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Objective: The present study aimed to investigate the clinical application value

of the radiomics model based on gray-scale ultrasound (GSUS) and contrast-

enhanced ultrasound (CEUS) images in the differentiation of inflammatorymass

stage periductal mastitis/duct ectasia (IMSPDM/DE) and invasive ductal

carcinoma (IDC).

Methods: In this retrospective study, 254 patients (IMSPDM/DE: 129; IDC:125)

were enrolled between January 2018 and December 2020 as a training cohort

to develop the classification models. The radiomics features were extracted

from the GSUS and CEUS images. The least absolute shrinkage and selection

operator (LASSO) regression model was employed to select the corresponding

features. Based on these selected features, logistic regression analysis was used

to aid the construction of these three radiomics signatures (GSUS, CEUS and

GSCEUS radiomics signature). In addition, 80 patients (IMSPDM/DE:40; IDC:40)

were recruited between January 2021 and November 2021 and were used as

the validation cohort. The best radiomics signature was selected. Based on the

clinical parameters and the radiomics signature, a classification model was

built. Finally, the classification model was assessed using nomogram and

decision curve analyses.

Results: Three radiomics signatures were able to differentiate IMSPDM/DE

from IDC. The GSCEUS radiomics signature outperformed the other two

radiomics signatures and the AUC, sensitivity, specificity, and accuracy were

estimated to be 0.876, 0.756, 0.804, and 0.798 in the training cohort and 0.796,
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0.675, 0.838 and 0.763 in the validation cohort, respectively. The lower patient

age (p<0.001), higher neutrophil count (p<0.001), lack of pausimenia (p=0.023)

and GSCEUS radiomics features (p<0.001) were independent risk factors of

IMSPDM/DE. The classification model that included the clinical factors and the

GSCEUS radiomics signature outperformed the GSCEUS radiomics signature

alone (the AUC values of the training and validation cohorts were 0.962 and

0.891, respectively). The nomogram was applied to the validation cohort,

reaching optimal discrimination, with an AUC value of 0.891, a sensitivity of

0.888, and a specificity of 0.750.

Conclusions: The present study combined the clinical parameters with the

GSCEUS radiomics signature and developed a nomogram. This GSCEUS

radiomics-based classification model could be used to differentiate IMSPDM/

DE from IDC in a non-invasive manner.
KEYWORDS

breast cancer, mastitis, radiomics, ultrasound, contrast-enhanced ultrasound (CEUS)
Introduction

Periductal mastitis/duct ectasia (PDM/DE) is also known as

periductal mastitis, mammary duct ectasia or plasma cell mastitis

and is recognized as the most commonly encountered

inflammation of the non-lactating breast (1, 2). The main

pathological features of this condition are dilatation of the

ducts, and fibrosis and inflammation around them (3). The

main clinical manifestations of PDM/DE are breast pain, mass,

nipple discharge, skin redness, and so on (4, 5). According to the

pathological results and the clinical findings, it can be divided into

ductal dilatation stage, inflammatory mass stage, abscess stage,

and fistula stage (5, 6). The inflammatory mass stage of periductal

mastitis/duct ectasia (IMSPDM/DE) often presents as a lump or

mass in the breast and enlarged axillary lymph nodes in the

absence of any signs of inflammation. On the conventional

ultrasound examination, IMSPDM/DE lesions often present as

irregular hypoechoic masses located in the subareolar area, with

abundant blood supply and not circumscribed margins.

According to the second edition of the American College of

Radiology (ACR) Breast Imaging Reporting and Data System

(BI-RADS) Ultrasound, these lesions are generally classified into

category 4 lesions. They are very similar with regard to the clinical

and radiological results of invasive ductal carcinoma (IDC), which

is considered to be the most common histological type of breast

cancer (7, 8). However, the treatment and prognosis of IMSPDM/

DE are significantly different from those of IDC (9). The ability to

accurately distinguish IMSPDM/DE from IDC preoperatively is

therefore of great clinical significance for the diagnosis and

management of patients with PDM/DE.
02
Gray-scale ultrasound (GSUS) is a conventional modality

that is used to reveal morphologic characteristics of breast

lesions. Contrast-enhanced ultrasound (CEUS) can be used to

visualize the blood supply and microvascular distribution of

breast lesions (10). Previous studies have shown that the

accuracy of traditional ultrasound in diagnosing PDM/DE

ranges from 79% to 82%, while the accuracy range of CEUS in

diagnosing PDM/DE is 72-83% (11–13). Despite the significant

progress made in the ultrasonographic techniques, the

distinction of IMSPDM/DE from IDC is challenging when

based on image findings. At present, the main approach of

PDM/DE diagnosis is imaging-guided biopsy.

