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Applying artificial intelligence
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breast cancer diagnosis
and prognosis prediction
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1School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States, 2School of
Electrical and Computer Engineering, University of Oklahoma, Norman, OK, United States
Breast cancer remains the most diagnosed cancer in women. Advances in

medical imaging modalities and technologies have greatly aided in the early

detection of breast cancer and the decline of patient mortality rates. However,

reading and interpreting breast images remains difficult due to the high

heterogeneity of breast tumors and fibro-glandular tissue, which results in

lower cancer detection sensitivity and specificity and large inter-reader

variability. In order to help overcome these clinical challenges, researchers

have made great efforts to develop computer-aided detection and/or

diagnosis (CAD) schemes of breast images to provide radiologists with

decision-making support tools. Recent rapid advances in high throughput

data analysis methods and artificial intelligence (AI) technologies, particularly

radiomics and deep learning techniques, have led to an exponential increase in

the development of new AI-based models of breast images that cover a broad

range of application topics. In this review paper, we focus on reviewing recent

advances in better understanding the association between radiomics features

and tumor microenvironment and the progress in developing new AI-based

quantitative image feature analysis models in three realms of breast cancer:

predicting breast cancer risk, the likelihood of tumor malignancy, and tumor

response to treatment. The outlook and three major challenges of applying

new AI-based models of breast images to clinical practice are also discussed.

Through this review we conclude that although developing new AI-based

models of breast images has achieved significant progress and promising

results, several obstacles to applying these new AI-based models to clinical

practice remain. Therefore, more research effort is needed in future studies.
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Introduction

The latest cancer statistics data for the USA estimates that in

2022, 31% of cancer cases detected in women are breast cancer

with 43,250 cases resulting in death. This accounts for 15% of

total cancer-related deaths (1). Thus, breast cancer remains the

most diagnosed cancer among women with the second highest

mortality rate. Over the past three decades, population-based

breast cancer screening has played an important role in helping

detect breast cancer in the early stage and reduce the mortality

rate. From 1989 to 2017, the mortality rate of breast cancer

dropped 40% which translates to 375,900 breast cancer deaths

averted (2). Even though the mortality rate continues to decline,

the rate of decline has slowed from 1.9% per year from 1998-

2011 to 1.3% per year from 2011-2017 (2). However, the efficacy

of population-based breast cancer screening is a controversial

topic due to the low cancer prevalence (≤0.3%) in annual breast

cancer screening resulting in a low cancer detection yield and

high false-positive rate (3). This high false positive rate is

indicative of a high rate of unnecessary biopsies which is not

only an economic burden but also leads to unnecessary patient

anxieties which often result in women being less likely to

continue with routine breast cancer screening (4).

Conversations pertaining to the benefits and harms of

screening mammography as well as its efficacy in decreasing

breast cancer mortality as screening exams do not reduce the

incidence of advanced/aggressive cancers are now common (5).

For example, detection of ductal carcinoma in situ (DCIS) or

early invasive cancers that will never progress or be of risk to the

patient are occurring at a disproportionately higher rate than

aggressive cancers. This is referred to as overdiagnosis and often

results in unnecessary treatment that may cause more harm than

the cancer itself (6). Thus, improving the efficacy of breast cancer

detection and/or diagnosis remains an extremely pressing global

health issue (7).

While advances in medical imaging technology and progress

towards better understanding the complex biological and

chemical nature of breast cancer have greatly contributed to

the large decline in breast cancer mortality, breast cancer is a

complex and dynamic process, making cancer management a

difficult journey with many hurdles along the way. The cancer

detection and management pipeline has many steps, including

detecting suspicious tumors, diagnosing said tumors as

malignant or benign, staging the subtype and histological

grade of a cancer, developing an optimal treatment plan,

identifying tumor margins for surgical resections, evaluating

and predicting response to chemo or radiation therapies, or

predicting risk of future occurrence or reoccurrence. In this

clinical pipeline, medical imaging plays a crucial role in the

decision-making process for each of these tasks. Traditionally,

radiologists will rely on qualitative or semi-quantitative

information visually extracted from medical images to detect

suspicious tumors, predict the likelihood of malignancy, and
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evaluate cancer prognosis. The clinically relevant information

may include enhancement patterns, presence or absence of

necrosis or blood, density and size of suspicious tumors,

tumor boundary margin spiculation, or location of the

suspicious tumor. However, interpreting and integrating

information visually detected from medical images to make a

final diagnostic decision is not an easy task.

Although mammography is the most frequently employed

imaging modality in breast cancer screening, its performance is

often unsatisfactory with lower sensitivity (i.e., missing 1 in 8

cancers during interpretation) and very high false positive rates

(i.e., <30% of biopsies are malignant) (8). Thus, the downfalls of

mammography have led to an increase in the use of other

adjunct imaging modalities in clinical practice including

ultrasound (US) and dynamic contrast enhanced magnetic

resonance imaging (DCE-MRI) (9, 10). Digital breast

tomosynthesis (DBT) is a newer modality that is commonly

used in which X-ray images are taken over multiple angles in a

limited range (i.e., ± 15° and the acquired scanning data is

reconstructed into quasi-3D breast images to reduce the impact

of dense breast tissue overlap in 2D mammograms (11).

Additionally, several other new imaging modalities including

contrast enhanced spectral mammography (CESM) (9, 10),

phase contrast breast imaging (12), breast computed

tomography (13), thermography and electrical impedance

tomography of breast imaging (14), and molecular breast

imaging (15), have also been investigated and tested in many

prospective studies or clinical trials. However, using more

imaging modalities for breast cancer detection and diagnosis

increases the workload of radiologists in busy clinical practice.

Over the last three decades, computer-aided detection and

diagnosis (CAD) schemes are being rapidly developed to

optimize the busy clinical workflow by assisting radiologists in

more accurately and efficiently reading and interpreting multiple

images from multiple sources (16, 17).

In the literature, CAD is often differentiated as computer-

aided detection (CADe) or computer-aided diagnosis (CADx).

The goal of CADe schemes is to reduce observational oversight

by drawing the attention of radiologists to suspicious regions in

an image. Commercialized CADe schemes of mammograms

have been in clinical use since 1998 (18). One study reported that

in 2016 CADe was used in about 92% of screening

mammograms read in the United States (18, 19). Despite the

wide scale clinical adoption, the utility of CADe schemes for

breast cancer screening is often questioned (20–22). On the

other hand, the goal of computer-aided diagnosis (CADx)

schemes is to characterize a suspicious area and assign it to a

specific class. US FDA approved the first CADx scheme of breast

MR images, QuantX by Qlarity Imaging (Chicago, IL) in 2017

(23). The goal of QuantX is to assist radiologists in deciding if a

lesion is malignant or benign by providing a probability

estimation of malignancy. This software has yet to be

extensively adopted and requires much more clinical testing.
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Despite great research efforts and the availability of

commercialized CAD tools, the added clinical value of CAD

schemes and ML-based prediction models for breast images is

limited. Thus, more novel research efforts are needed to explore

new approaches (24). While using radiological features from

medical images to infer phenotypic information has been done

for many years, recent rapid advances in bioinformatics coupled

with the advent of high performing computers has led to the field

of radiomics. Radiomics involves the computation of

quantitative image-based features that can be mined and used

to predict clinical outcomes (25). In medical imaging, radiomic

techniques are used to extract a large number of features from a

set of medical images to quantify and characterize the size,

shape, density, heterogeneity, and texture of the targeted tumors

(26). Then, a statistics-based feature analysis tool such as Lasso

regression or a machine learning (ML) based pipeline is applied

to identify small sets of features that are more clinically relevant

to the specific application. One method to ensure the extracted

features contain some clinical relevance is to segment the tumor

region and extract features from there. Despite the relative

simplicity of extracting relevant radiomics features, automated

tumor segmentation remains a major challenge. Thus, many

radiomics-based schemes use manual or semi-automated tumor

segmentation. Additionally, recent enthusiasm for deep learning

based artificial intelligence (AI) technology has led to new

approaches for developing CAD schemes which are being

rapidly explored and reported in the literature (27). Several

studies have compared CAD schemes using conventional

radiomics and deep learning methods to investigate their

advantages and limitations (28, 29). Deep learning (DL) based

CAD schemes are appealing as majority of such CAD schemes

eliminate the need for tedious error prone segmentation steps

and no longer need to compute and select optimal radiomic

features since deep learning models can extract features directly

from the medical images (30). However, despite the challenge of

how to achieve high scientific rigor when developing AI-based

deep learning models (31), applying AI technology to develop

CAD schemes has become the mainstream technique of the

CAD research community. Additionally, new AI-based models

are being expanded to include broad clinical applications in

realms beyond cancer detection and diagnosis, such as

prediction of short-term cancer risk and prognosis or

clinical outcome.

