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Bacteria are important symbionts for humans, which sustain substantial

influences on our health. Interestingly, some bastrains have been identified

to have therapeutic applications, notably for antitumor activity. Thereby,

oncologists have developed various therapeutic models and investigated the

potential antitumor mechanisms for bacteria-mediated cancer therapy (BCT).

Even though BCT has a long history and exhibits remarkable therapeutic

efficacy in pre-clinical animal models, its clinical translation still lags and

requires further breakthroughs. This review aims to focus on the established

strains of therapeutic bacteria and their antitumor mechanisms, including the

stimulation of host immune responses, direct cytotoxicity, the interference on

cellular signal transduction, extracellular matrix remodeling, neoangiogenesis,

and metabolism, as well as vehicles for drug delivery and gene therapy.

Moreover, a brief discussion is proposed regarding the important future

directions for this fantastic research field of BCT at the end of this review.

KEYWORDS
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Therapeutic bacteria for cancer treatment

Humans and bacteria have a symbiotic relationship. In average, one human being

contains approximately 30 trillion human cells and 39 trillion bacteria (1). Diverse

microbial community flourish in our epidermal tissues, mucosal tissues and digestive

system, regulating our physiological behaviors in sophisticated ways. For example, the

notorious Helicobacter pylori has been proved to increase the risk of developing gastric

cancer. With the advances in detection methods based on genome sequencing, residential

bacteria are also identified in tissues which were conventionally considered “sterile”,
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including brains, placentas, kidneys and cancerous tissues of

breast (2). Even though our knowledge about their roles in

human health is still superficial, pioneering scientists and

physicians have made great effort to uti l ize these

microorganisms to fight against human cancer.

The modern concept of bacteria-mediated cancer therapy

(BCT) originated from more than a century ago. A surgical

oncologist, William Coley, tentatively treated cancer patients

with a mixture of inactivated Streptococcus pyogenes and Serratia

marcescens (Coley’s Toxins) in 1983. From that attempt, isolated

bacterial strains replaced deliberate infections by pathogenic

bacteria in unsterile conditions during the mysterious natural

therapies aiming at suppressing cancerous cell growth with

infectious bacteria before the emergence of chemotherapies

and radiotherapies. Even though BCT has never been a

mainstream clinical treatment option for cancer, mechanistic

and translational studies have been continuously devoted to

elucidate the mechanisms by which bacteria could influence the

growth of solid cancer. More bacteria strains have been chosen

with rational consideration of their unique biological properties,

and further engineered with modern genetic tools to achieve

better therapeutic efficacy and safety profile. Here, we listed

those strains which have gone through or in the middle of

clinical trials registered under the guideline of U.S. Food and

Drug Administration (Table 1).

This review would mainly discuss about the versatility of

BCT, the underlying biological mechanisms in the triangular

relationship among bacteria, cancer cells and host immune

system, as well as problems ungently requiring thorough

investigations in this field (Figure 1).
The mechanisms of BCT

Therapeutic bacteria function
as immune stimulators

Many bacterial components, such as lipopolysaccharide

(LPS), flagella, and bacterial DNA, exhibits substantial and

specific influences on the immunostimulatory responses induced

by the administration of either live or inactivated bacteriological

preparations (16). These pathogen-associated molecular patterns

(PAMPs) immediately initiate innate immune responses, marked

by the accumulation of granulocytes and macrophages into the

sties of infection, as well as a coordinated elevation of

proinflammatory cytokines and chemokines (17–19). During

BCT in which aerobic or facultative anaerobic bacteria are used,

a large titer of bacteria penetrates and colonizes in the hypoxic

tumor microenvironment (TME) simultaneously. Such an intense

infection, as well as consequent innate immune responses,

concomitantly lead to the lysis of neighboring tumor cells and

releasement of cellular content, including tumor-associated

antigens (TAAs) and tumor-specific antigens (TSAs) (20).
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Antigen-presenting cells (APCs) engulf both bacteria and debris

of cells infected by bacteria, and process them into antigens

coupled with major histocompatibility complex (MHC) (21, 22).

Eventually, antigen-specific T cells in draining lymph nodes are

activated by APCs, marking the initiation of acquired immune

responses. During the phase of acquired immune responses, the

present of bacterial PAMPs in TME is still beneficial to maintain

the proinflammatory status of T cells and macrophages (23, 24).

Therefore, bacterial PAMPs play key functions for the antitumor

effects of therapeutic bacteria (Figure 2).