Radiomics is a data mining approach, which aims to extract

high-dimensional data from clinical images so as to build

diagnostic and prediction models to address relevant clinical

questions (14, 15). The application of radiomics in breast lesions

is frequently performed to distinguish malignant from benign

breast lesions, classify breast cancer types, and predict the

treatment response and recurrence risk, mostly by using MRI

images (16, 17).

In this study, we developed radiomics models based on

GSUS images, CEUS images and clinical data to differentiate

IMSPDM/DE from IDC. It was expected that this approach

would eventually reduce the number of invasive biopsies.
Materials and methods

The present retrospective study was approved by the

institutional ethics committee of the First Affiliated Hospital of
frontiersin.org
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Soochow University (FAHSU) and written informed consent

was obtained from all patients.
Subjects

The pathology and ultrasound databases in FAHSU were

used to conduct a retrospective search and recruit IDC and

PDM/DE patients between January 2018 and November 2021.

The inclusion criteria were as follows: (1) Each lesion was

assigned as category 4 according to the second edition of the

ACR BI-RADS® US Atlas; (2) all patients underwent GSUS and

CEUS examination prior to biopsy; (3) the patients with PDM/

DE were confirmed by histological analysis (gray scale

ultrasound indicated no obvious abscess and sinus in the

lesions); (3) the patients with IDC were confirmed by

histological analysis; (4) the patients whose imaging quality of

GSUS and CEUS met the requirement of analysis. The processes

of inclusion and exclusion of study subjects are shown in

Figure 1. The training cohort comprised patients (patients

with PDM/DE or IDC) who were treated in FAHSU between

January 2018 and December 2020 and the validation cohort

comprised patients (patients with PDM/DE or IDC) who were

treated in FAHSU between January 2021 and November 2021.

The following clinical parameters were used: Patient age, the

maximum diameter of the lesions, the number of the lesions, the

white blood cell (WBC) count, the number of monocytes,

neutrophils, the presence of pausimenia, and the family

history of breast cancer. All this information was derived from

the medical records. The pathological specimens of each case
Frontiers in Oncology 03
were identified by experienced pathologists specializing

on breast.
Imaging acquisition and tumor
segmentation

The ultrasound examinations were performed using one of

the following ultrasound instruments: Mindray Resona7, LOGIQ

E9, and MyLab™ ClassC equipped with high-frequency linear

array probes (L14-6WU, L11-3U; ML6-15, 9L; and LA523 and

LA522). To reduce microbubble destruction, low mechanical

index (MI) values were applied (MI 0.02–0.07). The contrast

agent used in this study was designated as SonoVue (Bracco SpA).

The examinations were conducted by one of the three ultrasound

practitioners with 10 years of experience in breast

ultrasonography. The patients were placed in the supine or

lateral position. The field of view was set to include the

pectoralis muscle at the deepest aspect of the image. Gray-scale

ultrasound scans were initially performed to identify the optimal

scanning plane and save this image. Subsequently, CEUS

examinations were performed, and their images were

accompanied by the corresponding gray-scale images. The

single frame corresponding to the moment of peak contrast

perfusion in the lesion during CEUS was selected to represent

the total process for radiomics analysis. The GSUS and CEUS

images at the peak intensity were stored in Digital Imaging and

Communications in Medicine (DICOM) format.