In order to help researchers better understand state-of-the-

art research progress and existing technical challenges, several

review articles have recently been published with a variety of

goals, such as a review of deep learning (DL) models developed

for breast lesion detection, segmentation, and classification (27),

radiomics models developed to classify breast lesions and

monitor treatment efficacy (32), and how to optimally apply

DL models to three commonly used breast imaging modalities

(mammograms, ultrasound, and MRI) (33). The focus of this

review paper is different from the previously published review
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articles for the following reasons. First, our paper details the

recent advances in both radiomics and DL-based AI

technologies to develop new prediction models. Second, this

review paper does not review and discuss CADe (lesion

detection or segmentation) schemes. It focuses on three more

challenged application realms namely, prediction of breast

cancer risk, tumor classification (diagnosis) and cancer

prognosis (treatment response). Third, to help readers better

understand the scientific rationales of applying new AI-based

models of medical image to predict breast cancer risk, classify

breast lesions, and predict cancer prognosis, this paper reviews

recent studies that demonstrate the important relationship

between medical image features and the tumor environment

(genomic biomarkers), which supports the physiological

relevance of radiomics based studies. Last, based on this

review process, we are able to summarize several important

conclusions that may benefit future research efforts in medical

imaging of breast cancer. For this purpose, the rest of this paper

is organized as follows. Section two briefly discusses the

correlation of extracted medical image features and the tumor

environment, followed by section three that surveys recent

studies, which detail novel image-based applications of both

radiomics and DL-based new AI-supported CAD schemes in

three application fields. Lastly, section four discusses and

summarizes key points that can be learned or observed from

this review paper and future perspectives in developing CAD

schemes of breast images.
Relationship between medical image
features and tumor environment

A major focus of breast cancer research in the medical

imaging field is uncovering the relationships between medical

image features and the tumor microenvironment to better

predict clinical outcomes (Table 1). Since traditional CAD

schemes involve handcrafting a set of features, it is important

to understand what kind of descriptors correlate with cancer

specific genomic biomarkers, based on radiomic concepts (25),

so that optimal and descriptive handcrafted feature sets can be

chosen. Additionally, if an image-based marker is widely

established as a biomarker for a specific hallmark of cancer

such as sustaining proliferative signaling, evading growth

suppressors, invasion and metastasis, angiogenesis, or resisting

cell death, then monitoring changes in that image-based marker

overtime will have high degree of predictive power in many

aspects of the cancer management pipeline (32).

For example, many studies investigated the correlation

between image-based biomarkers and tumor mechanisms of

angiogenesis. As tumors grow and metastasize, there is a

decrease in the amount of available oxygen due an increase in

demand, resulting in a hypoxic environment (33, 48–51). To

adapt to the newly hypoxic environment, the tumor will enter an
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angiogenic state which changes the microvasculature. In this state

the tumor will switch on angiogenic growth factors such as

vascular endothelial growth factor (VEGF) and fibroblast

growth factors (FGF) to stimulate the formation of new

capillaries so that oxygen and nutrients can adequately feed the

tumor (48). This process is known as angiogenesis, which is a
Frontiers in Oncology 04
hallmark of most cancers that can be characterized by non-

hierarchical, immature, and highly permeable vasculature that

looks obviously different from normal vasculature (52).

Traditionally, angiogenesis is indirectly quantified as micro-

vessel density (MVD) after immunohistochemical staining of

tumor tissue. While high MVD has been established as a
TABLE 1 Studies of correlating image-based features with tumor physiology.

Year Author Imaging
Modality

Image Based Features
Extracted

Physiological Features Relevant Results

2015 Li et al.
(34)

DCE-MRI Quantitative Kinetic Features:
Ktrans, Kep, Ve, ADC

MVD and Proliferation Ktrans, Kep, and ADC closely correlate with MVD and
Proliferation

2021 Xiao
et al. (35)

DCE-MRI Shape, intensity, and texture
features

MVD MVD associates with SER, WF, and radiomic features

Semi-Quantitative Kinetic
Features: PE, SER, FTV, WF

2019 Mori
et al. (36)

DCE-MRI Semi-Quantitative Kinetic
Features: IER, SER, TIE

MVD A, a, Aa, AUC30, and TIE significantly correlate with MVD

Quantitative Kinetic Features:
EMM derived metrics: A, a,
Aa, AUC30

2016 Kim
et al. (37)

DCE-MRI Quantitative Kinetic Features:
Ktrans, Kep, Ve,

MVD and VEGF MVD correlates with Ve and there is significant association
between Ktrans, tumor size, and MVD

2014 Li et al.
(38)

DCE-MRI Semi-Quantitative Kinetic
Features: longest dimension,
tumor volume, SER, initialAUC

pathological response to
chemotherapy

SER and Kep are significantly different between responders and
non-responders (p<0.05) and can be used to predict breast
cancer response to NACT

Quantitative Kinetic Features:
Ktrans, Kep, Ve, vp, and ti

2007 Yu et al.
(39)

DCE-MRI Quantitative Kinetic Features:
Ktrans, Kep

response to chemotherapy based
on RECIST

Tumor size significantly correlates with Ktrans and Kep and
change in tumor size is a better response predictor than both
Ktrans or KepTumor size

2020 Kang
et al. (40)

DCE-MRI Quantitative Kinetic Features:
Ktrans, kep, ve, and vp

ER, PR, HER2, Ki67, p53,
EGFR, CK5/6 and
lymphovascular space invasion

High Ktrans and kep associate with poor prognostic
histopathologic factors

2019 Braman
et al. (41)

DCE-MRI Texture and statistical features HER2+ DCE-MRI texture and statistical features can identify molecular
subtype of HER2+ breast cancer from HER2- breast cancers

2016 da Rocha
et al. (42)

Mammography Texture features from the local
binary pattern of images

Malignant or benign lesion GLCM features derived from the Local Binary Pattern have the
best results for lesion classification ACC: 88.31% SEN: 85%
SPE: 91.89%

2015 Zhu et al.
(43)

DCE-MRI Size, shape, morphological,
enhancement texture, kinetic
curves, enhancement-variance

miRNA expression, protein
expression, gene mutations,
transcriptional activities, and
gene copy number variation

Transcriptional activities of various genetic pathways positively
associate with tumor size, blurred tumor margin and irregular
tumor shape, The miRNA expressions associates with the
tumor size and enhancement texture

2018 Drukker
et al. (44)

DCE-MRI Semi-Quantitative Kinetic
Features: Most enhancing
tumor volume (METV)

recurrence free survival based
on clinical examination after
surgery

METV from pre-NACT and early treatment scans associate
with recurrence-free survival

2006 Varela
et al. (45)

Mammography Texture features to characterize
contrast and spiculations from
the interior, border, and outer
area of the mass

Malignant or benign lesions Features from the mass border and outer regions contain the
most information for distinguishing lesions.

2020 La Forgia
et al. (46)

CESM Statistical features ER, PR, HER2, Ki67, Grade,
Triple-negative

Statistical radiomic features extracted from CESM can predict
histological outcomes

2017 Wu et al.
(47)

DCE-MRI Semi-Quantitative Kinetic
features: FTV features, BPE
features

molecular subtypes based on
IHC

DCE-MRI based features may be able to non-invasively
determine the subtype of a breast cancer

Morphological and texture
features
SEN, sensitivity; SPE, Specificity; ACC, Overall accuracy.
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biomarker of poor prognosis and correlated with increased levels

of angiogenesis, quantification of MVD is subject to inter- and

intra-reader variability, making MVD a non-reproducible and

non-standardized marker (53). Thus, development of a quick and

non-invasive biomarker that can differentiate between highly

immature angiogenic vasculature and normal vasculature has

been a hot research topic over the past decade (48, 54).

DCE-MRI is a non-invasive method to detect and

characterize the tumor microenvironment. Specifically,

dynamic/kinetic image features computed from DCE-MRI

characterize the permeability and perfusion kinetics of the

tumor microvasculature which can reflect tumor angiogenesis.

Many studies have been conducted to correlate quantitative and

semi-quantitative DCE-MRI based kinetic features with MVD to

demonstrate the relationship between DCE-MRI and tumor

angiogenesis (34–37). Peak signal enhancement ratio (peak

SER) and washout fraction (WF) are two semi-quantitative

metrics extracted from the contrast enhancement curve that

reflect the clearance of a contrast agent from the tumor. These

metrics directly relate to a highly angiogenic state as rapid

washout will occur with a large number of immature and

leaky vessels (35). Extracting quantitative features from DCE-

MRI requires a pharmacokinetic analysis which requires at high

temporal resolution, often resulting in a poor spatial resolution.

Clinical DCE-MRI scans prioritize spatial resolution as opposed

to temporal resolution, which makes it difficult to do a fully

quantitative analysis of clinical DCE-MRI scans. Most studies

that have a goal of quantitative analysis of DCE imaging may not

be appropriate for clinical use. However, studies have shown that

quantitative DCE-MRI parameters such as, Ktrans and Kep,

correlated well with angiogenesis markers and can be used to

predict response to treatment or risk of recurrence (34).

Physiologically, Kep is a marker of the efflux of contrast agent.

High Kep values indicate two observations of tumor

microenvironment. The first indicates a strong blood flow with

highly permeable vessels which represents existence of an

irregular and highly vascularized space associated with tumor

angiogenesis. The second indicates the smaller extravascular

extracellular space, meaning large quantities of the contrast

agent cannot accumulate here; this is expected as there will be

an increase in cell density in the tumor environment (38).

Technical details pertaining to the extraction of semi-

quantitative and fully quantitative kinetic features is beyond

the scope of this review, interested readers should explore the

following manuscripts for more information (55, 56). While

there are many studies exploring the correlations between Ktrans

and Kep and cancer prognosis, there are inconsistent conclusions

of the biological relevance of these markers which make studies

using kinetic DCE-MRI features non-reproducible (39, 40).

Recent studies demonstrated that radiomics features are

thought to be more robust and reproducible than kinetic

features computed from breast MRI for different prediction

tasks (i.e., classification between malignant and benign tumors,
Frontiers in Oncology 05
prediction of axillary lymph node metastasis, molecular subtypes

of breast cancer, tumor response to chemotherapies and overall

survival of patients) (57). For example, malignant tumors as see on

mammograms are typically irregular in shape with spiculated

margins and architectural distortions while benign tumors are

typically rounded with well-defined margins (Figure 1) (58–60).

