the high-throughput extraction and

analysis of a great number of quantitative imaging features

from digital images and can be utilized to identify the

relationships between such quantitative imaging features and

underlying tissue information (8, 9). Compared with

conventional imaging metrics, radiomics has shown improved

predictive values of multi-parametric imaging features. In recent

years, a number of studies have found that radiomics analysis

can be utilized to distinguish benign and malignant tumors (10,

11), detect lymph node metastasis (12, 13), and determine tumor

molecular subtype (14, 15).

Several studies have reported that radiomics analysis could

be used to assess the Ki-67 expression. For example, in a prior

study by Zhang et al. (16), a prediction model based on

radiomics of apparent diffusion coefficient (ADC) maps was

developed and validated, which suggested that the ADC-

based radiomics model could effectively predict the Ki-67

status in patients with BC before surgery. Furthermore, a

study by Tagliafico et al. (17) showed that quantitative

radiomics imaging features of breast tumor extracted from

digital breast tomosynthesis (DBT) images were associated

with BC Ki-67 expression. However, DBT and magnetic

resonance imaging (MRI) are limited by economic cost and/or

equipment availability.

To the best of our knowledge, the studies on assessing the

relationships between the ultrasound radiomics features and Ki-

67 status are very few. Thus, we studied whether ultrasound

radiomics could be utilized as a predictive biomarker for the

identification of Ki-67 status, and the aim of this study was to

develop and validate an ultrasound-based radiomics nomogram

model by integrating the clinical risk factors and ultrasound

radiomics score (Rad-Score) to predict the Ki-67 status in

patients with BC.
Materials and methods

The study was approved by our Institutional Ethics

Committee and performed on the basis of the Helsinki

Declaration, and patient informed consent requirement was

waived due to the retrospective nature of this study.
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Patient selection

Between March 2019 and April 2021, a total of 284 BC

patients who met the following inclusion and exclusion criteria

were retrospectively included in our study.

The inclusion criteria were (a) patients with BC confirmed

by surgical or biopsy pathology; (b) BC patients with single and

mass-like breast tumor (facilitating the subsequent segmentation

of breast tumors); and (c) ultrasound examinations were carried

out within 1 week before surgery.

The exclusion criteria were (a) insufficient quality of

ultrasound images for radiomics study because of artifacts,

calcifications or cystic changes that might have an extreme

effect on pixel values; (b) tumors larger than 50 mm in

diameter (incompletely displayed in a single plane); (c)

patients who underwent radiotherapy and/or chemotherapy

before ultrasound examination; and (d) clinical characteristics

and postoperative IHC were incomplete.
Pathological assessment

IHC analyses were carried out to detect the expression levels

of estrogen receptor (ER), progesterone receptor (PR), human

epidermal growth factor receptor 2 (HER2), and Ki-67 in each

patient with BC. The status of ER and PR was considered as

positive, if greater than 1% of tumor cells revealing positively

stained nuclei (18). For HER2 status identification, an IHC score

3+ of HER2 was considered as positive, while an IHC score 0 or

1+ of HER2 was considered as negative. An IHC score 2+ was

considered as indetermination, and then the fluorescence in situ

hybridization (FISH) was carried out to assess gene

amplification, and HER2 was classified as positive if the ratio

≥2.0 (19). For Ki-67 status, tumors with greater than 14%

positive nuclei were considered as high expression, while other

cases were considered as low expression (20).
Clinical and pathological characteristics

Clinical data such as age, tumor size, tumor location,

ultrasound-reported lymph node metastasis and ultrasound

equipment were obtained from patients’ medical records.