The region of interest (ROI) of the breast lesions was

manually delineated using ITK-SNAP 3.8.0 software. Prior to
FIGURE 1

The flowchart of inclusion and exclusion of the study subjects. BI-RADS US Breast Imaging Reporting and Data System Ultrasound; GSUS gray
scale ultrasound; CEUS contrast enhanced ultrasound; PDM/DE periductal mastitis/duct ectasia; IDC invasive ductal carcinoma.
frontiersin.org

https://doi.org/10.3389/fonc.2022.981106
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2022.981106
segmentation, the CEUS and GSUS images were loaded into the

software (MATLAB R2012a) and were converted from color maps

to gray scales. Subsequently, the boundary of the breast lesion ROI

delineation was performed by an ultrasound practitioner with

experience in ultrasonography (>5 years), who was blinded to the

clinical and histopathological data of the patients during the

segmentation process. The representative results of the breast

lesion ROI segmentation are displayed in Figure 2.
Radiomics feature extraction,
selection, and development of the
radiomics signature

The radiomics features of the GSUS and CEUS images were

extracted using Pyradiomics (version 2.1.1), which is an open-

source Python package. The extracted features were classified

into 6 categories as follows: Shape features, first-order statistical

features, gray-level co-occurrence matrix (GLCM) features,

gray-level run length matrix (GLRLM) features, gray-level size

zone matrix (GLSZM) features and gray-level dependence

matrix (GLDM) features. In addition, 8 filters, including

wavelet-LLH, wavelet-LHL, wavelet-LHH, wavelet-HLL,

wavelet-HLH, wavelet-HHL, wavelet-HHH, and wavelet-LLL,

were applied to the original images, and the derived images were

achieved for each patient. All classes of features, with the

exception of shape, were computed on both the original and

the derived images. Ultimately, 788 radiomics features were

extracted for each ultrasound image.
Frontiers in Oncology 04
Feature selection was carried out as follows: Firstly, the column

containing “0” was deleted. Secondly, the Low Variance Filter

method was used to remove the features which the variance was

close to 0. If more than 95% of the data were the same in a feature,

the feature was considered useless and was deleted. Thirdly,

following data normalization (the mean value was subtracted

from each feature and subsequently the values of each feature

were divided by its standard deviation), the Select K Best method

was used and the most important top K features were selected

according to the P value (P<0.05). Subsequently, the top-ranking

radiomics features of the GSUS and CEUS images were input to the

least absolute shrinkage and selection operator (LASSO) classifier

respectively, to select the most informative features.

Three radiomics signatures were then respectively developed

using multivariate logistic regression (Stepwise regression) with the

finally selected features of GSUS image and CEUS image. These

included the GSUS radiomics signature, the CEUS radiomics

signature, and the gray-scale combined contrast-enhanced

ultrasound (GSCEUS) radiomics signature. The main indicators

evaluating the performance of three radiomics signatures included

AUC, sensitivity, and specificity. Subsequently, the best radiomics

signature was selected.
Development of radiomics-based
classification model

The risk score for the radiomics signature of each patient

(Radiomics_score) was calculated based on the b value of the
B

C

D

E

F

A

FIGURE 2

The representative results of the breast lesion segmentation. (A, B) The original GSUS, CEUS images and the segmentation of a 32-year-female
patient confirmed with PDM/DE. (C) The sample (hematoxylin and eosin) with PDM/DE (400x). (D, E) The original GSUS, CEUS images and the
segmentation of a 49-year-old female patient confirmed with IDC. (F) The sample (hematoxylin and eosin) with IDC (400x).
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selected radiomics features. To identify the significant clinical

parameters, univariate analysis was performed on the following

clinical parameters in the training set: Patient age, the maximal

diameter of the lesions, the number of the lesions, the white

blood cell (WBC) count, the number of monocytes, neutrophils,

pausimenia and the family history of breast cancer.

Subsequently, the clinical parameters with p<0.05 and the

radiomics_score were included in the multivariate analysis to

construct the radiomics-based classification model and

differentiate IMSPDM/DE from IDC.
Statistical analysis

The descriptive statistics were summarized as mean ±

standard deviation (SD) or with the use of the 95% confidence

interval (CI). The radiomics signature and the radiomics-based

model were established by multivariate logistic regression

analysis. The prediction performance of the radiomics

signature and the radiomics-based model were assessed with

the area under the receiver operating characteristic (ROC) curve

analysis on the training and validation sets. The differences

between various AUCs were compared using a Delong test.