LPS is an important structural component of the outer wall

of Gram-negative bacteria. Structure of LPS consists of lipid A,

the core oligosaccharide and the O-antigen. LPS forms a dense

network of hydrophobic compounds through ionic and covalent

bonds, providing barrier protection for bacterial outer

membrane and protecting bacteria from the lethal effects of

the complement system and macrophages (25). In addition to its

role in bacterial membrane, LPS, especially its lipid A portion, is

also an important signaling molecule for the innate immune

system (26). LPS specifically activates Toll-like receptor 4

(TLR4) and CD14, which are widely expressed by CD8+ T

cells, macrophages, natural killer (NK) cells and Dendritic cells

(DCs), and initiates tumor-suppressive downstream signaling

cascades mainly through myeloid differentiation primary

re sponse 88 (MYD88) , such as the sec re t ion o f

proinflammatory cytokines and cytotoxic factors, as well as the

formation of inflammasome. For example, bacterial

lipopolysaccharide (LPS) enhances prostate cancer metastasis

potentially through NF-kB activation (27). Salmonella LPS could

induce tumor-specific CD8+ T cell responses and the elevation of

tumor necrosis factor-a (TNFa) in both TME and peripheral

blood (28, 29). Moreover, Thuy Xuan Phan et al. demonstrated

that Salmonella typhimurium enhanced inflammasome

activation in tumor-infiltrating macrophages following their

phagocytosis of Salmonella-infected tumor cells in a TLR4-

dependent manner, and thus increased their level of

interleukin-1b (IL-1b) secretion (30–32).

Flagellin is a subunit protein at the tip of bacterial flagella,

the locomotive organ of bacteria, and it is recognized by TLR5 as

a PAMP (33). Flagellin has been shown to induce perforin-

dependent NK cell-mediated antitumor responses (34). Flagellin

also activates NK cells through a TLR-independent pathway

involving IL-18 and MYD88 to produce interferon-g (IFNg), a
key cytokine in innate and adaptive immunity. Moreover,

Francesc Coll et al. demonstrated that flagellin could

significantly suppress tumor cell proliferation by decreasing

the frequency of CD4+CD25+ regulatory T (Treg) cells (35).

Chung Truong Nguyen et al. showed that flagellin also enhances

a CD8+ T cell-dependent antitumor response in a peptide

vaccine-based immunotherapeutic procedure (36).

Bacterial DNA is the genetic material shared by Gram-

positive and Gram-negative bacteria, and it has broad-

spectrum immune-stimulating effects. CpG motifs are the
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TABLE 1 The therapeutic bacteria strains finish or undergo clinical evaluation.

Category Strain/gene Type of cancer No. of
patients
treated

Clinical
phase

NCT identification Reference/
Recruitment

Status

Salmonella
typhimurium

Salmonella typhimurium
VNP20009

Melanoma, renal cell carcinoma 25 Phase I Published (3)

Melanoma 4 Phase I Published (4)

Refractory, superficial solid tumors 12-40 Phase I NCT00004216 Unpublished,
completed

Salmonella typhimurium
TAPET-CD
(VNP20009 expressing
CD)

Head & neck squamous cell carcinoma,
esophageal adenocarcinoma

3 Published (5)

SalpIL2
(Salmonella c4550
expressing IL-2)

Liver metastases of solid tumors 22 Phase I NCT01099631 Unpublished,
completed

S. typhiTy21/Anti-
VEGFR-2 (VXM01)

Pancreatic cancer 30 Phase I Published (6)

Salmonella spp. TXSVN vaccine derived
from Salmonella sp.
(CVD908ssb)

Multiple Myeloma 24 NCT03762291 Unpublished,
Recruiting

Clostridium
novyi

Clostridium novyi-NT Colorectal cancer 2 Phase I NCT00358397. Unpublished,
terminated

Solid tumor malignancies 5 Phase I NCT01118819 Unpublished,
terminated

Solid tumor malignancies 24 Phase I NCT01924689 Published (7)

retroperitoneal leiomyosarcoma 1 Phase I Published (8)

Listeria
monocytogenes

ANZ-100/CRS-100
(LADD)

Pancreatic cancer, colorectoal cancer, and
melanoma all with liver metastases

9 Phase I NCT00327652. Published (9)

CRS-207 (LADD) Pancreatic cancer, mesothelioma, ovarian
cancer, non-small-cell lung cancer

17 Phase I NCT00585845. Published (9)

Pancreatic cancer 90 Phase II NCT01417000. Published (10)

Mesothelioma 60 Phase I NCT01675765. Published (11)

Pancreatic cancer 303 Phase II NCT02004262 Published (12)

Ovarian, fallopian or peritoneal cancer 35 Phase I/II NCT02575807. Unpublished;
terminated

Mesothelioma 10 Phase II NCT03175172. Unpublished;
terminated

Gastric, gastroesophageal junction, or
esophageal cancer

5 Phase II NCT03122548. Unpublished;
terminated

ADXS11-001(Lm-LLO) Cervical Intraepithelial Neoplasia 81 Phase II NCT01116245. Unpublished;
terminated

Cervical cancer 54 Phase II NCT01266460. Published (13)

HPV-16+, p16+OPSCC Phase I NCT01598792ISRCTN47069182 Unpublished;
terminated

HPV positive oropharyngeal squamous
cell carcinoma

15 Phase II NCT02002182. Unpublished;
active, not
recruiting

Anal cancer 11 Phase I/II NCT01671488. Unpublished;
terminated

HPV+ Cervical cancer 25 Phase I/II NCT02164461. Unpublished;
completed

Cervical or HPV+ Head & neck cancer 66 Phase I/II NCT02291055. Unpublished;
unknown

Anal or rectal cancer 51 Phase II NCT02399813. Unpublished;
completed

Cervical cancer 450 Phase III NCT02853604.