Quantification of these features can help train robust ML

classifiers to better differentiate between benign and malignant

masses. Features that describe the shape of the tumor may include

eccentricity, diameter, convex area, orientation, and more. Shape

based features may help differentiate between traditionally round

benign tumors and spiculated malignant tumors. While shape

features are important, breast compression during mammography

makes extraction of these features difficult (60). Features can also

be extracted to quantify the spiculations of the tumors which will

be particularly helpful for detecting malignant breast tumors (45).

First order statistical features are basic metrics that describe the

distribution of intensities within an image, this includes mean,

standard deviation, variance, entropy, uniformity, and others. For

example, entropy quantifies the image histogram randomness

which can quantify heterogeneity of the image patterns (61).

Texture features belong to the biggest group of radiomics

features, which are extremely useful for image recognition and

image classification tasks (62, 63). Gray-level cooccurrence matrix

(GLCM) based features and gray-level run length matrix

(GLRLM) based features are two example of common texture

features that characterizes the heterogeneity of intensities within a

neighborhood of pixels. Quantification of the heterogeneity of
FIGURE 1

Examples of benign and malignant masses seen on
mammograms. Modified from (58).
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tumors is one of the advantages of radiomics-generated imaging

markers as heterogeneity is often very difficult for radiologists to

visually capture and quantify in clinical practice.

While identification of physical or biological reasoning for

the correlations between image-based markers and cancer

specific traits is lacking, there are some studies that do

correlate radiomics based features with cancer specific markers

that have been obtained from IHC analysis or genomic assays

(35, 41). For example, Xiao et al. assessed the correlation

between radiomic based DCE-MRI features with MVD in

order to identify angiogenesis in breast cancer using DCE-MRI

(35). GLCM and GLRLM derived textural features extracted

from 3D segmented tumor regions were found to significantly

correlate with MVD, therefore, correlate with angiogenesis

levels. GLCM derived features from ROIs represented by the

local binary patterns were also shown to be extremely useful for

distinguishing malignant and benign masses detected on

mammograms (42). Radiogenomics is the field that

incorporates radiomics based features with patient specific

genomic information. Correlation of the image-based features

that characterize cancer through genetic information pertaining

to tumor hormone receptors and genetic mutations can be very

helpful for predicting risk of cancer recurrence and thus help

develop optimal personalized treatment plans. Quantitative

MRI-based features of tumor size, shape, and blood flow

kinetics have been mapped to cancer specific genomic markers

(Figure 2) (43, 44, 64). This is a great step forward in

development of non-invasive techniques for understanding

cancer on a molecular level.

Although DCE-MRI is an important imaging modality used

to study the tumor microenvironment and predict tumor staging

and/or response to therapies, other modalities have also been

investigated for this purpose. For example, contrast enhanced

spectral mammography (CESM) has been attracting broad

clinical research interest as an alternative to DCE-MRI due to

its advantages of low cost, high image resolution, and fast

imaging acquisition times. Like DCE-MRI, injection of an

intravenous contrast agent in CESM imaging allows for the

visualization of contrast enhancement patterns which give

insight into the vascular arrangement in the breast tissue. One

recent paper reviewed 23 studies that investigated CESM and

demonstrated that textural features and/or enhancement

patterns obtained from CESM can differentiate between

malignant and benign breast lesions as benign lesions often

display weak and uniform contrast uptake with enhancing wash-

out patterns, while malignant lesions tend to display quick

decreasing wash-out patterns (65). As a result, many research

studies have recently been conducted and published that

compare CESM and DCE-MRI. These studies have

demonstrated that CESM could achieve quite comparable

performance as DCE-MRI in breast tumor diagnosis (i.e.,

classifying between malignant and benign tumors) (66),

staging or characterizing suspicious breast lesions (46, 67), and
Frontiers in Oncology 06
predicting or evaluating breast tumor response to neoadjuvant

therapy (68). Thus, in the last several years, exploring and

extracting image features from CESM also attracts research

interest in developing new quantitative image markers or CAD

schemes in breast cancer research field (69).

In previous studies, radiomics features are often only

extracted from the segmented tumor regions, meaning

potentially valuable information of the environment

surrounding the tumor and background regions is ignored. To

overcome this issue and improve the accuracy of prediction

models, several studies report the importance of extracting

features from the targeted or global breast parenchyma as

these regions may also contain important information relating

to cancer state (45, 47). While there has been a wide variety of

radiomics features extracted from many different locations for

different cancer applications, there is no consensus on what

features make up an optimal feature set. Deciding what features

should be extracted remains dependent on the goal of the

individual study.
Applications of AI-based
quantitative image analysis
and prediction models

Rapid advances in AI technologies have promoted the

development of new quantitative image feature analysis-based
A

B

FIGURE 2

Results of mapping radiomic features extracted from DCE-MRI
images of breast cancer to genomic markers. (A) Each line
represents a statistically significant association between
nodes. Each node represents either a genomic feature or
radiomic phenotype. The size of the node reflects the number
of connections relative to other nodes in its circle. (B) Displays
the number of significant associated between the 6 different
radiomic categories and the genomic features (43).
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prediction models in breast cancer research. In addition to the

conventional CADe and CADx applications, novel AI-based

models have also been expanded to new applications. In this

section, we review the development and applications of AI-based

prediction models in three applications namely, cancer risk

prediction, tumor diagnosis or classification, and cancer

prognosis prediction or response to treatment (Tables 2–4).

There exists an extremely large number of studies pertaining to

AI in breast cancer in the three realms mentioned. We apply the

following criteria and steps to select the most relevant studies. The

titles and abstracts of potentially relevant papers in the literature

database (i.e., PubMed and Google Scholar) were first analyzed for

terms related to either breast cancer risk (Table 2), breast cancer

diagnosis/classification or computer aided diagnosis of breast

cancer (Table 3), and breast cancer treatment response or

prognosis prediction (Table 4). Papers were then selected if a

ML or a DL method was used for predictive modeling and breast

image derived features or breast images were used as model

inputs. Thus, all studies also use predominantly imaging data as

an input to the model. Studies were omitted if there was no

explicit methodology of how the model was trained and tested or

if the study lacked novelty. Studies that use solely statistical

methods or do not report AUC values to make predictions were

also omitted from this review. All papers listed in Tables 2–4 are

published in the last 8 years. It should be noted that some studies
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investigate and report performance values for multiple

combinations of features or multiple classifiers, we report only

the performance results of the best model.
Prediction of breast cancer risk

Women at a high risk for developing breast cancer should

undergo supplemental screening exams as early detection is

necessary to ensure the best prognosis (97). However, the

existing risk models are mainly built based on epidemiological

studies that integrate risk factors based on groups of sampled

women such as: family history, hormonal and reproductive

factors, breast density, obesity, smoking history, and alcohol

intake, and output a breast cancer risk estimate (98, 99). By

reporting odds ratios or relative risks, these risk models typically

do not have discriminatory power applying to individual

women. Thus, cancer detection yield in currently defined high

risk groups of women remains quite low (< 3%) using

mammography plus MRI screening (100). Meanwhile, up to

60% of women diagnosed with breast cancer are not considered

high risk patients (101). This coupled with the increased

attention to establish a new paradigm of personalized breast

cancer screening highlights the need for identifying a non-

invasive biomarker or developing AI-based prediction models
TABLE 2 Studies of developing AI-based image feature analysis models to predict breast cancer risk.

Year Author Imaging
Modality

# of
Images

Feature Information ML Model Evaluation
Metrics

2018 Heidari et al. (70) Mammography 570 43 features from the discrete cosine transform of the
ROI and the spatial domain

SVM AUC: 0.70 ± 0.04

2015 Sun et al. (71) Mammography 340 765 texture features from multiscale subregions SVM RBF Kernel AUC: 0.729 ± 0.021

PPV: 0.657 (94/140)

NPV: 0.755 (151/
200)

2018 Mirniaharikandehei
et al. (72)

Mammography 1044 8 existing CADe based features Logistic Regression MLO based AUC:
0.65 ± 0.017

CC based AUC:
0.586 ± 0.018

2015 Tan et al. (73) Mammography 870 79 texture and density features two stage ANN AUC: 0.725 ± 0.026

2014 Gierach et al. (74) Mammography 237 38 texture features Bayesian ANN (BANN) AUC: 0.72 ± 0.08

2017 Li et al. (75) Mammography 456 4096 features from last fully connected layer of
AlexNet pretrained on ImageNet

SVM AUC: 0.83

2018 Saha et al. (76) MRI 133 8 BPE features multivariate logistic regression AUC: 0.700

2019 Portnoi et al. (77) MRI 1656 – ResNet18 pretrained
imageNet and fine tuned

AUC: 0.638 ± 0.094

2019 Yala et al. (78) Mammography 88994 – ResNet18 AUC: 0.70 (95% CI:
0.64, 0.73)

2021 Yala et al. (79) Mammography 275,674 – MIRAI AUC: 0.76-0.79

SEN: 26.0%-41.5%

SPE: 85.2%-93.1%
AUC, area under ROC curve; SEN, sensitivity; SPE, Specificity; PPV, Positive predictive value; NPV, Negative predictive value.
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that can better stratify women with high or low risk of

developing breast cancer in the short term based on

individual testing.
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Since previous studies have found that women with dense

breast have a higher risk of developing breast cancer (102–106),

it then leads that many studies aim to quantify breast density
TABLE 3 Studies of developing new CADx models to classify between malignant and benign breast tumors.