Status of ER, PR and HER2, Ki-67 level, pathology-reported

lymph node metastasis and histological type of lesion were

obtained by reviewing patients’ pathology reports.
Image acquisition and segmentation

Preoperative ultrasound scannings were carried out by two

sonographers (more than 5 years’ experience in the breast
Frontiers in Oncology 03
ultrasound). All breasts of the patients were scanned using

LOGIQ E9 ultrasound system with a 6-15L linear array probe

and Siemens Acuson S2000 with a 6-18L linear array probe. The

ultrasound images were stored as the format of Digital Imaging

and Communications in Medicine. A sonographer with no

information about the lesion’s histopathology selected the

largest plane of each breast lesion and delineated a two

dimensional region of interest (ROI) that covered the whole

lesion by using ITK-SNAP software (open source software;

http://www.itk-snap.org).
Feature extraction

A total of 788 ultrasound radiomics features were extracted

from each patient and divided into four categories: 14 two

dimension shape-based features; 18 first-order statistics

features; 22 gray-level co-occurrence matrix (GLCM) features,

16 gray-level run length matrix (GLRLM) features, 16 gray-level

size zone matrix (GLSZM) features, 14 gray-level dependence

matrix (GLDM) features; and 688 features derived from first-

order, GLCM, GLRLM, GLSZM and GLDM features using

wavelet filter images. The extraction of the radiomics features

was performed using the “pyradiomics” package of Python

(version 3.7.11).
Evaluation of interclass correlation
coefficient

The consistency of the extracted ultrasound radiomics

features was evaluated by the interclass correlation coefficient

(ICC). Two sonographers drew ROIs in the same 50 randomly

selected lesions and extracted the radiomics features. Then,

interobserver reproducibility was evaluated by ICC between

the 788 radiomics features of the 50 randomly selected lesions.

The analysis revealed an ICC of > 0.70, demonstrating a good

consistency of these characteristics.
Radiomics feature selection

All the radiomics features were normalized with z-score

normalization in the training and test sets to ensure that the scale

of feature value was uniform and improve the comparability

between features, which realized the proportional scaling of the

original data (21). The calculating formula is listed below:

Y = (X −M)=S

where X is the initial value of radiomics feature, and M and S are

the mean and standard deviation values of X, respectively, and Y

is the transformed feature value.
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The patients were randomly divided into the training and

test set according to the ratio of 7:3. In the training set, a 2-step

feature selection method was employed to select the most

effective radiomics features. First, Kolmogorov-Smirnov test

was first performed to assess whether data were normally

distributed. Levene’s test was used to assess the equality of

variances, and the independent sample t test or Welch’s t test

was used to identify differences of the variables between the high

and low Ki-67 status in the training set. The radiomics features

that showed no significant differences were excluded. Second,

the remaining radiomics features were further dimensionally

reduced by using the penalized logistic regression with a least

absolute shrinkage and selection operator (LASSO) algorithm

working by attempting to shrink some coefficients of the model

and set others to zero. An optimal parameter (Lambda) was

computed using a tenfold cross-validation method to prevent

overfitting. Thus, features with a non-zero coefficient in the

model with an optimal parameter for Lambda were regarded as

the most representative features.
Construction and validation of machine
learning classifiers

Based on the non-zero coefficient radiomics features

extracted from ultrasound images, six advanced machine

learning classifiers consisting of decision tree (DT), random

forest (RF), support vector machine (SVM), logistic regression
Frontiers in Oncology 04
(LR), naive Bayes (NB) and XGBoost were adopted to construct

the prediction model in the training set. The classifier with the

highest AUC value in the test set was selected to convert the

output of the results into Rad-Score which indicated the relative

risk of high Ki-67 status, and the classifier was regarded as Rad-

Score model.
Construction and validation of clinical
and nomogram models

In order to select clinical factors significantly related to high Ki-

67 expression, univariate and multivariate logistic regression

analyses were performed, and the clinical factors with p-value of

< 0.05 were considered as risk factors. Meanwhile, logistic

regression method was used to establish the clinical model based

on the risk factors. Furthermore, for the aim of providing a

personalized prediction model, the nomogram model combining

Rad-Score and clinical risk factors was developed to predict high Ki-

67 status. We evaluated the performance of each model in terms of

sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), accuracy, and the area under the receiver

operating characteristic (ROC) curve (AUC). To verify the

consistency of the nomogram model, the calibration curve (22)

was plotted. Moreover, decision curve analysis (DCA) of the clinical

model, Rad-Score model and nomogram model was implemented

to obtain the model that maximized patient benefits (23). The

flowchart of this research is shown in Figure 1.
FIGURE 1

Flowchart of the processing step using the radiomics method for predicting the Ki-67 status. * means multiply.
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Statistical analysis