Sensitivity, specificity, and accuracy were also calculated. P

values less than 0.05 indicated statistical significance. All
Frontiers in Oncology 05
statistical analyses were performed using the R statistical

software (version 3.6.1).
Results

Patient profiles

A total of 334 patients including 169 patients (50.60%) with

IMSPDM/DE and 165 patients (49.40%) with IDC were involved

in the current study according to the inclusion and exclusion

criteria. The subjects were all females with an age range of 22-89

years old (mean age, 41.90 years old). The training and test

dataset consisted of 254 (129 IMSPDM/DE and 125 IDC) and 80

(40 IMSPDM/DE and 40 IDC) patients, respectively. The

clinical characteristics of the training and validation sets are

shown in Table 1. In the training cohort, the results indicated

that the number of monocytes and the family history of breast

cancer patients were not significantly different between the

IMSPDM/DE and IDC groups (p>0.05). However, a significant

difference was noted in the number of lesions in the IMSPDM/

DE group compared with that of the IDC group (p<0.05).

Statistically significant differences were noted in the patient

age, maximal diameter of lesions, and pausimenia, as well as

in the WBC and the neutrophil counts of the PDM/DE group
TABLE 1 Clinical characteristics of patients on the training and validation cohorts.

Variables Training cohort (n=254) Validation cohort (n=80)

PDM/DE (n=129) IDC (n=125) p value PDM/DE (n= 40) IDC (n=40) p value

Age (years) 33.49 ± 6.98 50.59 ± 13.37 < 0.001 33.95 ± 7.46 49.80 ± 11.19 < 0.001

Maximal diameter of lesions 36.18 ± 16.08 26.25 ± 12.69 < 0.001 31.88 ± 11.99 26.18 ± 11.29 0.0251

Number of lesions 0.019 0.009

Single 84 (65.12) 98 (78.40) 21 (52.50) 32 (80.00)

Multiple (≥2) 45 (34.88) 27 (21.60) 19 (47.50) 8 (20.00)

WBC (×109/L) <0.001 0.019

≤9.5 95 (73.64) 117 (93.60) 29 (72.50) 37 (92.50)

>9.5 34 (26.36) 8 (6.40) 11 (27.50) 3 (7.50)

Monocytes (×109/L) 0.129 0.034

≤0.6 115 (89.15) 118 (94.40) 34 (85.00) 40 (100.00)

>0.6 14 (10.85) 7 (5.60) 6 (15.00) 0 (0.00)

Neutrophil (×109/L) <0.001 0.003

≤6.3 83 (64.34) 116 (92.80) 23 (57.50) 35 (87.50)

>6.3 46 (35.66) 9 (7.20) 17 (42.50) 5 (12.50)

Pausimenia <0.001 <0.001

No 123 (95.35) 67 (53.60) 38 (95.00) 19 (47.50)

Yes 6 (4.65) 58 (46.40) 2 (5.00) 21 (52.50)

Family history 0.0655 0.4739

No 128 (99.22) 118 (94.40) 40 (100.00) 38 (95.00)

Yes 1 (0.78) 7 (5.60) 0 (0.00) 2 (5.00)
fronti
WBC, white blood cell.
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compared with the di fferences noted in the IDC

group (p<0.001).
Feature selection and acquisition of
radiomic signatures

In total, 1,576 imaging features were extracted from the

GSUS and CEUS images of each patient (788 each).

In the training cohort, the features of which the column

contained “0” and those with a variance close to 0 were excluded.

Therefore, the number of GSUS and CEUS features was reduced

to 365 and 372, respectively. Subsequently, the p value and the

score of the Select K Best method were calculated, and the

threshold for selecting the top-ranking radiomics features was

p<0.05, leaving 260 and 236 features in the GSUS and CEUS,

respectively. Thirdly, the LASSO algorithm was applied for

subsequent feature reduction, 7 and 15 imaging features were

selected respectively from the GSUS and CEUS images as

potentially effective factors (Figure 3).

By using the Coarse-to-Fine Feature Selection strategy, 3

imaging features were selected for the construction of the GSUS

radiomics signatures, and 6 imaging features were selected for

the construction of the CEUS radiomics signatures. Finally, 6

imaging features were selected from the full feature set including
Frontiers in Oncology 06
23 features of the above GSUS and CEUS features for the

construction of the GSCEUS radiomics signature (Table 2).

The performance of the three radiomics signatures is

summarized in Table 3 and the ROC curves of the models are

depicted in Figure 4. No significant differences were noted

between the GSUS radiomics signature and the CEUS

radiomics signature in the training cohort (AUCs 0.804 vs.