Year Author Imaging
Modality

# of
images

Feature Information Model Evaluation
Metrics

2020 El-Sokkary
et al. (80)

Mammography 322 20 Shape and Texture Features SVM RBF Kernel PSO Segmentation
ACC: 89.5%

GMM Segmentation
ACC: 87.5%

2016 Dalmis et al.
(81)

MRI 395 23 Shape and Kinetic Features Random Forest AUC: 0.8543

2017 Qiu et al.
(82)

Mammography 560 – 8 Layer CNN AUC: 0.790 ± 0.019

2020 Yurttakal
et al. (83)

MRI 200 – multilayer CNN ACC: 98.33%

SEN: 1.0

SPE: 0.9688

2020 Hassan et al.
(84)

Mammography 600 – AlexNet pretrained on ImageNet and fine
tuned

ACC: 98.29%

SEN: 0.9782

SPE: 0.9876

– GoogleNet pretrained on ImageNet and fine
tuned

Acc: 95.63%

SEN: 0.9047

SPE: 0.9822

2019 Mendel
et al. (85)

Mammography
and DBT

78 VGG19 pretrained on ImageNet as a Feature
Extractor

SVM Mammography
AUC: 0.810 ± 0.05

2D DBT AUC: 0.86
± 0.04

Key DBT AUC: 0.89
± 0.04

2021 Caballo
et al. (86)

breast CT 284 1354 radiomic features fusion of radiomic features and CNN based
features through MLP

AUC: 0.947

2017 Antropova
et al. (87)

Mammography 739 VGG19 pretrained on ImageNet as a Feature
Extractor and radiomic features

fusion of radiomic features and CNN based
features to a SVM RBF Kernel

AUC:0.86

Ultrasound 2393 AUC:0.90

MRI 690 AUC:0.89

2015 Tan et al.
(88)

Mammography 1896 96 radiomic features Multistage ANN AUC: 0.779 ± 0.025

2019 Li et al. (89) Mammography 182 32 lesion-based features 45 parenchymal
features from contralateral breast

Bayesian ANN AUC: 0.84 ± 0.03

2020 Heidari
et al. (90)

Mammography 1000 12 Structural Similarity Index Features SVM AUC: 0.84 ± 0.016

ACC: 79.00%

2020 Moon et al.
(91)

Ultrasound 1687 – Ensemble of VGGNet, ResNet, and
DenseNet

ACC: 91.10%

SEN: 85.14%

SPE: 95.77%

Precision: 94.03%

F1: 89.36%

AUC: 0.9697

697 ACC: 94.62%

SEN: 92.31%

SPE: 95.60%

Precision: 90%

F1: 91.14%

AUC: 0.9711
AUC, area under ROC curve; SEN, sensitivity; SPE, Specificity; ACC, Overall accuracy; F1, F1 index.
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from screening mammograms so that patients can be informed if

they have dense breast therefore are at a higher risk. It is the

hope that informing women of their breast density and the risks

associated with dense breast will encourage supplemental and

more frequent screening exams. The American College of

Radiology developed the Breast Imaging Reporting and Data

System (BI-RADS) to group mammographic density into one of

four categories. While BI-RADS has been used extensively, it is

often unreliable as the categorization varies between observers.

Machine learning and deep learning techniques have been

developed that quantify breast density using computerized

schemes to make this a more robust metric (107–110). While

many studies have shown a correlation between breast density

and breast cancer risk (111–113), this metric alone is often not

enough to create robust risk assessment models (102, 114).

Recent studies indicate that texture-based features may have a

higher discriminatory power in stratifying women based on

breast cancer risk (107, 115, 116). MRI images from The

Cancer Genome Atlas (TCGA) project of the National Cancer

Institute (NCI) were used to demonstrate that quantitative

radiomic features extracted from breast MRI images can

replicate observer-rated breast density based on BI-RADS

guideline (117).

In addition to the measured breast density from

mammograms, other types of medical images have been

explored to develop new imaging markers or AI-based

prediction models to predict breast cancer risk in individual

women, particularly the short-term risk, which can help better

stratify women into different breast cancer screening groups

(Table 2). Heidari et al. developed a AI-based prediction scheme
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to predict the risk of developing breast cancer in the short term

(less than 2 years) based on features extracted from negative

screening mammograms that had enhanced breast density tissue

(70). The dataset used in this study included craniocaudal (CC)

views of 570 negative screening mammograms that had a follow

up screening exam within 2 years where 285 of these cases were

then cancer positive as confirmed by tissue biopsy and 285 cases

remained screening negative. The breast area was segmented

from each initial negative screening mammogram and enhanced

to better visualize the dense tissue as opposed to the fatty tissues.

Forty-three global features were computed from the spatial

domain and discrete cosine transform domain of both the left

and right CC view images. This study takes advantage of the

bilateral asymmetry between two breasts when creating the final

feature vector that is then used to train a support vector machine

(SVM) model which produces a likelihood score that the next

sequential screening exam is positive. The results of this scheme

were significantly better than the same scheme that does not

include the segmentation and dense tissue enhancement step,

emphasizing that there is important textural information in the

dense tissue of negative screening mammograms that can be

used to predict if there is a short-term risk of developing

breast cancer.

Like conventional CADe schemes, integrating all four views

of screening mammograms enables development of new cancer

risk prediction models with increased performance.

Mirniaharikandehei et al. investigated the hypothesis that

CADe-generated false-positive lesions contain valuable

information that can help predict short-term breast cancer risk

(72). The motivation for this study is driven by the fact that some
TABLE 4 Studies of developing new AI-based models to predict tumor response to chemotherapy.

Year Author Imaging
Modality

# Of
Images

Feature Information ML
Model

Evaluation
Metrics

2017 Giannini et al.
(92)

DCE-MRI 44 27 textural features Bayesian
Classifier

ACC: 70%

SPE: 0.72

2015 Michoux et al.
(93)

DCE-MRI 69 3 kinetic features, 2 BI-RADS based features, 21 texture- based features Logistic
Regression

ACC: 74%

SEN: 0.74

SPE: 0.74

K-means
clustering

ACC: 68%

SEN: 0.84

SPE: 0.62

2015 Aghaei et al.
(94)

DCE-MRI 68 39 contrast enhanced features from both segmented malignant tumor and
background parenchymal enhancement regions

ANN AUC: 0.96 ±
0.03

ACC: 94%

SEN: 0.88

SPE: 0.98

2016 Aghaei et al.
(95)

DCE-MRI 151 10 global kinetic features ANN AUC: 0.83 ±
0.03

2018 Ravichandran
et al. (96)

DCE-MRI 166 – CNN AUC: 0.85

ACC: 82%
AUC, area under ROC curve; SEN, sensitivity; SPE, Specificity; ACC, Overall accuracy.
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early abnormalities picked up on CADe schemes may have a

higher risk of developing into detectable cancers in the short-

term (118, 119). All cases used in this study were negative

screening exams where some of these cases contained early

suspicious tumors that were only considered detectable in a

retrospective review of the images. A CADe scheme was applied

to right and left CC and mediolateral oblique (MLO) view

images and then a feature vector was created that describes the

number of initial detection seeds, the number of final false

positives, the average, and the sum of all detection scores. To

quantify the bilateral asymmetry, the features from the left and

right CC or MLO views were summed to create one CC and one

MLO view feature vector with four features in each vector. Two

independent multinominal logistic regression classifiers were

trained, one using the CC view feature vector and another

using the MLO view feature vector. The results indicated that

using the MLO view model achieved higher prediction accuracy,

which indicates image features computed from CC and MLO

views are different since mammograms are 2D projection images

and fibroglandular tissue may appear quite different along the

two projection directions. Since CADe schemes are routinely

used in the clinic, this study provides a unique and cost-effective

approach for developing CADe generated biomarkers from

negative screening exams to help predict short term breast

cancer risk. Tan et al. also took advantage of all four views of

the breast and the bilateral asymmetry between breasts to predict

short term breast cancer risk (73). In this study, eight groups of

features were extracted from either the whole breast region or

the dense tissue region of the breast to train a two-stage artificial

neural network (ANN). Each feature set was used independently

and in combination to train the model. The best performing

model was developed when the model was trained using GLRLM

based texture features computed from the dense breast regions.

Both studies demonstrate that using bilateral asymmetry

features computed from CC and MLO views is advantageous

in that overlapping dense fibroglandular tissue can be visualized

in two different configurations, providing more information

about the dense tissue which is a known risk factor for breast

cancer development. Clinical adoption of computerized models

that can predict short-term breast cancer risk will be extremely

valuable to stratify women and decide optimal intervals and

methods of breast cancer screening (i.e., whether need to add

breast MRI to mammography).

Genetic risk factors are also measured and used by

epidemiological studies to indicate the lifetime risk of

developing breast cancer. One of these genetic risk factors is

an autosomal dominant mutation in the BRCA1 or BRCA2 gene.

Up to 72% of women who inherit the BRCA1 mutation and 69%

of women who inherit the BRCA2 mutation will develop breast

cancer in their lifetime (120). Many women are unaware of their

BRCA1/2 status when going in for a screening mammogram.

Identification of BRCA1/2 status from routine mammographic

images will be clinically useful for determining high-risk
Frontiers in Oncology 10
individuals. Gierach et al. conducted a texture analysis study

of breast cancer negative mammograms to differentiate

individuals with BRCA1/2 mutations from those without a

BRCA1/2 mutation based on 38 texture features extracted

from the breast parenchyma on CC view mammograms (74).

After performing feature selection, five features were used to

train a Bayesian artificial neural network (BANN) model that

outputs a likelihood of having a BRCA1/2 mutation which

would classify the individual as high risk. Individuals with

BRCA1/2 mutations used in this study were on average 10

years younger than the group without BRCA1/2 mutations.