Statistical analyses were performed with the R software

(version 3.5.1). The continuous variables with normal

distribution and homogeneity of variance were shown as

mean ± standard deviation (SD) and compared using

independent sample t test, and otherwise were represented as

the median (interquartile range) and compared by Mann-

Whitney U test. The Fisher’s exact test or Chi-square test was

used for comparing categorical variables. For all statistical tests,

bilateral p< 0.05 was considered statistically significant.
Results

Clinical and pathological characteristics

On the basis of inclusion criteria, 437 patients were reviewed.

Applying our exclusion criteria, a total of 284 patients were

therefore included finally. Breast carcinomas were invasive

ductal carcinoma in 228 patients, invasive lobular carcinoma

in 27 patients, ductal carcinoma in situ in 17 patients, mucinous

carcinoma in 8 patients, and papillary carcinoma in 4 patients.

Among the 284 patients, we analyzed 198 patients in the training

set and 86 patients in the test set. The training set included 134

and 64 patients with high and low Ki-67 expression, respectively,

while the test set included 62 and 24 patients with high and low

Ki-67 expression, respectively. The flowchart of patient selection

process was revealed in Figure 2. The clinical and pathological

characteristics of the training and test sets were compared, and
Frontiers in Oncology 05
there was no statistically significant difference found (p > 0.05)

(Table 1). Furthermore, characteristics of patients in the high

and low Ki-67 groups are listed in Supplementary Table 1.
Radiomics feature extraction and
selection

Seven hundred and eighty eight radiomics features were

extracted from ultrasound image of each enrolled patient. The

interobserver reproducibility of ultrasound radiomics features

extracted between the two sonographers for 50 randomly selected

lesions was good (ICC > 0.70). After evaluating the differences of

radiomics features by using the independent sample t test, there

were 336 features retained. Finally, the optimal Lambda (Lambda =

0.026203985288583486) was determined for the LASSO regression,

and 15 features with non-zero coefficients were selected to predict

the high Ki-67 expression of BC patients (Figure 3). Detailed

information on these high Ki-67 expression-related features is

available in Table 2 and the weight coefficients of the selected

features are shown in Figure 4. Furthermore, the Pearson

correlation coefficient between any pair of selected features was

computed, and the Pearson correlation coefficient matrix heatmap

is revealed in Figure 5.
Machine learning classifier construction

On the basis of the 15 non-zero coefficient features, six

machine learning classifiers (DT, RF, SVM, LR, NB and
FIGURE 2

The patient enrollment process for this study.
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XGBoost) were then utilized to establish the prediction

model. The sensitivity, specificity, accuracy, PPV, NPV, true

positive (TP), false positive (FP), false negative (FN), true

negative (TN), and AUC values of the six classifiers are shown

in Table 3.

Among them, the XGBoost and RF classifiers were over-

fitted, and had perfect discriminating ability in the training

set but significantly reduced performance in the test set. The

AUC values of the six machine learning classifiers ranged

from 0.615 to 0.798 in the test set, with the LR classifier

performing the best and XGBoost classifier performing the

worst; the accuracy was between 66.3% in the DT classifier

and 83.7% in the LR classifier. In the test set, the AUC values

between the three classifiers of LR, SVM and NB were

comparable (0.798 vs. 0.726 vs. 0.735), and no statistical

differences were found by DeLong test. However, the LR
Frontiers in Oncology 06
classifier achieved the highest AUC value and was obtained

as the Rad-Score model. A comparison of the ROC curves of

the six machine learning classifiers in the training set and test

set is shown in Figure 6. In addition, the AUC values between

any pair of the classifiers were compared and the p values

were calculated by DeLong test, which are revealed in

Supplementary Table 2.