0.818; p=0.682). However, the CEUS radiomics signature

performed better than the GSUS radiomics signature in the

validation cohort (AUCs 0.797 vs. 0.590; p=0.003). The GSCEUS

radiomics signature achieved optimal diagnostic efficacy for

differentiating between PDM/DE and IDC compared with the

GSUS radiomics signature in both the training (AUCs 0.876 vs.

0.804; p=0.001) and the validation cohorts (AUCs 0.796 vs.

0.590; p<0.001). Moreover, the GSCEUS radiomics signature

performed better than the CEUS radiomics signature in the

training cohort (AUCs 0.876 vs. 0.818; p=0.003). Therefore, the

GSCEUS radiomics signature was used for further analysis.

Six features of the GSCEUS radiomics signature were applied in

the risk score calculation. The following radiomics_score calculation

formula was used:

Radiomics_score = 3.117(wavelet.LLL_glcm_DifferenceEn

tropy) (GSUS feature)

+0.006(original_shape_MajorAxisLength) (CEUS feature)

+1.0e-09(original_firstorder_Energy) (CEUS feature)
B

C D

A

FIGURE 3

Feature selection. (A, B) Feature selection of GSUS images (l= 0.0372, seven imaging features were selected); (C, D) Feature selection of CEUS
images (l= 0.0243, fifteen imaging features were selected).
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+0 .057(or i g ina l_fi r s to rde r_ In t e rquar t i l eRange )

(CEUS feature)

+ 0.081(wavelet.HLL_firstorder_Kurtosis) (CEUS feature)

-0.135(wavelet.LLL_glcm_DifferenceAverage) (CEUS

feature)

The clinical parameters with p<0.05 in Table 1 and the

radiomics_score were included in the multivariate analysis

(Table 4). A radiomics-based classification model was built by

incorporating the parameters patient age, neutrophil,

pausimenia and the radiomics_score. The performance of the

classification model is summarized in Table 3, and the ROC

curves of this model are depicted in Figure 4. In the training and

validation cohorts, the sensitivity, accuracy and AUC values of

the classification model were improved when the clinical

parameters were added to the GSCEUS radiomics signature.

A nomogram of PDM/DE diagnosis was constructed using

the aforementioned independent risk factors shown in Figure 5.

The 10-fold cross-validation method was used for external

validation of the generated model. The calibration curves of

the validation cohort were plotted graphically and demonstrated

optimal agreement between the diagnostic accuracy estimation

by the nomogram and the histopathological confirmation

(calibration intercept: -0.2685; calibration slope: 0.4888).

A decision curve analysis was used to assess the clinical

usefulness of the classification model and the GSCEUS

radiomics signature in the validation cohort (Figure 6). If the

threshold probability was more than 2%, the use of the

classification model for the diagnosis of IMSPDM/DE added

higher diagnostic value than either the treat-all scheme

(assuming that all lesions were IMSPDM/DE) or the treat-

none scheme (assuming that all lesions were IDC). In

addition, the use of the classification model for the diagnosis
Frontiers in Oncology 07
of IMSPDM/DE added higher diagnostic value than that of the

GSCEUS radiomics signature.
Discussion

The experienced ultrasound doctor could distinguish

IMSPDM/DE from IDC by lesion morphology, echo intensity,

calcification, the blood supply of the lesions and the CEUS

features. However, the ultrasound appearance of IMSPDM/DE

could exhibit bewildering variation, suggesting that an

inexperienced practitioner may experience difficulties in

classifying between IMSPDM/DE and IDC (18–20). In the

present study, the GSUS and CEUS-based radiomics features

were used to differentiate IMSPDM/DE from IDC. The results

revealed that the ultrasound-based radiomics features were able

to distinguish IMSPDM/DE from IDC, whereas the GSCEUS

radiomics features outperformed other radiomics features.

Furthermore, a classification model was developed and

validated. This model incorporated clinical parameters with

GSCEUS radiomics features and exhibited high accuracy in

differentiating IMSPDM/DE from IDC. The calibration curve

indicated that the predicted and actual probability of IMSPDM/

DE were in good agreement.