When an age-matched testing dataset was used to evaluate the

performance of the BANNmodel and an AUC of 0.72 ± 0.08 was

observed. Results of this study demonstrate that radiomic based

texture features extracted from negative screening

mammograms can help identify women who have BRCA1/2

mutations. The significance of this study highlights that image

analysis of screening mammograms can be expanded to include

risk stratification in addition to detection of suspicious tumors.

Breast parenchymal patterns are another biomarker that has

been established as a tool for cancer risk prediction (104, 105,

116, 121). Extracting texture features from the breast

parenchyma provides local descriptors that can characterize

the physiological conditions of the breast tissue which may

give more insight into breast cancer risk than breast density or

BRCA mutation status. Li et al. used deep transfer learning with

pre-trained CNNs to extract features directly from the breast

parenchyma depicted on the CC view of FFDM images to

differentiate between high-risk patients with a BRCA mutation

and the low-risk patients and to differentiate between high-risk

patients with unilateral cancer and the low-risk patients (75). In

this study, regions of interest (ROIs) were selected from the

central region directly behind the nipple as this region has been

shown to give best results for describing breast parenchyma

(116). ROIs were then input to a pretrained CNN and features

were extracted from the last fully connected layer. In addition,

texture-based features were also extracted from the ROIs so that

the results of deep transfer learning-based classifier and

traditional radiomic based classifier can be analyzed. A fusion

classifier was created that used features extracted from the

pretrained deep CNN and traditional texture features. The

fusion classifier was able to differentiate BRCA mutation

carriers from low-risk women and unilateral cancer patients

from low-risk women with an AUC of 0.86 and 0.84,

respectively. Additionally, the pre-trained CNN extracted

features were able to differentiate between unilateral breast

cancer patients and low risk patients significantly better than

using traditional texture features, where AUC = 0.82 and AUC =

0.73, respectively. This study demonstrates the advantages of

exploring deep learning techniques independently and in

combination with conventional machine learning techniques

to better stratify patients on breast cancer risk. In addition to

extracting one ROI from one mammogram, other studies
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investigate the effect of using either multiple ROIs or global

features to develop breast cancer risk assessment models. For

example, Sun et al. extracted texture features from multiple

subregions within the mammogram that had relatively

homogeneous densities and fused the features to train an SVM

with a radial basis function (RBF) kernel to predict short-term

breast cancer risk (71). The classifier trained using multiscale

fusion of features extracted from different density subregions

showed superior performance to the classifier trained using

features extracted from the whole breast. Zheng et al.

developed a fully automated scheme that captures the texture

of the entire breast parenchyma using a lattice-based approach

(122). Using smaller local windows to extract features provided

the best performance when compared to single ROI and may

lead to improved model performance in predicting breast

cancer risk.

Besides analyzing negative mammograms, the level of

background parenchymal enhancement (BPE) on breast MRI

has also demonstrated power in predicting breast cancer risk

(123–125). BPE refers to the volume and intensity enhancement

of normal fibroglandular tissue after intravenous contrast is

injected. The hypothesis is that high levels of BPE is associated

with a high risk of developing breast cancer, hence why

radiologists may group women into risk groups based on BPE

(126). However, there is high inter-reader variability in

radiologist interpretation of BPE suggesting that developing

computerized schemes to quantify BPE has the potential to

produce a more robust marker to predict breast cancer risk. Saha

et al. automatically quantified the BPE from screening MR

exams to predict future breast cancer risk within two years

using a logistic regression classifier (76). In the study, eight BPE

features were extracted from the fibroglandular tissue mask from

both the first post-contrast fat-saturated sequence and the T1

nonfat-saturated sequence. Five breast radiologists also reviewed

MR images and categorized each case as either minimal, mild,

moderate, or marked BPE according to the BI-RADS guideline.

The predictive performance of the multivariate logistic

regression model trained using quantitative BPE features

yielded higher performance than that of the qualitative BPE

assessment of the five radiologists, suggesting that computerized

quantification of BPE is a more accurate predictor of breast

cancer risk.

Several studies have compared new image feature analysis

models with pre-existing epidemiology-based statistical models

in predicting cancer risk. For example, Portnoi et al. developed a

deep learning breast cancer risk prediction model using DCE-

MRI taken from a high-risk population (77). The 3DMR images

were converted to 2D projection images using the axial view of

the maximum intensity projection (MIP) and then used to fine

tune a ResNet-19 CNN that had been pretrained on the

ImageNet dataset. Results from the MRI-based deep learning

model were compared with the Tyrer-Cuzick model and a

logistic regression model that used all risk factors from the
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Tyrer-Cuzick model in addition to the qualitative BPE

assessment made by an expert radiologist based on the BI-

RADS guidelines. The AUC of the MRI-based deep learning

model, Tyrer-Cuzick model, and logistic regression model were

reported as, 0.638 ± 0.094, 0.493 ± 0.092, and 0.558 ± 0.108,

respectively. Study results demonstrate that new MRI-based

deep learning model has higher discriminatory power to

predict breast cancer risk than the existing epidemiology-based

risk prediction models.

Finally, based on the hypothesis that new imaging markers

and the existing epidemiology-based risk factors may contain

complementary information, Yala et al. sought to combine

traditional risk factors and image-based risk factors extracted

from mammograms using deep learning to investigate whether

fusion of the two would yield a superior 5-year risk prediction

model (78). In this study, ResNet18 was trained, validated, and

tested using 71,689, 8,554 and 8,869 images acquired from

31,806, 3,804 and 3,978 patients, respectively. Four different

risk prediction models were compared, namely: the Tyrer-

Cuzick Model, a logistic regression model using standard

clinical risk factors, the deep learning model, and a hybrid

model using traditional clinical risk factors and the deep

learning model (AUC = 0.62,0.67,0.68, 0.70, respectively). This

work laid the foundation for the development of the MIRAI

model in 2021 (79), which predicts the risk of developing breast

cancer for each year within the next 5 years. All four

mammograms acquired in routine screening (LCC, LML,

RCC, RML view) are passed as an input to this model which

first go through an image encoder, next to an image aggregator,

then to a risk factor predictor, followed by an additive-hazard

layer. MIRAI model was first trained and validated using

210,819 and 25,644 screening mammography exams from

56,786 and 7,020 patients from Massachusetts General

Hospital (MGH), respectively. MIRAI model was then tested

on three different testing sets, one acquired from MGH that

contained 25,855 exams from 7,005 patients, the second

acquired from Karolinska University Hospital in Sweden that

contained 19,328 exams from 19,328 patients, and the third

acquired from Chang Gung Memorial Hospital in Taiwan that

contained 13,356 exams from 13,356 patients, respectively.

AUCs obtained from MIRAI model was significantly higher

than those yielded by Tyrer-Cuzick model and both the hybrid

deep learning model and image based deep learning model

developed in 2019 foundational study (81). Thus, MIRAI

model is unique for a few reasons, the first being that

traditional clinical risk factors are incorporated into the

imaging feature analysis model as the previous Yala et al.

study (78) demonstrated that addition of this information will

improve performance. If traditional risk information is not

provided, MIRAI model is still able to predict cancer risk from

mammographic image features. This increases its potential

clinical utility in clinics that may not record many risk factors

used in Tyrer-Cuzick models. Second, MIRAI model focuses
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directly on clinical implementation by training the model on a

large dataset and validating this model on different datasets.

In summary, the above studies demonstrate that imaging

markers computed from breast density distribution, textural

features of parenchymal patterns, and parenchymal

enhancement patterns are promising to build AI-based models

to predict breast cancer risk. Study results have demonstrated

that using image-based risk prediction models can perform

superiorly to existing cancer risk prediction models that use

epidemiological study data only. However, a majority of these

state-of-the-art image-based risk models have not been tested or

used in clinical practice due to lack of diversity in the training set

leading to a model with poor generalizability on data from

different locations and different scanners. Thus, these new

image-based prediction models need to undergo vigorous and

widespread prospective testing in future studies.
Tumor Classification or Diagnosis

Due to the high rates of false-positive recalls and high

number of benign biopsy results in current clinical practice

using the existing imaging modalities, it is important to

investigate new methods to help decrease the false positive

recall and benign biopsy rates so that women are more willing

to continue participating routine breast cancer screening. Over

the past few decades, a variety of AI-based CADx schemes of

different types of medical images have been developed aiming to

differentiate between malignant and benign tumors more

accurately to help radiologists decrease the false-positive recall

rates in future clinical practice (Table 3).

In order to classify a detected tumor, many CADx schemes first

segment the tumor or a ROI surrounding the suspicious area before

computing image features. Some studies rely on semi-automated

segmentation using prior knowledge of the tumor location marked

by a radiologist as an initial seed, and other studies focus on fully

automated segmentation. Dalmis et al. developed an AI-based

CADx scheme for DCE-MRI that uses a semi-automated tumor

segmentation technique prior to feature extraction. This is done by

a multi-seed smart opening algorithm that first has the user identify

a seed point and then a region growing algorithm is conducted

followed by a morphological opening to segment out the tumor

(81). El-Sokkary et al. recently investigate two new methods for the

fully automated segmentation of the ROI from the whole breast

mammogram prior to feature computation and classification. The

first method segments the ROI using a Gaussian Mixture Model

(GMM) and the second method uses a particle swarm optimization

(PSO) algorithm. Twenty texture and shape features were then

extracted from each ROI independently and used to train a non-

linear SVM implemented with an RBF kernel. The accuracy of

classifying malignant vs benign tumors using PSO-based

segmentation and GMM-based segmentation prior to feature

extraction was 89.5% and 87.5%, respectively (80).
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To mirror the cognitive process of a radiologist in reading

and interpreting bilateral and ipsilateral CC and MLO view

mammograms of the left and right breasts simultaneously,

researchers have developed and tested CAD schemes that

integrate tumor image features with the corresponding

features computed from the matched ROIs in other

mammograms. For example, Li et al. conducted and reported

a study in which image features were extracted from the

segmented tumor region and the contralateral breast

parenchyma; when these two feature sets were combined and

used to train a Bayesian artificial neural network (BANN),

there significantly improved tumor classification over the

BANN trained using just features from the segmented tumor

region (AUC = 0.84 vs 0.79, p=0.047) (89).