The Rad-Score for each patient in the training and test

sets was calculated based on the LR classifier for further

analysis and is revealed in Figure 7. The corresponding

fitting formula is listed in Supplementary Material Data

S1. In the training set, the medians of Rad-Score were

significant difference between the high and low Ki-67

groups (1.31 vs. 0.04, p< 0.001), and the same results were

achieved in the test set (1.37 vs. -0.32, p< 0.001) in the test

set (Figure 8; Table 4).
TABLE 1 The baseline characteristics of the enrolled patients in the training and test sets.

Characteristic Total set
(n=284)

Training set
(n=198)

Test set
(n=86)

p-
value

Age (year, mean ± SD) 53.65 ± 10.83 53.85 ± 11.28 53.17 ± 9.77 0.63

Size (mm, mean ± SD) 25.09 ± 11.21 25.08 ± 11.19 25.10 ± 11.33 0.99

Location of disease

Right lobe 150 107 43 0.53

Left lobe 134 91 43

ER 0.88

Positive 203 141 62

Negative 81 57 24

PR 0.88

Positive 167 117 50

Negative 117 81 36

HER2 0.98

Positive 73 51 22

Negative 211 147 64

Histologic type 0.74

Invasive ductal 228 160 68

Other 56 38 18

Ultrasound equipment 0.63

Siemens Acuson S2000 233 161 72

LOGIQ E9 51 37 14

US-reported LN 0.47

Metastasis positive 123 83 40

Metastasis negative 161 115 46

Pathology-reported LN 0.24

Metastasis positive 160 107 53

Metastasis negative 124 91 33

Ki-67 (%, mean ± SD) 29.39 ± 22.96 28.04 ± 22.16 32.51 ± 24.57 0.13

Radiomics score (median,
IQR)

0.90
(0.05, 1.74)

0.89
(0.06, 1.76)

0.96
(0.01, 1.72)

0.93
fronti
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; SD, standard deviation; IQR, interquartile range; LN, lymph node; US, ultrasound.
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Clinical model and nomogram model

The univariate and multivariate logistic regression analysis

were applied to find independent predictors for the high Ki-67

status. The results are shown in Table 5, indicating that the age

was the significant factor associated with the high Ki-67

expression. Then, the age as an independent predictor was

adopted to develop the clinical model by using the logistic

regression method. At the same time, based on the results of

multivariate logistic regression analysis, the nomogram model

was established by combining the age and Rad-Score (Figure 9).

Furthermore, the performances of the clinical, Rad-Score,

and nomogram models in the training set and test set were

compared. As shown in Table 6, the nomogram model
Frontiers in Oncology 07
performed the best in the test set (AUC, 0.808), followed by

the Rad-Score model (AUC, 0.798), while the clinical model

performed the worst (AUC, 0.665). The AUC values were

compared by the pairwise DeLong test, which indicated that in

the test set, the AUC values of the nomogram model and the

clinical model were significant statistical difference (AUC, 0.808

vs. 0.665; DeLong test, p = 0.04). Although there were differences

in AUC values between the nomogram model and the Rad-Score

model, there was no significant statistical difference (AUC, 0.808

vs. 0.798; DeLong test, p = 0.144). ROC curves of the three

models to predict the Ki-67 status are shown in Figure 10.

The leave group out cross-validation (LGOCV) method was

performed 200 times to verify the reliability and stability of the

results, which yielded 200 AUC values ranging from 0.590 to
A

B

FIGURE 3

Tuning parameter selection using the LASSO regression in the training set. (A) The optimal penalization coefficient lambda was generated in the
LASSO via tenfold cross-validation. The lambda value of the minimum mean square error for the training set was given for the features with
non-zero selection coefficient; (B) LASSO coefficient profiles of the radiomics features.
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0.965 and a high median AUC (0.793 in the test set), indicating

that the results of the nomogram model was reliable and stable

(Supplementary Figure 1).