(Continued)
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structural basis for its immune activity, which are recognized by

TLR9 (37–40). Bacterial DNA directly activates mouse

macrophages, B cells, and DCs in a TLR9-dependent manner,

upregulates the expression of immunostimulatory molecules,

modulates immune responses, and induces the secretion of

various cytokines, including IL-12, IL-1, and TNFa (39, 41–

44). Moreover, bacterial DNA indirectly activates Th1 and CTL

through cytokines, DCs, and other monocytic cells (43–45). For

example, KJ Stacey et al. showed that bacterial DNA directly

activated APCs and upregulated the expression of MHC-class II

molecules and costimulatory molecules such as CD86 and

CD40, thus activating antigen-specific T cells to stimulate

acquired immune responses (46, 47).

Apart from PAMPs, the production of TAAs/TSAs (tumor-

associated antigens/tumor-specific antigens) is the key step for the

successful shift from innate immune to acquired immune
Frontiers in Oncology 04
responses, which have the merit of high specificity and long-

lasting memory (48). However, the efficacy of the concomitant

lysis of tumor cells by bacteria-induced immune response is largely

affected by the health conditions of recipients, such as the

competency of immune system and the vasculature status of

TME. Therefore, bacteria-mediated antigen delivery system is

developed to bypass these limitations, in which bacteria are

modified to carry TAA/TSAs by themselves (49, 50). This

strategy of delivering TAAs/TSAs could effectively shape the host

antitumor immune response and significantly suppress the growth

of tumor. For example, Yu Mei et al. utilized the attenuated

Salmonella typhimurium SL7207 to deliver a murine melanoma

vaccine via the transformation of prokaryotic expression plasmids

expressing the AIDA-1 autotransporter and DNA vaccine elements

(51). Similarly, Xiong et al. constructed a novel SPI2-based oral

Salmonella vaccine expressing mutant human Survivin in
TABLE 1 Continued

Category Strain/gene Type of cancer No. of
patients
treated

Clinical
phase

NCT identification Reference/
Recruitment

Status

Unpublished;
active, not
recruiting

HPV+ Non-small cell lung carcinoma 124 Phase II NCT02531854. Unpublished;
unknown

Lm -LLO-E7 (Lm -
LLO)

Cervical cancer 15 Phase I Published (14)

ADXS-NEO (Lm-LLO) HER2 expressing solid tumors 12 Phase I/II NCT02386501. Unpublished;
completed

Melanoma, Colon cancer, head and neck
cancer, non-small cell lung cancer,
urothelial carcinoma

5 Phase I NCT03265080. Unpublished;
active, not
recruiting

ADXS31-142 prostate cancer 51 Phase I/II NCT02325557 Unpublished;
unknown

ADU-623 (LADD) Astrocytic tumors 11 Phase I NCT01967758 Unpublished;
completed

JNJ-64041809 Prostate Cancer 26 Phase I NCT02625857 Unpublished;
completed

JNJ-64041757 Non-small cell lung cancer, 18 Phase I NCT02592967 Unpublished;
terminated

pLADD (LADD) Colorectal neoplasms 28 Phase I NCT03189030. Unpublished;
terminated

Enterococcus
gallinarum

MRx0518 Pancreatic Cancer 15 Phase I NCT04193904 Unpublished;
Recruiting

Bifidobacterium
longum

APS001F
(B. longum expressing
CD)

Advanced and/or Metastatic Solid
Tumors

75 Phase I/II NCT01562626 Unpublished,
suspended

bacTRL-IL-12 Solid Tumours 5 Phase I NCT04025307 Unpublished,
suspended

Clostridium
butyricum

CBM 588 Probiotic
Strain

Kidney Cancer 30 Phase I NCT03829111 Published (15)

Hematopoietic and Lymphoid Cell
Neoplasm

36 Phase I NCT03922035 Unpublished,
active, not
recruiting

Kidney Cancer 30 Phase I NCT05122546 Unpublished,
recruiting
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combination with NKT ligands, and achieved significantly

improved generation of antigen-specific effector-memory CD8+

and CD4+ T cells, as well as increased antitumor efficacy, in

murine models of colon cancer and glioblastoma (52). Apart

from live bacteria-mediated antigen delivery system, bacteria

components such as bacterial membrane could be directly used as

vaccine adjuvant. For example, Ravi B Patel et al. used bacterial

membrane-coated nanoparticles composed of immune activating

PC7A/CpG polyplex core to in situ capture cancer neoantigens

following radiation therapy, which facilitated their up-taken by DC

cells to stimulate a strong antitumor T cell response (53).
Therapeutic effects of BCT
independent of immune responses

In addition to the induction of host immune responses,

therapeutic bacteria exhibit direct cytotoxicity to cancer cells. An

in vitro cell killing experiment showed that Salmonella typhimurium

A1-R, an attenuated Salmonella strain, could cause cell death for

prostate cancer cell lines via mixed cytotoxic mechanisms

independent of immune responses (54). For example, Salmonella

invasion induced rapid necrosis due to cytoplasmic swelling and

membrane disruption (54). Extensive intracellular Salmonella

duplication also led to the bursting of invaded cells (54).
Frontiers in Oncology 05
Moreover, Clostridium novyi-NT could secret phospholipases,

hemolysins and lipases to disrupt the structure of lipid bilayers of

cancer cells, thereby causing direct cytotoxicity (55, 56).