Identifying matched ROIs from different breasts is a difficult

process. To avoid errors in tumor segmentation and image

registration when identifying the matched ROIs in different

images, researchers have investigated the feasibility of developing

CAD schemes based on global image feature analysis of multiple

images. For example, Tan et al. developed a CADx scheme using

bilateral mammograms to classify screening mammography cases

as malignant or benign. Ninety-two handcrafted features were

extracted from each of the four view images and then

concatenated into separate CC and MLO feature vectors, each

containing the features from the left and right breast of the

respective views. A multistage ANN was then trained where the

first stage had two ANNs that were trained on either the CC feature

vector or the MLO feature vector, and the second stage had a

singular ANN that combine the classification scores output from

both the prior ANNs and outputs a final score that estimates the

likelihood of the case being malignant (88). To overcome the

potential limitation of losing classification sensitivity from using

the whole breast image, Heidari et al. developed a novel case-based

CADx scheme that quantified the bilateral asymmetry between

breasts using a tree structure-based analysis of the structural

similarity index (SSIM). The left and right images are equally

divided into four sub-blocks, the SSIM of each pair of two

matched regions is calculated and a pair of the matched sub-

blocks with the lowest SSIM among the original four pairs of sub-

blocks is selected. The selected sub-blocks (one from left image and

one from right image) are then divided into four small sub-blocks

again to search for a new pair of matched sub-blocks with the

smallest SSIM. This process is repeated six times. As a result, the six

smallest SSIM features are extracted for each bilateral CC andMLO

view images for each case. Then, three SVMs are trained and tested

using a 5-fold cross validation method using the six SSIM features

computed from the bilateral CC and MLO view images separately

and the combined 12 SSIM features. Each SVM produces an

outcome score indicating the likelihood of the case being

malignant (90). The study demonstrates that using two bilateral

images of MLO view yield significantly higher performance than

using two bilateral CC view images (AUC = 0.75 ± 0.021 vs. 0.53 ±

0.026). However, fusion of SSIM features computed from both CC
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and MLO view images, SVM yields further increased classification

accuracy with AUC = 0.84 ± 0.016.

Another popular method to eliminate the tumor segmentation

step in CADx schemes is by using convolutional neural networks

(CNN). CNNs can automatically learn hierarchical representations

of the images directly from the image, eliminating the need for

semi-automated or fully automated tumor segmentation and

handcrafted feature selection. Due to the limitation of image

dataset sizes in the medical imaging field, researchers have

developed and trained shallow CNN models (127), which do not

require as much training data as a deep CNN models. However,

developing an architecture and training a CNN from scratch is still

an extremely time-consuming process. Additionally, the robustness

of studies using shallow CNNs is often questionable as they are

trained on smaller dataset. Qiu et al. trained an eight-layer CNN to

predict the likelihood of a mass being malignant, demonstrating

that shallow CNNs can be trained fully on medical images (82).

Yurttakal et al. trained a CNN with six convolutional blocks

followed by five max pooling layers, a dropout layer, one fully

connected layer, and a softmax layer to output a probability of

malignancy of tumors detected onMR images. The accuracy of this

system is 98.33% which outperformedmany other studies of similar

goals (83). The deeper amodel is, themore complex representations

can be learned, so the question of how deep a CNN must be to

sufficiently capture features for a large classification task remains

(128). However, training a deep CNN from scratch is not possible

without a large diverse dataset which are not readily available in the

medical imaging field.
Frontiers in Oncology 13
By recognizing the limitation of shallow CNN models, transfer

learning has emerged as a solution to lack of big data in medical

imaging. In transfer learning, a CNN is trained in one domain and

applied in a new target domain (129). This involves taking

advantage of existing CNNs that have been pretrained on a large

data set like ImageNet and repurposing them for a new task (130).

There are two approaches to transfer learning (Figure 3), one is fine

tuning where some layers of a pre-trained model are frozen while

other layers will be trained using the target task dataset (131). The

other is using a pre-trained network exactly as is to extract feature

maps that will be used to train a separate ML model or classifier.

The former is beneficial in that it will train the network to have

some target specific features, but the latter is advantageous in that it

is computationally inexpensive as it does not require any deep CNN

training. In one study, Hassan et al. fine-tuned two existing deep

CNNs, AlexNet and GoogleNet, that had been pretrained on the

ImageNet database to classify tumors as malignant or benign using

mammograms (84). The lower layers of each deep CNN were kept

frozen, and the last layers of both networks were replaced to

accommodate the two-class classification task and trained using

the mammograms. Many different experiments were conducted to

determine the most optimal hyperparameters for each deep CNN.

Themammograms used in this study were a combination of images

from four databases including the Curated Breast Imaging Subset of

DDSM (CBIS-DDSM), the Mammographic Image Analysis Society

(MIAS), INbreast, and mammogram images from the Egyptian

National Cancer Institute (NCI), demonstrating the robustness of

this fully automated CADx system. In another study, Mendel et al.
FIGURE 3

A block diagram displaying the transfer learning process. A model is trained in the source domain using a large diverse dataset. The information
learned by the model is transferred to the target domain and used on a new task. The two main methods for transfer learning are feature
extraction and fine tuning. For the feature extraction method, a feature map is extracted from the convolutional base taken from the source
model and used to train a separate machine learning classifier. There are two ways to use transfer learning by fine tuning. The first is freezing
the initial layers in the convolutional base from the source model and fine tuning the final layers using the target domain dataset then training a
separate classifier. The second method does the same, except instead of training a new machine learning classifier, new fully connected layers
will be added and trained using the target domain data.
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used transfer learning as a feature extractor to compare the

performance of a CADx model trained using DBT images and

mammography images, independently. A radiologist placed a ROI

around the tumor in corresponding the mammogram, DBT

synthesized 2D image, and DBT key image which were then used

as an input to the pre-trained VGG19 network. Features were

extracted after each max-pooling layer. A stepwise feature selection

method was used, and the most frequently selected features were

used to train SVM models to predict the likelihood of malignancy.

SVM model using DBT images yielded significantly higher

classification accuracy than SVM model trained using

mammograms, demonstrating that the features extracted from

the DBT images may carry more clinically relevant tumor

classification information than mammograms (85).

While deep CNN based models have seen tremendous

success, traditional ML-based models that use handcrafted

radiomic features benefit from prior knowledge of useful

feature extraction methods making the handcrafted features

more interpretable than automated features produced by deep

learning models. Recently, fusion of traditional handcrafted

features and deep learning-based features has been a hot topic

and several studies report superior performance of the fusion

approach over using either method alone. For example, Caballo

et al. developed a CADx scheme for 3D breast computed

tomography (bCT) images. The 3D mass classification

problem was collapsed into a 2D classification problem by

extracting nine 2D square boxes from each mass that mirror

one of the nine symmetry planes of a 3D cube. The developed

CADx scheme was then designed to take nine-2D images as an

input. A U-Net based CNN model was used to segment the

tumor from each of the nine 2D images. Then, 1,354 radiomic

features were extracted from each image patch. The architecture

of the rest of the proposed CADx scheme had two branches that

work in parallel. The first arm of the system was a multilayer

perceptron (MLP) composed of four fully connected layers that

takes the radiomic features as an input. The second arm of the

system was a CNN that processes the 2D image patch as is,

meaning without the U-Net segmentation of the mass. The

results of the last fully connected layer of both arms of the

system were concatenated and processed by two more fully

connected layers before tumor classification result is produced.

The proposed model yielded AUC = 0.947 that outperforms

three radiologists with AUC ranging from 0.814 – 0.902. This

study demonstrates the utility of combining handcrafted features

and CNN generated features in a singular CADx scheme (86).

Last, since original deep learning (CNN) models have been

pretrained on a natural image data set like ImageNet, the models

have three input channels to accept color images, yet medical

images are typically gray scale images that only occupy a single

input channel of the deep learning model. Thus, some studies

directly copy the original grayscale image into three channels,
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while other studies added additional images into the other two

input channels (28). Antropova et al. conducted a study that

developed a classification model that fuses radiomics and deep

transfer learning generated image features using a mammogram

dataset, a DCE-MRI dataset, and an US dataset (87). The

mammograms and ultrasound images were stacked in three

input channels and fed to a pretrained VGG19 model, while the

DCE-MRI pre-contrast (t0), first time-point (t1), and post-

contrast (t2) were stacked in three input channels to form the

input image of another VGG19 model. The deep CNN based

features were extracted after each max pooling layer, average

pooled in the spatial dimension, and concatenated into a final

CNN feature vector. A semi-automated tumor segmentation

method was used to segment the suspicious tumors before

radiomic feature extraction. The radiomic and deep CNN

feature set were used to train non-linear SVM with an RBF

kernel using 5-fold cross validation. To build the fusion classifier

the outputs of each SVM were averaged. Classifiers trained using

the fusion of the two types of features outperformed all classifiers

that used either feature set alone, demonstrating that traditional

radiomic features and features extracted from transfer learning

may provide complimentary information that can increase the

performance of CADx schemes to help radiologist better make

decisions. In addition to developing this CADx scheme for three

independent imaging modalities, this study also demonstrated

that features extracted from each max pooling layer of a

pretrained CNN outperformed features extracted from the

fully connected layers. This is significant as authors claim this

is the first study using a hierarchical deep feature extraction

technique for CADx of breast tumor classification. Similarly,

Moon et al. developed a CADx scheme using multiple US image

representations to train multiple CNNs which were then

combined using an ensemble method (91). Four different US

image representations were used: an ROI surrounding the whole

tumor and tumor boundary that was manually annotated by an

expert, the segmented tumor region, the tumor shape image

which is a binary mask of the segmented tumor region, and a

fused RGB image of the three prior image types. Multiple CNNs

were then trained on each of the four image types and the best

models were combined via an ensemble method. All models

were evaluated using one private and one public dataset

involving 1,687 and 697 tumors, respectively. Results of this

study further demonstrate that the more information used in the

input image, the better the model performs. Future work to

automate the segmentation steps will improve the robustness of

this model.