Model performance evaluation

The performance of eight models consisting of the six

machine learning classifiers, clinical model and nomogram

model in the test set is shown in Figure 11. The nomogram

model has the highest AUC value (0.808) and accuracy (84.9%),
Frontiers in Oncology 08
SVM has the highest sensitivity (95.2%), and NB has the highest

specificity (79.2%). To sum up, the overall discrimination

performance of the nomogram model was better than that of

the other models.
Clinical application of prediction models

The calibration curves for the nomogram model were tested

using Hosmer-Lemeshow test, and yielded nonsignificant results
TABLE 2 List of the selected features with non-zero coefficients.

Image type Feature class Feature name

original shape MinorAxisLength

original firstorder Skewness

original glszm SmallAreaEmphasis

wavelet-LLH firstorder Minimum

wavelet-LLH glrlm HighGrayLevelRunEmphasis

wavelet-LLH glrlm LowGrayLevelRunEmphasis

wavelet-LLH glrlm RunLengthNonUniformityNormalized

wavelet-LLH gldm LargeDependenceLowGrayLevelEmphasis

wavelet-LHL glrlm LongRunHighGrayLevelEmphasis

wavelet-LHH firstorder Skewness

wavelet-HLL firstorder Median

wavelet-HLL firstorder RobustMeanAbsoluteDeviation

wavelet-HHL firstorder Median

wavelet-HHH firstorder RootMeanSquared

wavelet-LLL glszm LargeAreaHighGrayLevelEmphasis
FIGURE 4

A non-zero coefficient profile plot of the 15 selected radiomics features derived from the LASSO regression was drawn.
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due to both p values > 0.05 in the training and test sets, providing

evidence of good calibration (Figure 12).

Decision curve analysis of the clinical, Rad-Score and

nomogram models was utilized to select the model that

maximized patient benefits. The grey line represents the

assumption that all lesions were high Ki-67 status. The black

line represents the assumption that all lesions were low Ki-67

status. If the threshold probability was less than 83.8%, using the

nomogram model added more benefit (green line) (Figure 13).
Frontiers in Oncology 09
Discussion

A number of studies have demonstrated that the Ki-67 index

is regarded as one of the most reliable indicator to assess the

degree of proliferation of carcinoma cells and is a significant

predictive and prognostic factor for patients with BC. Breast

carcinoma with high Ki-67 expression responds better to

radiotherapy and chemotherapy but is associated with worse

prognosis. A meta-analysis (24) including 85 studies found that
FIGURE 5

Pearson correlation coefficient heatmap of the selected features on predicting the high Ki-67 status. Red color denotes a positive correlation,
blue color denotes a negative correlation, and the shade of the color indicates the correlation degree.
A B

FIGURE 6

Receiver operating characteristic curves of the six machine learning classifiers predicting the high Ki-67 status in the training (A) and test sets (B).
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higher Ki-67 expression was significantly related to a greater risk

of recurrence. In addition, Petrelli et al. (25) performed a large

meta-analysis including 41 studies and found that there was a

significant correlation between the Ki-67 expression and disease-

free survival and overall survival. Furthermore, a study by

Dowsett and colleagues (26) revealed that the prediction

performance of the relapse-free survival could be improved by

measuring the Ki-67 index in BC patients receiving short-term

endocrine therapy. Therefore, early identification of the Ki-67

status of BC has great significance in aspects of patients’

diagnosis, treatment and prognosis.