In order to construct a reliable radiomics model, the

radiomics features were extracted from the GSUS and CEUS

images, respectively. The key processes of the radiomics model

construction included feature extraction, feature selection, and

model construction (21, 22). In the feature extraction process, an

open-source Python package (Pyradiomics) was used and 788

features were extracted on each image. In the feature selection

process, the Low Variance Filter method, select K Best method
TABLE 3 Predictive efficacy of radiomics signature and the radiomics-based model.

Different models Training cohort (n=254) Validation cohort (n=80)

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

GSUS radiomics signature 0.861 ± 0.109 0.640 ± 0.120 0.766 ± 0.046 0.804 ± 0.053 0.913 ± 0.087 0.312 ± 0.138 0.613 ± 0.075 0.590 ± 0.127

CEUS radiomics signature 0.698 ± 0.163 0.808 ± 0.152 0.766 ± 0.049 0.818 ± 0.051 0.775 ± 0.125 0.663 ± 0.138 0.725 ± 0.100 0.797 ± 0.101

GSCEUS radiomics signature 0.756 ± 0.198 0.804 ± 0.188 0.798 ± 0.046 0.876 ± 0.040 0.675 ± 0.150 0.838 ± 0.113 0.763 ± 0.088 0.796 ± 0.102

GSCEUS radiomics-based model 0.891 ± 0.093 0.884 ± 0.092 0.898 ± 0.032 0.962 ± 0.019 0.888 ± 0.088 0.750 ± 0.125 0.819 ± 0.081 0.891 ± 0.081
fro
TABLE 2 Radiomics features of three radiomics signatures.

GSUS radiomics signature CEUS radiomics signature GSCEUS radiomics signature

original_shape_MajorAxisLength original_firstorder_InterquartileRange wavelet.LLL_glcm_DifferenceEntropy(GSUS feature)

original_firstorder_Variance wavelet.LLH_firstorder_Kurtosis original_shape_MajorAxisLength (CEUS feature)

wavelet.LLL_glcm_DifferenceEntropy wavelet.LLH_glrlm_LongRunEmphasis original_firstorder_Energy(CEUS feature)

wavelet.HLL_firstorder_Energy original_firstorder_InterquartileRange(CEUS feature)

wavelet.HLL_firstorder_Kurtosis wavelet.HLL_firstorder_Kurtosis (CEUS feature)

wavelet.LLL_glcm_DifferenceAverage wavelet.LLL_glcm_DifferenceAverage(CEUS feature)
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and LASSO method were employed to avoid the curse of

dimensionality. Subsequently, three radiomics signatures were

constructed based on the radiomics features extracted from the

GSUS and CEUS images. In both the training and validation

cohorts, the GSCEUS radiomics signature demonstrated the

highest diagnostic accuracy compared with those of the GSUS

and CEUS radiomics signatures (training cohort:0.798 vs. 0.766,

0.766; validation cohort:0.763 vs. 0.725, 0.613). The AUC value

of the GSCEUS radiomics signature was estimated to be 0.876 in

the training cohort, which was significantly higher than that of

the other two methods (AUC value: 0.818, 0.804). The CEUS

radiomics signature indicated a similar AUC with that of the

GSCEUS radiomics signature in the validation cohort (AUC

value: 0.797 vs. 0.796), whereas the specificity and accuracy of

the GSCEUS radiomics signature were better than those of the

CEUS radiomics signature (specificity:0.838 vs. 0.663; accuracy:

0.763 vs. 0.725). The GSUS radiomics signature indicated a

similar AUC with that of the CEUS radiomics signature in the

training cohort (AUC value: 0.804 vs. 0.818), whereas the AUC

and accuracy of the GSUS radiomics signature were significantly

lower than those of the CEUS radiomics signature in the
Frontiers in Oncology 08
validation cohort (AUC value:0.590 vs. 0.797; accuracy: 0.613

vs. 0.725). In present study, the AUC value and accuracy of the

GSUS radiomics signature in the validation cohort were

significantly lower than those in the training cohort (AUC

value: 0.590 vs. 0.804; accuracy: 0.613 vs. 0.766), which may be

caused by different ultrasound systems. The training cohort

contains images of three ultrasound systems, while the

validation cohort contains images of only one of the above

ultrasound systems. These results indicated that the radiomics

features of the multimodal ultrasound imaging could make a

critical contribution in improving the accuracy of the method.