Apart from direct cytotoxicity, bacterial infection could

suppress the growth of cancer cells through interfering with

intracellular signal transduction. For example, Salmonella

typhimurium flagellin could suppress the proliferation of breast

cancer cells by activating the membrane-anchored TLR5 of cancer

cells (57). Salmonella infection would also suppress AKT/mTOR

pathway, thus leading to the induction of apoptotic and

autophagic pathways (58). Listeria monocytogenes could kill

tumor cells by enhancing cytosolic reactive oxygen species

(ROS) levels through the activation of nicotinamide adenine

dinucleotide phosphate oxidase and intracellular calcium

mobilization, and such immunogenic tumor cell death would

further activate CD8+ T cells to eliminate both primary tumors

and metastases (59). Other than the proliferation and death of

cancer cells, other cellular behaviors such as drug sensitivity would

be influenced by therapeutic bacteria. For example, Salmonella

choleraesuis induced a significant increase in the protein level of

connexin 43 which mediated gap intercellular communication

between cancer cells, thus sensitizing them to cisplatin (60).

The extracellular matrix (ECM) of tumor tissues would also be

changed after the infection of therapeutic bacteria. ECM is an

important component that maintains tissue integrity, and regulates
FIGURE 1

A schematic diagram summarizing the biological mechanisms for the antitumor activity of bacteria-mediated therapy.
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cell behaviors through transmembrane signaling transduction (61).

Solid tumors generally contain a high abundance of collagens and

hyaluronic acids (HA), making them stiffer than normal tissues (62,

63). Malignant cells proliferate and migrate faster in such

mechanical environment (64, 65). Meanwhile, accumulated ECM

also creates structural obstacles physically for various cancer

therapies, including chemotherapies and immunotherapies (66,

67). For example, collagen-laminin network forms a firm barrier

for the diffusion of large molecules, while excessive HA dampens

the passive release of drugs from blood vessels via increased osmotic

pressure and viscosity of tissue fluid (68). Therapeutic bacteria

could reduce the stiffness of ECM by multiple mechanisms. For

example, Salmonella typhimurium could convert plasminogen to

plasmin, a broad-spectrum serine protease, by inactivating

Plasminogen activator inhibitor 1 (PAI-1), thus leading to the

degradation of laminin as well as the activation of matrix

metalloproteinases (MMPs) precursors to degrade collagens (69).

Listeria monocytogenes are also capable to secreteMMPs (70). Some

Gram-positive bacteria such as Clostridium perfringens (Mu toxin),

Clostridium difficile, Clostridium septicum (g toxin) and Clostridium
chauvoei produces hyaluronidase that degrades HA (71–73). Other

mechanisms by which bacteria lead to ECM disruption have been

systematically reviewed by Lennert Steukers et al. (74). Taking

advantages of these bacterial enzymes targeting intertumoral ECM,

therapeutic bacteria have been utilized to combat solid tumors

which are difficult to target by conventional chemotherapies. For
Frontiers in Oncology 06
example, Nancy D. Ebelt et al. recently reported that genetically

modified attenuated Salmonella typhimurium expressing

exogenously bacterial hyaluronidase could invaded into the

desmoplastic tumors and degraded HA with a significantly

enhanced efficacy in the orthotopic human pancreatic ductal

adenocarcinoma mice models (75).

Besides cytotoxicity, signal transduction interference and

ECM remodeling, the reconstruction of neoangiogenesis and

metabolism landscape are also important features for bacteria-

mediated tumor therapy. For example, Salmonella typhimurium

VNP20009 treatment could reduce the formation of

neovascularization, therefore leading to retarded diffusion of

nutrients in TME (76, 77). Salmonella choleraesuis has been

demonstrated as both tumoricidal and antiangiogenic for the

treatment of hepatocellular carcinoma (78). Moreover, both

Salmonella typhimurium and Listeria monocytogenes are

glucose-consumers, which would increase nutritional stress for

tumor cells and deteriorate the metabolic microenvironment in

TME (79, 80).
Therapeutic bacteria as tumor-
targeting vehicles for drug delivery

Bacteria own several merits as pharmaceutical carriers for

cancer therapies. First, anaerobic and facultative anaerobic
FIGURE 2

A schematic diagram illustrating the roles of innate immune response and acquired immune response during bacteria-mediated therapy.
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bacteria have a natural tendency of penetrating and colonizing the

hypoxic areas in tumor due to intrinsic locomotion, which exceeds

the limits of vascularization. Second, bacteria own high surface-to-

volume ratio, which provides suitable interface for particle

absorption. Third, bacterial surface molecules such as

polysaccharides and glycoproteins are potential subjects for

chemical modifications. Last but not least, the cytotoxic effects

of the delivered compounds and bacteria-induced immune

activation might achieve synergistic effects during cancer therapy.