In the present study, we studied whether radiomics features

extracted from gray-scale ultrasound images of patients with BC

could be utilized as a preoperative predictor of the Ki-67 status

and proposed a new method to predict the Ki-67 status in

patients with BC. A total of 788 ultrasound radiomics features

were extracted from each patient with BC. After dimensionality

reduction analysis by using the independent sample t test and

LASSO regression, we screened out 15 ultrasound radiomics
Frontiers in Oncology 10
features as imaging markers, and not only established but also

validated six advanced machine learning classifiers (DT, RF,

SVM, LR, NB and XGBoost) for identifying the Ki-67 status of

BC, with AUC values ranging from 0.679 to 1.000 and 0.615 to

0.798 in the training and test sets, respectively. Among them, the

LR classifier performed the best in the test set, with the highest

AUC value of 0.786, and was obtained as the Rad-Score model.

By using the multivariate logistic regression analysis, the age was

screened out as a risk factor associated with the high Ki-67

expression. The nomogram model combining the age with Rad-

Score was developed and revealed a slightly higher predictive

performance than that of Rad-Score model (AUC, 0.808 vs.

0.798) in the test set, and comparative (AUC, 0.790 vs. 0.793) in

the training set, revealing that, although Rad-Score had a

significant weight in this model, the risk factor of age also had

certain value to the predictive performance of the nomogram

model in the prediction of the Ki-67 status. Therefore, in this

study, the results demonstrated that the Rad-Score model had a

high predictive performance for the Ki-67 status in patients with
TABLE 3 Predictive performance of the six machine learning classifiers in the training and test sets.

Model Set AUC (95% CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) TP FP FN TN

LR Training 0.793 (0.722-0.863) 74.6% 76.6% 75.3 (%) 87.0% 59.0% 100 15 34 49

Test 0.798 (0.679-0.918) 88.7% 70.8% 83.7% 88.7% 70.8% 55 7 7 17

SVM Training 0.697 (0.632-0.761) 94.0% 45.3% 78.3% 78.3% 78.4% 126 35 8 29

Test 0.726 (0.620-0.832) 95.2% 50.0% 82.6% 83.1% 80.0% 59 12 3 12

RF Training 1.000 (1.000-1.000) 100.0% 100.0% 100.0% 100.0% 100.0% 134 0 0 64

Test 0.756 (0.634-0.878) 77.4% 70.8% 75.6% 87.3% 54.8% 48 7 14 17

DT Training 0.679 (0.609-0.749) 70.1% 65.6% 68.7% 81.0% 51.2% 94 22 40 42

Test 0.638 (0.522-0.755) 69.4% 58.3% 66.3% 81.1% 42.4% 43 10 19 14

XGBoost Training 1.000 (1.000-1.000) 100.0% 100.0% 100.0% 100.0% 100.0% 134 0 0 64

Test 0.615 (0.507-0.723) 85.5% 37.5% 72.1% 77.9% 50.0% 53 15 9 9

NB Training 0.703 (0.636-0.770) 65.7% 75.0% 68.7% 84.6% 51.1% 88 16 46 48

Test 0.735 (0.633-0.836) 67.7% 79.2% 70.9% 89.4% 48.7% 42 5 20 19
fr
ontiersin
DT, decision tree; RF, random forest; SVM, support vector machine; LR, logistic regression; NB, naive bayes; AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy;
PPV, positive predictive value; NPV, negative predictive value; TP, true positive; FP, false positive; FN, false negative; TN, true negative; CI, confidential interval.
A B

FIGURE 7

Radiomics score for each breast carcinoma patient in the training (A) and test sets (B).
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BC, and the nomogram model integrated with the risk factor of

age could improve the predictive performance.

The consistency between the model-predicted probability of

the Ki-67 status and actual result was evaluated by the

calibration curve. The nomogram model showed a good

calibration performance with the nonsignificant Hosmer–

Lemeshow test statistic in the training and test sets. Compared

with the treat-none or treat-all scheme, patients with BC could

obtain a significant net benefit from the Rad-Score and

nomogram models, which is revealed in decision curve

analysis, indicating that both models are valuable in predicting

the Ki-67 status. Furthermore, the LGOCV method was

performed to verify the reliability and stability of the

nomogram model, which yielded a median AUC value of

0.793 in the test set, indicating that the predictive performance

of the nomogram model was reliable and robust.

