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“Dysregulated”metabolism is a characteristic of the cancer cell phenotype. This

includes persistent use of glycolytic metabolism in normoxic environments

(Warburg effect) leading to increased acid production and accumulation of

protons in the interstitial space. Although often thought to be disordered,

altered cancer metabolism is the outcome of intense Darwinian selection

and, thus, must have evolved to maximize cancer cell fitness. In an

evolutionary context, cancer-induced acidification of the microenvironment

represents a niche construction strategy to promote proliferation. Ecological

advantages conferred on the cancer population included remodeling of the

extracellular matrix to promote local invasion, suppression of potential

competitive proliferation of fibroblasts, and suppression of host immune

response. Preclinical data demonstrates that increasing the serum buffering

capacity (through, for example, oral sodium bicarbonate and TRIS) can

neutralize the acidic tumor microenvironment with inhibition local invasion

and proliferation which can be synergistic with the effects of chemotherapy and

immunotherapy agents. Here, we describe the proton dynamics in cancer and

their influence on tumor progression and metastasis. Additionally, we will

discuss targeting the tumor acidosis with alkalizing agents including our

bicarbonate clinical trial results.

Clinical Trial Registration: clinicaltrials.gov, identifier NCT01350583,

NCT01198821 and NCT01846429.
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Introduction

Due to a mis-match between glucose fermentation and perfusion the extracellular pH

(pHe) of the tumor microenvironment is profoundly acidic (1). This acidity, as first

described by the Warburg, occurs even in the presence of oxygen (2). The acid

accumulated extracellularly is removed via different proton transporting systems,
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including sodium hydrogen exchanger, monocarboxylate

transporters (3). This proton dynamics results in a decrease in

pH and increase in an intracellular pH (pHi). The extracellular

pH of a solid tumor can reach 6.5 (4). These conditions are

highly toxic to normal mammalian cells and, thus, the cancer

phenotype must evolve adaptive strategies to survive and

proliferate in acidic conditions.

While the Warburg effect (i.e., “aerobic metabolism” -

maintaining inefficient glycolytic metabolism even in the

presence of oxygen) is often described as “dysregulated”, this

view is inconsistent with the evolutionarymodel of cancer. That is,

because cancer cells are subject to constant Darwinian selection,

it’s metabolism must, in fact, represent an optimal phenotypic

state that maximizes fitness. We have proposed that excess acid

generation production represents a niche construction strategy

that confers a competitive advantage on cancer cells by killing or

suppressing the growth of potential normal cell competitors such

as fibroblasts, causing breakdown of ECM to promote invasion,

and blunting the immune response (5–7).

Functionally, cells can be classified as oxidative or

fermentative in the tumor microenvironments. Oxidative cells

will convert the lactic acid to pyruvate, that enter the TCA cycle

and oxidized yielding ATP and CO2. Carbonic anhydrase 9 or 12

(CA9, CA12) on the outside o the cell will hydrate this CO2

producing HCO3+ and H+. In fermentative cells, Glucose will

enter the cell via glucose transports 1 or 3 (GLUT-1, GLUT-3),

and enter glycolysis after phosphorylated to Glucose 6-

phosphate (G6P). The proton produced by this oxidative step

is transported by sodium/hydrogen exchanger, NHE1, as well as

CA9. The lactic acid produced via glycolysis is transported via

monocarboxylate 1 and 4 transporters (MCT1/4) (8).

The extracellular acidity can negatively affect the normal

tissue. Specifically, remodel extracellular matrix and allow tumor

cells to invade and metastasize to surrounding and distal organs

(9). It has been shown by us and others that acidity can also

suppress immunity. In vitro and in vivo studies demonstrated

that acidosis inhibits CD8 T cell function (10–12), and promote

the pro -inflammatory macrophages phenotype (M2) (13).

Beyond invasion and metastases, tumor derived acid pH is

also a knownmediator of cancer-associated pain. In recent years,

it is becoming apparent that metastasis-associated bone pain

involves the reduction of peri-tumoral pH and activation of

nociceptors, including acid-sensing ion channels, ASICs (14, 15).

The two major nociceptor ASIC are the transient receptor

potential vanilloid subtype 1, TRPV1, a.k.a. the capsaicin

receptor (16, 17) and ASIC-3 (18). The expression of these

transporters is decreased with bis-phosphonates, which have led

some to speculate that the acid is derived from tumor-associated

osteoclasts (19, 20). Osteoclasts exacerbate the tumor-derived

acidity at the bone interface through their own export of protons

via a Vacuolar type H-ATPase (21).