Therapeutic bacteria can be used as live vehicles (similar to

“mules”). For example, Shuangqian Yan et al. reported a

bacteria@MOFs system in which the flagellum of Escherichia

coli MG1655 were modified with metal-organic framework

(MOF) encapsulating chemical drugs through a one-step in

situ method, could maintain viability and tumor selectivity to

achieve effective delivery of chemical drugs to the poorly-

vascularized areas inside the tumors (81). Moreover, additional

guiding motifs could be incorporated. For example, Byung-

Wook Park et al. linked Escherichia coli with drug-loaded

polyelectrolyte multilayer microparticles with embedded

magnetic nanoparticles at an approximately 1:1 ratio, to which

system the authors referred as “microswimmers”, and such drug

carriers with a diameter of 1 mm could directionally move at a

mean speed of up to 22.5 mm/s under the orientation of an

electromagnetic field, which would benefit the bacteria-mediated

therapies for those highly vascularized tumors showing weak

hypoxia (82). Packaging materials of different sizes and

functions have been applied to decorate therapeutic bacteria

(83–86), including polymeric particles (82, 87), polymer tubes

(88), red blood cells (89–91), liposomes (92, 93), and

nanoparticles (94–97). For example, Mukrime Birgul

Akolpoglu et al. reported a biohybrid microrobotic platform

by combining nanoliposomes and E. coliMG1655 (98). Recently,

Fenton-like reactions which eliminate cancer cells by generating

toxic ROS have developed rapidly as chemodynamic therapies,

and therapeutic bacteria improve such therapies by biocatalyticly

producing H2O2, a key reactant for Fenton-like reactions. For

example, magnetic Fe3O4 nanoparticle-decorated Escherichia

coli MG1655 overexpressing respiratory chain enzyme II

(NDH-2) could support Fenton-like reaction by continuously

producing H2O2, which triggered abundant tumor cell apoptosis

by the excessive cytotoxic hydroxyl radicals (94).

However, frequent and repetitive administration is not

suitable for live bacteria-mediated therapy, since its slow

whole-body clearance might lead to accumulated systemic

toxicity. Thus, drugs to be delivered by live bacteria should be

chosen with great caution. Specifically, the ideal drugs to be

delivered should be able to achieve sustained effects with one

single dose.

Vesicles made with bacterial membranes, instead of live

bacteria, are promising strategies to improve the safety profile

of bacteria-mediated drug delivery. Small bacterial outer

membrane vesicles (< 200 nm) are naturally released from
Frontiers in Oncology 07
Gram-negative bacteria during proliferation (99), and particles

of such size often exhibit strong accumulation in TME through

enhanced permeability and retention (EPR) effect during blood

circulation. Recently Qi Chen et al. used DSPE-PEG-RGD-

decorated bacterial outer membrane vesicles to encapsulate

F127 mesoporous nanoparticles containing cytotoxic Tegafur.

The obtained nanodrug could be preferentially accumulated at

the site of tumors, and simultaneously induced the killing of

tumor cells and the activation of immune cells such as

macrophages and T cells. Eventually, the tumor antigens

released by dead tumor cells initiated potent systemic immune

responses eliminating both primary tumors and metastatic

lesions (20).

Larger membrane vesicles maintaining the entire bacterial

morphology can be produced via membrane perforation

mediated by lysis gene E from bacteriophage øX174 (100), and

they are often referred to as “bacterial ghost (BG)” by many

researchers. BGs can be used immune adjuvants (101), and they

have good structure integrity upon lyophilization, which is

beneficial for massive production (102). Water-soluble drugs

can be loaded into BGs through membrane poles (103), and

these poles can be sealed by fusion with small membrane vesicles

in the presence of Ca2+ ions to prevent drug leakage (104). In

vitro evaluation showed that such drug-loaded bacterial ghosts

could be up-taken by both macrophages and cancer cells, with a

preference for macrophages (104). Considering the size of entire

bacteria has exceed the range for strong EPR effect, BGs might

not be the best choice for targeting tumor cells, but they are

highly efficient for targeting APCs which preferentially engulf

bacteria. For example, N.Dobrovolskienė et al. prepared BGs

filled with tumor lysate containing numerous tumor antigens,

and such antigen-loaded BGs induced a stronger dendritic cell

activation compared to LPS (105).
The combination of BCT
and photothermal/
photodynamic therapy

Photothermal therapy (PTT) and photodynamic therapy

(PDT) are new strategies for cancer therapy. PTT uses

photosensitizers (PSs) with specific light absorption to convert

light energy into heat energy to eliminate cancer cells, while PDT

uses PSs to produce excessive ROS in the present of specific

wavelengths of light. PTT, as a non‐invasive cancer treatment,

can cause strong tumor ablation and simultaneously induce heat

shock proteins produced by tumor cells, which is a family of

proteins with moderate immunostimulant function (106). In

principle, PTT could also provide cancer treatment that causes

relatively little damage to surrounding healthy tissue, since

thermal effects only occur when near-infrared light is applied

and only in the presence of PTT reagents (107). PDT takes
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advantage of the active metabolism of tumor tissue; whereby

non-toxic photosensitizers accumulate in tumor tissue after

injection. When the tumor tissue is irradiated with harmless

visible light, the activated photosensitizer transfers its energy to

surrounding intracellular oxygen that forms reactive oxygen

species (ROS), which specifically destroy the tumor cells and

neovascularization (108). PSs for PTT/PDT include organic dye

molecules, organic nanoparticles, noble metal materials, carbon-

based materials, quantum dots, and metal oxide nanoparticles

(109–111). The in vivo distribution pattern and local drug

concentration of PSs are critical factors determining the

antitumor efficacy and systemic toxicity for PTT/PDT.