In recent years, a number of studies have demonstrated that

radiomics is regarded as an useful and noninvasive method for

predicting the Ki-67 status in patients with BC, however, most of

the studies are on the basis of mammography and MRI imaging

(16, 17, 27–29). Li and colleagues (27) have used radiomics

features of intratumoral and peritumoral regions based on breast

dynamic contrast-enhanced MRI to identify the HER2 and Ki-

67 status, and they reported the combined radiomics signature

yielded an AUC of 0.749 for predicting the Ki-67 status in the

validation set. Another prior study by Zhang et al. (16) including

a total of 128 patients, developing a radiomics model for
Frontiers in Oncology 11
predicting the Ki-67 proliferation index in patients with

invasive ductal breast carcinoma through MRI preoperatively,

found that good identification ability was exhibited by the

model, with an AUC value of 0.72 in the test set. In contrast,

in the present study, the AUC value of the nomogrammodel was

more satisfactory than these reported above in the test set (AUC,

0.808 vs. 0.749 vs. 0.72). In addition, compared with MRI,

ultrasound considered as a radiation-free nature, convenient,

and reasonable price technology is universally used for breast

tumor screening and diagnosis (30, 31). Due to the relatively

high predictive performance, it is considered that the nomogram

model could be used as a noninvasive and reliable tool in

predicting Ki-67 status and assist clinicians for preoperative

decision-making.

In our study, 15 key radiomics features were selected to build

the Rad-Score model, among which 1 GLDM feature, 4 GLRLM

features and 2 GLSZM features were included. These features

represent the texture complexity of tumors, which are important

in recognizing and classifying internal spatial heterogeneity of

the tumor lesions (32, 33), illustrating the importance of texture

features in the prediction of high Ki-67 expression. If we can

associate the patient’s internal pathways and prognosis with the

different texture characteristics of the tumor, it will be useful for

the diagnosis and treatment of the patient in the future. In our

study, the first-order statistics features such as Skewness,

Minimum, Median, RobustMeanAbsoluteDeviation and

RootMeanSquared appeared in a high proportion of the final
A B

FIGURE 8

Distribution of radiomics score value of the high and low Ki-67 expression in the training and test sets.
TABLE 4 Rad-Score for the training and test sets.

Rad-Score High Ki-67 (median, IQR) Low Ki-67 (median, IQR) p-value

Training set 1.31 (0.65, 2.13) 0.04 (-0.71, 0.65) <0.001

Test set 1.37 (0.44, 1.97) -0.32 (-0.97, 0.79) <0.001
fronti
IQR, interquartile range.
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included features, which describe the intensity values of the

tumor and are applied to many classification tasks (29, 34).

Therefore, radiomics features extracted from ultrasound image

of BC could be a potential auxiliary method for clinicians to

identify the Ki-67 status.

Wu and colleagues (14) reported that the ultrasound-based

radiomics model was an important predictor for the Ki-67

status in patients with ductal carcinoma in situ (DCIS). The

radiomics signature, which consisted of 51 selected Ki-67

status–related features, achieved perfect predictive efficacy,

with AUC values of 0.95 and 0.86 in the training and test

sets, which were better than that of the nomogram model in

our study (AUC, 0.808 and 0.790 in the training and test sets).

However, in their study, only patients with mass type of DCIS

were enrolled and the sample size of their retrospective study

was smaller (116 vs. 284). In this study, tumors such as invasive

ductal carcinoma, invasive lobular carcinoma, as well as

mucinous BC were included, which expanded the range of

the tumor types. Moreover, compared with Wu et al.’s study, a

major highlight of our study was the larger sample size and
Frontiers in Oncology 12
much more tumor types, which might increase the

generalization of the prediction model.