The above studies demonstrate that tumor segmentation

remains one of the most difficult challenges that traditional ML

based CADx schemes encounter and a major hurdle to clinical

implementation. The shift from manual to semi-automated to

fully automated lesion segmentation has decreased the inherent
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bias associated with human intervention, but elimination of the

segmentation step in its entirety through either feature

extraction from whole breast images or CNNs will be more

generalizable than models involving a segmentation step when a

large and diverse image database is available. Additionally, there

remains no consensus on whether conventional ML models or

new CNN-based DL models are better for breast lesion diagnosis

as both methods have unique strengths and limitations.

However, fusion of the two types of models has been shown to

produce the best results as meaning these models may provide

complementary information.
Prediction of tumor response
to treatment

Monitoring response to treatment is one of the most crucial

aspects of breast cancer treatment and management. This must

be done continuously through a combination of physical

examinations, imaging techniques, surgical interventions, and

pathological analyses. Molecular subtyping of each cancer based

on histopathology into either luminal A, luminal B, human

epidermal growth factor 2 (HER2) enriched, and basal-like

subtypes is an important first step before deciding on the

optimal treatment plan as each group has shown different

responses to treatments and has varying survival outcomes

(132, 133). Discovery of additional molecular signatures such

as presence or absence of Ki67, expression of estrogen receptors

(ER) and progesterone receptor (PR), cyclin-dependent kinases

(CDKs), PIK3CA mutation, and others has opened the door for

new targeted therapies that aim to inhibit cancer growth rather

than shrink solid tumors (134, 135).

Neoadjuvant chemotherapy (NACT) is often used as a first

line treatment with the goal of decreasing the size of the tumor.

Evaluation of the efficacy of NACT is traditionally done through

clinical evaluation using the Response Evaluation Criteria in

Solid Tumors (RECIST), a size-based guideline (136, 137). The

goal of the RECIST criteria is to categorize the response as either

complete response (CR), partial response (PR), progressive

disease (PD), or stable disease (SD). However, changes in the

size of tumors will often not be detectable until 6-8 weeks in the

treatment course therefore patients may continue experiencing

the toxicity affects from chemotherapy or radiation therapy

while not actually treating the cancer (138). In addition, the

invention of many molecularly targeted therapies may be

successful without showing a decrease in the size of the

tumors, other factors such as change in vasculature or

molecular composition may be better indicators of treatment

response (139). Immunohistochemical (IHC) analysis can also

be conducted before and after therapies to uncover molecular

signatures and information about the vascular density of the
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tumor microenvironment (140–142). However, IHC analysis is

an invasive procedure that is limited by the heterogeneity of the

tumor since the biopsy sample is not necessarily reflective of the

entire tumor (140, 143). The heterogeneity of tumors is a major

hallmark of cancer, yet it is difficult to capture in a clinical setting

making it difficult to predict response to therapy without

knowing the entire molecular composition of the tumor. The

need for non-invasive imaging markers that can quickly and

accurately predict response to therapies has never been greater.

In current clinical practice, breast MRI is the most accurate

imaging modality for monitoring tumor response to treatment

as confirmed by The American College of Radiology Imaging

Network (ACRIN) 6657 study performed in combination with

the multi-institutional Investigation of Serial Studies to Predict

Your Therapeutic Response with Imaging And molecular

Analysis (I-SPY TRIAL) (144). In these clinical trials,

radiologists read MR images and predict tumor response to

treatment based on RECIST guidelines. In order to predict

tumor response or cancer prognosis more accurately and

effectively, many researchers have tried to develop AI-based

prediction models of breast MR images acquired before, during

or post therapy to predict tumor response to chemotherapy at an

early stage.

In one study, Giannini et al. extracted 27 texture features

from pre-NACT MRI and trained a Bayesian classifier to predict

pathological complete response (pCR) post-NACT (92). In

another study, Michoux et al. extracted texture, kinetic, and

BI-RADS features from pre-NACT MRI to try and differentiate

between individuals who would have no response (NR) and

those who had either a partial response (PR) or complete

response (CR) (93). Predictive capabilities of the features were

analyzed independently and in combination through supervised

and unsupervised ML models. Results showed that texture and

kinetic features helped differentiate responders vs. non-

responders, but BI-RADS features did not significantly

contribute to the differentiation.

Aghaei et al. reported two studies that identified two new

imaging markers by training two ANN models using kinetic

image features extracted from DCE-MRI acquired prior to

NACT to predict complete response (CR) to NACT (94). In

the first study, an existing CAD scheme was applied to segment

tumors depicting on DCE-MRI. Thirty-nine contrast enhanced

kinetic features were then extracted from five groups: the whole

tumor area, the contrast-enhanced tumor area, the necrotic

tumor area, the entire background parenchymal region of both

breasts, and the absolute value of bilateral BPE between the left

and right breast. Using a leave-one-case-out cross validation

method embedded with a feature selection algorithm, the trained

ANN yielded prediction performance with an AUC = 0.96 ± 0.03

when 10 kinetic features were used. When comparing some of

the common MRI features between the CR and NR groups using
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DeLong’s Method, no significant differences were seen between

the two groups which demonstrates that conventional MR

features alone may not have enough discriminatory power to

predict whether a patient will respond to NACT or not. This

study demonstrates that extracting more complex MRI features

will yield greater performance in predicting the likelihood of a

patient responding to NACT. As with many CAD studies,

inclusion of the segmentation step often limits the robustness

of the scheme. Thus, Aghaei et al. conducted a follow-up study

using an increased image dataset and a new scheme that only

computes 10 global kinetic features from the whole breast

volume including average enhancement value (EV), standard

deviation (STD) of EV, skewness of EV, maximum EV, average

EV of top 10%, average EV of 5%, bilateral average EV

difference, bilateral STD EV difference, bilateral difference of

average EV of top 10%, and bilateral difference of average EV of

top 5% without tumor segmentation. Then, by using the same

ANN training and testing method, the ANN trained using 4

features yielded an AUC = 0.83 ± 0.04. Three of these four

features were computed to characterize the bilateral asymmetry

between left and right breasts, highlighting the key role that

breast asymmetry may play in predicting whether a patient will

respond well to chemotherapy (95).

CNNs provide another tool that can overcome the limitations

intrinsic to tumor segmentation steps. Ravichandran et al. used a

CNN with six convolutional blocks trained over 30 epochs to

extract features from pre-NACT DCE-MRI to predict the

likelihood of a pathological CR (pCR) (96). This study looked at

the pre-contrast and post-contrast images separately and together

and found that the CNN performed best when using 3-channel

images that contained the pre-contrast images in the red and

green channel and the post-contrast images in the blue channel.

The addition of clinical variables such as age, largest diameter, and

hormone receptor status increased the AUC values from 0.77 to

0.85, demonstrating how the addition of AI can streamline
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imaging and clinical data into a single workflow for the

increased prediction accuracy. Additionally, regions in the

images that contain the most valuable information for

predicting response to NACT can often be displayed in a

heatmap (Figure 4). This may be an important step to reveal

rationale of DL model prediction as few existing DL models are

very interpretable which hinders their clinical translation.

Traditionally, pathological assessment of a representative

tissue sample from the original tumor mass is used to identify

the molecular subtype and develop a treatment plan. This is a

sub-optimal technique as this representative tissue sample

cannot capture the molecular composition of the whole tumor

as cancer is often extremely heterogenous. Imaging modalities

have the unique advantage of being able to capture information

relating to an entire tumor which can help to overcome the

limitations intrinsic to tissue biopsies. Additionally, the

mechanism of many therapies is dependent on tumor

vasculature which is not often probed before deciding on a

treatment plan. Modalities that can image tumor vasculature

such as DCE-MRI continue to be the most accurate and useful

modalities in AI-based models for predicting response to

treatment as valuable information pertaining to treatment

response is contained in the tumor vasculature. Despite pre-

clinical research progress, there are currently no image-based

markers clinically used to predict response to any cancer

therapies. Thus, more research efforts are needed to continue

making progress to identify and validate robust image-based

biomarkers that can predict response to therapy before the

therapy is administered.
Discussion – outlook and challenges

Breast cancer remains an extremely deadly disease with

incidence on the rise. Early detection through routine
FIGURE 4

Illustration of heatmaps displaying the regions within a tumor that were used to predict the probability of pathological complete response.
(A, B) show the results when using the CNNs trained on only the pre-contrast images. (C, D) show the results when using the CNN trained
using a combination of pre-contrast and post-contrast images. (A, C) display cases that were correctly identified as pCR, while (B, D) are cases
that were correctly identified as non-pCR. Modified from (96).
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screening exams remains the best method for reducing the

mortality associated with the disease. However, the efficacy

including both sensitivity and specificity of current breast

screening must be improved. The increase in the number of

breast imaging modalities coupled with a large amount of

clinical, pathological, and genetic information has made it

more difficult and time consuming for clinicians to digest all

available information and make an accurate diagnosis and

appropriate personalized treatment plan. Recent advances in

radiomics and DL-based AI technology provide promising

opportunities to extract more clinically relevant image features

as well as to streamline many different types of diagnostic

information to build novel decision-making support tools that

aim to help clinicians make more accurate and robust cancer

diagnosis and treatment decisions. In this review paper, we

reviewed recent studies of developing AI-based models of

breast images in three application realms.