In bacteria-mediated PTT/PDT therapy, PSs are attached to the

surface of bacteria to construct a bacteria-driven PSs delivery

system, which significantly improves the tumor-targeting efficacy

of PSs. For example, Chen et al. attached the INPs (PSs-containing

indocyanine green (ICG)) to the surface of YB1 (an attenuated

therapeutic Salmonella Typhimurium strain) via amide bonds, and

the YB1-INPs complex achieved effective targeting hypoxic areas in

tumor, thus eliminating bulk tumor tissues in mice after NIR laser

irradiation. Meanwhile, YB1-INPs also exhibited satisfying

fluorescence (FL) imaging ability (112). Moreover, many bacteria

could immobilize environmental metal ions on cell surface through

biomineralization process (113). Inspired by this phenomenon,

Zhang’s group conjugated palladium nanoparticles (Pd NPs) on

the surface of the facultative anaerobic bacterium Shewanella

oneidensis MR-1 by biomineralization, and such bacteria-based

photothermal therapeutical platform significantly increased

photothermal capacity under near-infrared (NIR) laser irradiation

(114). In addition to biomineralization, Cheng-Hung Luo et al.

utilized cargo-carrying method and antibody-directed method to

decorate anaerobic Bifidobacterium breve and Clostridium difficile

with upconversion nanorods for tumor imaging and Au nanorods

for photothermal ablation upon NIR excitation (115).
The combination of BCT
and gene therapy

In addition to chemotherapies, bacteria are effective carriers

for gene therapies in the form of DNA and RNA. Plasmid is

frequently used for bacteria-mediated gene therapies, due to its

versatility for the engineering of genetic components,

accessibility for massive production, high stability in

physiology environment, as well as chemical activeness for

further modifications. The gene products delivered by

plasmids could be peptides, proteins, short hairpin RNAs and

long non-coding RNAs. Both prokaryotic plasmids and

eukaryotic plasmids can be delivered by bacteria, but their

applications are different for cancer therapies.

Prokaryotic plasmids produce recombinant peptides and

proteins within the bacterial protoplasm, and then these

products are allocated to cytoplasm, membrane or extracellular
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space according to their sequence signature. Generally, the

recombinant proteins produced by prokaryotic plasmids are

released to TME either by secretion, bacterial lysis or

endocytosis by multiple types of cells such as cancer cells,

macrophages and granule cells (116, 117). For example,

Loeffler et al. introduced the gene LIGHT, which encoded a

human cytokine mediating tissue rejection, into attenuated

Salmonella typhimurium by plasmid pGEN206, and the

transformed Salmonella exhibited significantly improved

antitumour activity without additional in vitro toxicity in

murine carcinoma cell lines (118). Additionally, Escherichia

coli stably transformed with a plasmid constitutively

expressing nanobody antagonist against CD47 could stimulate

systemic tumor antigen-specific immune responses, and induced

durable tumor regression and long-term survival in a syngeneic

tumor model (119). Such constitutive expressing systems are

more suitable for the delivery of immune modulators compared

to cytotoxin, since the short time window of uncontrolled

bacterial distribution before they are restricted in TME could

augment immune responses in favor of tumor elimination, while

unintended delivery of cytotoxin to healthy organs would lead to

systemic toxicity.

The incorporation of promoters in response to

environmental signals, such as hypoxia, low pH and

exogenous compounds, allows spatial and temporal regulation

on the production of therapeutic molecules in TME. For

example, hypoxia-inducible promoters, such as HIP-1 and

NirB, are utilized to restrict gene expression within hypoxic

TME, thus reducing toxicity to normal tissues (120–124).

Meanwhile, chemical-inducible promoters (e.g., pBAD, pTet,

and Pm) can activate gene expression through systemic

administration of transcriptional inducers (e.g., L-arabinose,

tetracyclines, and acetyl salicylic acid, respectively) in vivo

(125–129).

In most cases, therapeutic proteins produced by bacteria

need to be released into TME to convey biological effects (116).

Therefore, the bacteria strains can be engineered to induce

autolysis within TME, thus releasing therapeutic payloads in a

controlled manner. For example, Eva Marıá Camacho et al.

developed an inducible autolysis system in response to

anhydrotetracycline, in combination with a salicylate cascade

system that allowed efficient production of therapeutic

molecules in response to aspirin and a sifA mutation that

liberated bacteria from the vacuoles to a cytosolic location for

therapeutic Salmonella (130). Moreover, M. Omar Din et al.

engineered Salmonella Typhimurium to lyse synchronously at a

threshold population density and to release genetically encoded

cargo in a pulsatile manner (131). Such engineering strategies

may inspire development of therapeutic bio-communities within

in vivo environments, where population dynamics are driven by

interacting viruses, bacteria, and host immune cells (132).