Despite some promising findings, the limitations in our

study should be taken into account. First, the statistical power

of our retrospective study was limited because of the relatively

small sample size. The prediction models were developed and

validated for identifying the Ki-67 status with only 284 patients

in a single hospital. Therefore, future prospective studies with a

larger patient population should be performed to generalize the

findings of this study. Second, when the sonographer depicted

the ROI manually, there was a certain degree of subjectivity to

the contour of the tumor, which might result in poor robustness

of the models. However, the evaluation of ICC was performed,

and the interobserver reproducibility was well. Third, our

radiomics study only used gray-scale ultrasound images, and

multi-modal ultrasound such as elastography (35) and contrast-

enhanced ultrasound (36) might be taken into account to

improve the predictive performance in the future. Forth, only

two dimensional analysis of the largest plane of the tumor was

applied in our study, which might not comprehensively capture
TABLE 5 The results of logistic regression.

Clinical factors Univariate logistic regression Multivariable logistic regression

OR (95% CI) p-value OR (95% CI) p-value

Age 0.97 (0.95, 0.99) 0.02 0.97 (0.95, 1) 0.04

Location 1.03 (0.62, 1.71) 0.90 NA NA

Size 1.07 (1.04, 1.10) < 0.001 NA NA

US equipment 1.02 (0.53, 1.96) 0.95 NA NA

US-reported LN 1.52 (0.90, 2.54) 0.11 NA NA

Rad-Score 2.78 (2.08, 3.73) < 0.001 2.75 (2.05, 3.67) < 0.001
CI, confidence interval; NA, not applicable; LN, lymph node; US, ultrasound; OR, odds ratio.
Bold values means statistical difference as P value < 0.05.
FIGURE 9

Nomogram based on the combination of the clinical risk factors and Rad-Score was developed using logistic regression analysis. If a patient with the
radiomics score of 1.637 and age of 56, and then the probability of the high Ki-67 expression of breast carcinoma is 0.848 (red numbers).
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the heterogeneous features of BC. In the future, studies should be

carried out to explore the predictive performance of three

dimensional analysis for predicting the Ki-67 status in patients

with BC. Finally, in this study, the extraction of ultrasound
Frontiers in Oncology 13
radiomics features required time-consuming tumor contour

delineation and artificially predefined features. We believe that

deep learning algorithm such as convolutional neural networks

(37), which is performed entirely by the machine itself, might
TABLE 6 Predictive performances of the models predicting the Ki-67 status in patients with BC.

Model Set AUC SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) TP FP FN TN

Clinical Training 0.578 73.1% 45.3% 64.1% 73.7% 44.6% 98 35 36 29

Test 0.665 85.5% 54.2% 76.7% 82.8% 59.1% 53 11 9 13

Rad-Score Training 0.793 74.6% 76.6% 75.3% 87.0% 59.0% 100 15 34 49

Test 0.798 88.7% 70.8% 83.7% 88.7% 70.8% 55 7 7 17

Nomogram Training 0.790 77.6% 73.4% 76.3% 86.0% 61.0% 104 17 30 47

Test 0.808 90.3% 70.8% 84.9% 88.9% 73.9% 56 7 6 17
f
rontiersin
AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; Rad-Score, radiomics score; TP, true positive;
FP, false positive; FN, false negative; TN, true negative.
A B

FIGURE 10

Receiver operating characteristic curves of the three models predicting the high Ki-67 expression in the training (A) and test sets (B).
FIGURE 11

Bar plot of the performances of the eight prediction models in the test set.
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accurately and automatically detect and segment and achieve

better results.

Conclusions

In this paper, we proposed a nomogram model based on the

clinical risk factor of age and Rad-Score for the preoperative

prediction of breast tumor Ki-67 status, and this model showed a

high predictive value for the Ki-67 status. This nomogrammodel

is expected to inform treatment strategies and assist clinical

decision-making for a personalized treatment in patients with

BC. However, further studies with a prospective design and

larger population are required to validate the conclusions.
Frontiers in Oncology 14
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