The GSCEUS radiomics signature with the best performance

included 6 radiomics features in total, of which one was from the

GSUS images and five were from the CEUS images. Half of the

selected radiomics features in our study were wavelet-based

features, which could presumably redisplay hidden tumor

characteristics behind the speckle and increase the

discriminative ability (23).

Certain clinical parameters related to mastitis and breast

cancer were included in the present study, such as patient age,

lesion size, WBC count, monocyte count, neutrophil count,
BA

FIGURE 4

Receiver operating characteristic (ROC) curves of three radiomics signatures, and radiomics-based classification model to differentiate PDM/DE
from IDC. (A) Four methods in the training cohort; (B) Four methods in the validation cohort.
TABLE 4 Multivariate logistic regression analyses.

Characteristics Multivariate analysis

OR 95%CI p value

Patient’s age 0.81 0.74, 0.87 <0.001

Neutrophil 18.9 3.95, 123 <0.001

Pausimenia 0.11 0.02, 0.72 0.023

Radiomics_score 2.96 2.18, 4.30 <0.001
fronti
OR odds ratio; CI confidence interval.
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pausimenia, and family history of breast cancer. Univariate

analysis indicated that PDM/DE was more common in

younger women and those without pausimenia (mean age:

33.49 ± 6.98), while IDC was more common in older women

and in women with pausimenia (mean age: 50.59 ± 13.37). These

findings are consistent with those of previous studies (8, 9, 18).

Compared with IDC, the lesion of IMSPDM/DE was often larger

and multiple. Although the etiology of PDM/DE remains

unclear (5), it is a benign inflammatory disease, and its nature

is different from IDC. Therefore, blood cell analysis are used as

indicators of systemic inflammation and can potentially

distinguish PDM/DE from IDC. The data of the present study
Frontiers in Oncology 09
demonstrated that 26.56% of IMSPDM/DE patients had

increased WBC count, whereas 35.65% of IMSPDM/DE

patients demonstrated increased neutrophil count, which was

statistically significant compared with that of the IDC patients.

No significant differences were noted in the monocyte count

between the IMSPDM/DE and IDC patients. Neutrophils and

WBCs are non-specific inflammatory markers, which can be

used to indicate active bacterial infection. Breast cancer lesions

rarely present with active bacterial infections. Therefore, the

WBC and neutrophil counts may be used to differentiate PDM/

DE from IDC. Family history is a major risk factor for breast

cancer; approximately 5-10% of cases with breast cancer are
B C

A

FIGURE 5

The radiomics-based nomogram for differentiating PDM/DE from IDC. (A) The radiomics-based nomogram developed with the training cohort
included patient’s age and radiomics signatures. (B, C) Calibration curves of the radiomics-based classification model in the training (B) and
validation (C) cohorts.
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associated with a family history of this disease (24, 25). However,

the present study indicated no significant differences in the

family history between the IDC and PDM/DE groups, which

may be caused by the small number of patients included.

Multivariate analysis indicated that the variables patient age,

neutrophil count, absence of pausimenia, and GSCEUS

radiomics features were independent factors that could be

used to differentiate IMSPDM/DE from IDC. Subsequently, a

classification model was developed that could incorporate

significant clinical parameters with the GSCEUS radiomics

features. The accuracy of this model in the training and

validation cohorts was 0.898 and 0.819, respectively, higher

than 72%-79% reported in previous studies (11–13). The

model was successfully validated and the data indicated that it

could significantly improve the values of AUC in both the

training and validation cohorts. The nomogram was primarily

used to improve personalized diagnostics. The results of the

present study suggest that the radiomics classification model,

which was based on the GSCEUS images, could be used in a non-

invasive manner to distinguish between IMSPDM/DE and IDC

thus avoiding unnecessary biopsies; this application may

facilitate the personalized treatment planning for these patients.

The present study contains certain limitations. Firstly, this

was a single-center retrospective study and further multi-center

studies with external authentication protocols should be

conducted. Secondly, different ultrasound systems and

scanning parameters may influence the generality of the results.

In conclusion, the current study developed and validated the

radiomics classification model based on the GSCEUS radiomics

signature, patient age, neutrophil count and absence of

pausimenia. This model successfully distinguished IMSPDM/DE

from IDC, and has the potential to avoid unnecessary biopsies.
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