Eukaryotic plasmids utilize the transcription and translation

machinery of mammalian cells. Compared to prokaryotic
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systems, eukaryotic systems have the following advantages:

firstly, protein products of eukaryotic systems are more

biologically active due to the integrity of post-transcriptional

modifications and higher structure, especially for those proteins

with large molecular weight (133–135). In a study using

Salmonella Typhimurium as a delivery vehicle, b-galactosidase
expressed from a eukaryotic cassette induced substantially

stronger immune responses than that expressed from a

prokaryotic cassette (136). Secondly, the choice of therapeutic

genes is more flexible, regardless of their subcellular locations of

action. For example, RNA-based gene therapies often adopt

eukaryotic plasmids to directly produce functional RNAs within

target cells, thus bypassing the restrictions of RNA uptake

efficacy in vivo. Huijie Jia et al. reported that attenuated

Salmonella Typhimurium harboring eukaryotic plasmids

expressing endostatin and Stat3-specific small interfering RNA

(siRNA) conferred significant tumor-suppression effects in

mouse tumor models (137). Moreover, therapeutic bacteria

carrying eukaryotic plasmids encoding cytokines such as IL-4

and IL-18, and angiogenesis inhibitors such as endostatin and

thrombospondin all resulted in retardation of tumor growth and

prolonged survival of tumor-bearing mice (134, 138–140). Last

but not least, eukaryotic plasmids could be loaded either within

the protoplasm or on the surface of bacteria. Therefore, a

considerable amount of plasmids can be loaded to a single

bacterium due to surface-to-volume ratio (127).

However, the efficacy of plasmid endocytosis is the

bottleneck for the eukaryotic plasmid-based therapies.

Macrophages, the most important phagocytes in TME, are the

ideal target for bacteria-mediated gene therapies. G Dietrich et

al. reported that eukaryotic expression vectors can be delivered

to macrophages using attenuated self-destructing Listeria

monocytogenes (141). Similarly, Igentschev et al. also

developed a plasmid-vector system targeting APCs with

Listeria monocytogenes, which expressed the heterologous

antigens under the control of an eukaryotic promoter in a

similar fashion as in plasmids commonly used for vaccination

with naked DNA (142). In addition to live bacteria, inactivated

bacteria are also capable as vehicles of gene therapies targeting

macrophages. For example, M.R.Miri et al. showed that BGs

loaded with pEGFP-C1 plasmids were efficiently captured by

murine macrophages (102, 143).

There are also some non-plasmid-dependent gene delivery

methods. For example, Shuya Lu et al. reported that Chloroquine

combined with PD-1 siRNA delivered with attenuated

Salmonella could significantly enhance the tumor growth

inhibition through upregulation of the number and activity of

immune cells in tumor tissues (144). Qin Guo et al. developed a

system in which bacterial outer membrane vesicles were

coloaded with PTX and Redd1-siRNA (siRNA@M-/PTX-CA-

OMVs) to regulate the tumor metabolic microenvironment and

suppress tumor growth. Upon reaching the tumor site, the

system was first triggered by tumor pH (pH 6.8) to release
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PTX. Then, the rest of the system would be taken up by M2

macrophages to increase their level of glycolysis (145).

Bacteria-mediated gene delivery is not only a therapeutic

strategy, but also a useful diagnostic method. Genomically

engineered bacterial can be detected non-invasively by

fluoroscopy (146), magnetic resonance imaging (MRI) (147)

and positron emission tomography (PET) (148) scan, which

could be used to show the location of tumors. For example,

Escherichia coli carrying pMW211-dsred plasmid could mark

cancerous cells in their exact localization by luminescent signals

(149). Studies have shown that there are many microorganisms

differentially enriched in healthy population and cancer patients,

such as gastric cancer, colorectal cancer, prostate cancer and oral

cancer. Among them, many studies are focused on colorectal

cancer and intestinal microorganisms, such as Fusobacterium

nucleatum, Peptostreptococcus stomatis and Streptococcus

salivarius, etc. All of these mentioned bacterial species are

positively correlated with the occurrence of colorectal cancer

and are expected to be potential diagnostic markers (150–152).
Conclusion and perspective

In contrast with traditional cancer therapies such as

chemotherapy and radiotherapy (153–156), which are less

effective for the hypoxic tumors, therapeutic bacteria

preferentially penetrate and colonize in hypoxic areas in the

tumors. Therefore, it is beneficial to combine BCT with

traditional cancer therapies. For example, the combination of

Salmonella typhimurium with 5-fluorouracil inhibited MC26-

LucF tumor growth and prolonged survival in mice (131). The

combination of Salmonella typhimurium VNP20009 and

Triptolide, a traditional Chinese medicine, showed

significantly enhanced antitumor activity by modulating tumor

angiogenesis and host immune response (77). Moreover,

preclinical studies demonstrated that combined administration

of Cytolysin A-expressing Salmonella typhimurium and

radiation therapy could reduce tumor growth to a greater

extent than bacterial monotherapy (157).