In recent years, many “omics” topics including genomics,

transcriptomics, proteomics, metabolomics, and others have

attracted broad research interest in order to improve early

diagnosis of breast cancer, better characterize the molecular

biology of tumors, and establish an optimal personalized

cancer treatment paradigm. However, these “omics” studies

often require additionally invasive procedures and expensive

tests generating high-throughput data that is difficult to do

robust data analysis. Radiomics is advantageous in that it is

non-invasive and low cost (because it only uses existing image

data and does not require additional tests). Thus, the reported

studies that directly apply radiomics concept and software to

medical images has grown exponentially in recent years. In

breast imaging, a large number of radiomics features can be

extracted and computed such as from mammograms and DCE-

MRI. Despite great research effort and progress, the association

between radiomics and other “omics” is still not very clear and

more in-depth research is needed. Thus, in this paper, we review

several recent studies that investigated the relationship between

radiomics features and the tumor microenvironment or tumor

subtypes, which may provide researchers valuable references to

continue in-depth research.

In addition, AI-based prediction models have expanded

from the traditional task of detecting and diagnosing

suspicious breast lesions in CAD schemes to much broader

applications in breast cancer research. In this paper, we select

and review application of AI-based prediction models to predict

risk of having or developing breast cancer, the likelihood of the

detected lesion being malignant, and cancer prognosis or

response to treatment. These studies demonstrate that by

applying either radiomics concepts through ML methods or

deep transfer learning methods, clinically relevant image

features can be extracted to build new quantitative image

markers or prediction models for different breast cancer
Frontiers in Oncology 17
research tasks. If successful, the role of AI in breast cancer is

paving the way for developing personalized medicine as

detecting and diagnosing cancer are no longer driven by

generic qualitative markers but now driven by quantitative

patient specific data.

Despite the extensive research efforts dedicated to the

development and testing of new AI-based models in the

laboratory environment, very few of these studies or models

have made into clinical practice. This can be attributed to several

obstacles or challenges. First, currently, most of the studies

reported in the literature trained AI-based models using small

datasets (i.e., <500 images). Training a model using a small

dataset often results in poor generalizability and poor

performance due to unavoidable bias and model overfitting.

Thus, one important obstacle is lack of large and high-quality

image databases for many different application tasks. Although

several breast image databases are publicly available including

DDSM, INbreast, MIAS, and BCDR (87), these databases mainly

contain easy cases and lack subtle cases, which substantially

reduces the diversity and heterogeneity of these image databases.

Many existing databases reported in previous research papers

are also either obsolete (i.e., DDSM and MIAS used the digitized

screen-film based mammograms) or have a lack of biopsy-

approved ground-truth (i.e., INbreast). Thus, AI-models

developed using these “easy” databases have lower

performance in applying to real diverse images acquired in

clinical practice. By recognizing such limitations or challenges,

more research efforts continue to build better public image

databases. For example, The Cancer Imaging Archive (TCIA)

was created in 2011 with the aim of developing a large, de-

identified, open-access archive of medical images from a wide

variety of cancers and imaging modalities (145). New significant

progress is expected in future studies to build this important

infrastructure in help develop robust AI-based models in

medical imaging field.

Second, medical images acquired using different machines

made by different companies and different image acquisition or

scanning protocols in different medical centers or hospitals may

have different image characteristics (i.e., image contrast or

contrast-to-noise ratio). CAD schemes or AI-models are often

quite sensitive to the small variations of image characteristics

due to the risk of overtraining. Thus, AI-models developed in

this manner are not easily translatable to independent test

images acquired by different imaging machines at different

clinical sites. Compared to mammograms and MRI,

developing AI-models of ultrasound images faces additional

challenges because the quality of US images (particularly US

images acquired using handheld US devices) heavily depends on

the operators. Thus, establishment of TCIA allows researchers to

train and validate their prediction models on imaging data

acquired from other clinical sites to help researchers develop
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more accurate and robust models that can eventually be

translated to the clinic. Additionally, developing and

implementing image pre-processing algorithms to effectively

standardize or normalize images acquired from different

machines or clinic sites (146, 147) have also attracted research

interest and effort, which may also need before AI-based models

can be adopted on a widescale clinical level.

Third, another common limitation of traditional ML or

radiomics based AI-based models is that they often require a

lesion segmentation step prior to feature extraction. Whether

lesion segmentation is done semi-automatically based on an

initial seed or automatically without human intervention,

accurate and robust segmentation of breast lesions from the

highly heterogeneous background tissue remains difficult (148).

The lesion segmentation error introduces uncertainty or bias to

the model due to the variation of the computed image features

and hinders the translation of the AI-based models to clinical

applications. Recent attention to DL technology provides a way

to overcome this limitation as the deep CNNs will extract

features directly from the images themselves, bypassing the

need for a lesion segmentation step. However, the lack of big

and diverse datasets is a major challenge in developing robust

DL-based AI models. Although transfer learning has emerged as

a mainstream in the medical imaging field, its advantages and

limitations are still under investigation. While there is a huge

focus on using pre-trained CNNs as feature extractors as it is

computationally inexpensive and generalizable since these

models avoid having to train or re-train the CNN at different

centers with different imaging parameters, fine tuning the

models has showed better results (129). Additionally, no

CNN-based transfer learning models have made it to clinical

use since the models are still not robust as investigated in a

recent comprehensive AI-model evaluation study (31).

Therefore, more development and validation studies are

needed to address and overcome this challenge.

Fourth, currently most AI-based models use a “black-box”

type approach and lack explainability. As a result, it reduces the

confidence or willingness of clinicians to consider or accept AI-

generated prediction results (149). Understanding how an AI-

based CAD scheme or prediction model can make reliable

prediction is non-trivial to most individuals because it is very

difficult to explain the clinical or physical meanings of the

features automatically extracted by a CNN-based deep transfer

learning model. Thus, developing explainable AI models in

medical image analysis has emerged as a hot research topic

(150). Among these efforts, visualization tools with interactive

capability or functions have been developed that aim to show the

user what regions in an image or image patterns (i.e., “heat

maps”) contribute the most to the decision made by AI models

(151, 152). In general, new explainable AI models must be able

to provide sound interpretation of how the features extracted

result in the output produced. Ideally this should be done in

ways that directly tie to the medical condition in question. Since
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this is an emerging research field and important research

direction, more research efforts should dedicate to extensive

development of new technologies to make AI-based CAD

schemes and/or prediction models more transparent,

interpretable, and explainable before AI-based models or

decision-making supporting tools can be fully accepted by the

clinicians and then integrated into the clinical workflow.

Fifth, performance of AI-based models reported in the

literature based on laboratory studies may not be directly

applicable to clinical practice. For example, researchers have

found that higher sensitivity of AI-based models may not help

radiologists in reading and interpreting images in clinical

practice. One previous observer performance study reported

that radiologists failed to recognize correct prompts of CADe

scheme in 71% of missed cancer cases due to higher false-

positive prompts (153). By retrospectively analyzing a large

cohort of clinical data before and after implementing CADe

schemes in multiple community hospitals, one study reported

that the current method of using CADe schemes in

mammography reduced radiologists’ performance as seen by

decreased specificity and positive predictive values (21). In order

to overcome this issue, researchers have investigated several new

approaches of using CADe schemes. One study reported that

using an interactive prompt method to replace a conventional

“second reader” prompt method significantly improves

radiologists’ performance in detecting malignant masses from

mammograms (154). However, this interactive prompting

method has not been accepted in clinical practice. Thus, the

lessons learned from CADe schemes used in clinical practice

indicate that more research efforts are needed to investigate and

develop new methods, including FDA clearance processes, to

evaluate the potential clinical utility of all new AI-based models

for many different clinical medical imaging applications (155).

In conclusion, besides CADe schemes that have been

commercially available, advances in new technologies

including data analysis of high throughput radiomics features

and AI-based deep transfer learning have led to the development

of large number of new CAD schemes or prediction models for

different research tasks in breast cancer including prediction of

cancer risk, likelihood of tumor being malignant, tumor

subtypes or staging, tumor response to chemotherapies or

radiation therapies, and patient progression-free survival (PFS)

or overall survival (OS). However, before each of the new AI-

based CAD schemes can be accepted in clinic practice, more

work still needs to be done to overcome the remaining obstacles

and validate its scientific rigor using large and diverse image

databases acquired from multiple clinical sites. The overarching

goal of this review paper is to provide readers with a better

understanding of state-of-the-art status of developing new AI-

based prediction models of breast images and the promising

potential of using these models to help improve efficacy of breast

cancer screening, diagnosis, and treatment. Additionally, by

better understanding the remaining obstacles or challenges, we
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expect more progress and future breakthroughs will be made by

continuing research efforts in the future.
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