Apart from chemotherapy, radiation therapy is also

commonly used for the treatment of solid tumors. While

radiation therapy shows good efficacy for many types of

cancer, its damage to surrounding normal tissues remains a

difficult problem. A few studies regarding E. coli, Salmonella

Typhimurium, Salmonella, Clostridium and other strains (158–

161) have demonstrated that bacterial therapy combined with

radiotherapy can reduce radiation-associated damage, improve

the therapeutic effect in radiotherapy, and reduce metastasis

(162). However, the mechanistic study on the combination of

bacteria-mediated cancer therapy and radiotherapy is still

superficial, and the behavior of cancer cells, bacteria, and

especially immune cells during radiotherapy required more in-

depth investigation.
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However, the following questions remains to be solved for

the research field of bacteria-mediated cancer therapy:
The choice and optimization of
bacterial strains

The clinical development of BCT faces substantial obstacles,

mainly due to potential infection-related toxicity. For example,

the Phase II clinical trial of ADXS11-001, an attenuated

Listeria monocytogenes therapeutic vaccine, in patients

with oropharyngeal cancer (NCT01598792) were suspended

after a patient developed systemic listeriosis following

vaccination (163).

The ideal strain should meet the following criteria: ① High

tumor specificity. For example, a Salmonella strain displaying an

integrin-binding RGD peptide on its outer membrane protein A

(OmpA) showed a >1000-fold enrichment in the avb3 integrin-
expressing U87MG andM21 xenografts compared to the control

strain and an impressively enhanced antitumor activity in the

MDA-MB-231 and MDA-MB-435 xenograft tumor models

(164). ② High tumor-killing effect. Bacteria can be engineered

to obtain enhanced anti-tumor activity by means such as gene

elements coding for cytotoxic agents, as discuss in previous

chapters in this review. ③No/low systemic toxicity. LPS is one of

the most potent TNFa stimulators and thus responsible for

Gram-negative sepsis (165). Deletion of the msbB gene from

Salmonella results in loss of myristoylation of lipid A, a critical

component of LPS, and reduces its toxicity of by 10,000-fold. For

example, VNP20009 with deletions of purI and msbB, two genes

necessary for adenine and lipid A synthesis, respectively, have

been safely administered to patients with metastatic melanoma

and renal cell carcinoma in a phase I clinical study (3, 4).

However, no antitumor effect was observed in patients treated

with VNP20009, which might due be to the over-attenuation of

bacteria (3, 166). Therefore, it should be noted that some of the

virulence factors may also be responsible for the intrinsic

antitumor activity of live bacteria. Whenever possible,

attenuation should be achieved without substantially

compromising the antitumor activity, unless the bacterial

strain is used for the purpose of vaccination only.
The choice of patients
suitable for BCT

The standards for participant recruitments may greatly affect

the outcomes of clinical trials (23). The risks and potential benefits

must be considered carefully for first-in-human (FIH) trials. In

general, only patients without any response to conventional

therapies should be enrolled in clinical trials. Even though the
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bacteria are highly attenuated, the administration of live bacteria

still poses a serious risk of infection. Therefore, the immune

status and prior/concomitant therapies of patients should be

evaluated sufficiently during the design of clinical trials (167).

For example, immunocompromised patients who receive other

immunotherapies simultaneously should be excluded (168). In

addition, patients with foreign transplants such as artificial heart

valves should be excluded, since foreign transplants may provide

refuges for oncolytic bacteria to escape immune clearance and

cause serious adverse reactions (168).
The interaction between therapeutic
bacteria and host bacterial flora

The long-term interaction of bacterial therapy on the normal

flora of patients have not been investigated. It is not known yet

whether therapeutic bacteria would hibernate in the locations of

immune exemption, which might lead to unexpected health

crisis in the long term. Moreover, the influence of host bacterial

flora, as well as the antibiotic usage habits might substantially

influence the effect of bacteria-mediated cancer therapies, which

have not been studied comprehensively. Therefore, successful

bacteria-mediated cancer therapies require interdisciplinary

expertise, including oncologists, infectious disease specialists,

immunologists and microbiologists.

Although many published studies on bacteria-based

biotherapies have shown promising therapeutic effect in

experimental models, its drawbacks are equally evident. Firstly,

safety is the major concern due to the infectious nature of the

bacteria. Secondly, limited drug loading efficiency is another

challenge dampening the anticancer effect of bacteria. Thirdly,

the manufacturing process of live bacteria is more complex than

that of the small molecule anticancer drugs. Last but not least,

when live bacteria could be used in a clinical settings, the

potential impact on the environment would be also a concern

that should be properly addressed (169, 170).

In conclusion, BCT is an emerging category of experimental

cancer treatment, and what we’ve discovered might be the tip of

an iceberg. From the first attempt of Coley’s strategy until today,

great progress has been achieved. Thus, with more

understanding of its mechanism, the bacteria, as well as

bacteria-related therapeutics would become powerful weapons

in the battle against cancers in the near future.
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