Although treatments to reduce intratumor acidity are often

describe as “alkalizing agents,” this represents a misnomer.
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Typically, such agents are actually physiologic buffers which

promote a pH near 7.4. Thus, they will tend to alkalinize the

acidic tumor pH in the sense that the typically increase it toward

the physiologic range. However, in normal tissue and

physiological pH, such buffers will have no effect on the acid

concentrations (22). Multiple studies have demonstrated that

tumor acidity can be significantly improved with oral buffers,

and this can reverse some of the consequences of acidity,

including invasion to the surrounding tissue, distal organ

metastasis, and modulation of immune function. For instance,

we have proved that chronic treatment of animals with 200 mM

sodium bicornate ad lib significantly decreased invasion and

metastasis in spontaneous and experimental metastasis cancer

models (23–26), and enhanced the effect of immune checkpoint

inhibitors as well as adoptive T cell transfer (12). In our

previously published work, we showed that Lysin has a pH

dependent effect on prostate tumors metastasis. Lysin with a pH

(8.0) below pka value has no effect on metastasis while Lysine

with pH (10.4), a higher pka value, significantly decreased

metastasis, clearly suggesting buffering is mediating the

antimetastatic effect (27). In another study in transgenic

prostate model (TRAMP), treating the mice before development

of the tumor (~ 4 weeks after weaning) prevented the

development of the interepithelial neoplasia (PIN), furthermore

doubling the concentration of bicarbonate treatment after the

development of the PIN lesions(~10 weeks after weaning)

prevented tumor cells metastasis (28). While the mechanisms

under the buffer therapy is still not completely revealed; we

observe by histopathology that the buffer treated tumors are less

invasive and more benign (29).

Targeting tumor acidity with buffer therapy is the most

direct approach, particularly by oral sodium bicarbonate

NaHCO3 or THAM. We have shown that mice can tolerate

orally up to 200mM sodium bicarbonate with no changes to the

systemic pH. Tumor volume at the time of the bicarbonate

treatment influence the outcome. We observed no effect of

sodium bicarbonate on large primary tumors compare to the

small tumors (19, 22).

The anti-tumor effect of alkalinizing agents may be systemic

and at the level of tumors. In fact, a milestone paper by our

group (28) showed that the oral administration of sodium

bicarbonate 100% prevented the development of prostate

cancer in TRAMP mice, denoting that a daily alkalinization

with either sodium bicarbonate or other buffers may well prevent

cancer. Still, this probably occurs through a primary effect on the

gastric pH since our stomach is not simply a digestive bug but

rather an exocrine gland that produces H+ for the whole body,

actively participating in the pH balance of our organism.

Recently, Helix BioPharma developed a target for tumor

acidosis, L-DOS47, which can serve as an alternative to sodium

bicarbonate. L-DOSE47 is a urase base extracted from Jack Bean

that targets Carcinoembryonic antigen-related cell adhesion

molecule 6(CECAM-6 antigen) overexpressed by several
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cancer types, such as lung, colon, and pancreatic (65). They

urease enzyme will convert the urea present around the tumors

to ammonia(2NH4+) and bicarbonate (1 HCO3 -) alkalizing the

tumor microenvironment. L-DOS47 is now in phase I/II clinical

trial (NCT02309892) in lung cancer (66).

Clinical trials using proton pump inhibitors remain the only

evidence-based support for an anti-acidic approach against

cancer that was reported; this includes a clinical study in

patients with osteosarcoma (30); a case-control study in

patients with metastatic breast cancer, in which an arm has

been successfully treated with PPI alone (31); a pilot study in

patients with GI cancers (32). Moreover, two clinical studies

have been performed in domestic animals with malignant

tumors, one combining standard chemotherapy with

lansoprazole (33) and the other combining metronomic

chemotherapy with lansoprazole and alkalinized water (34).

These clinical results supported the evidence-based use of

proton pump inhibitors as a new therapeutic approach, at least

in combination with chemotherapy (35). However, three

preclinical papers have shown that PPI alone had a potent

anti-cancer effect in the absence of chemotherapy or other

anti-tumor therapies in three different human tumors (36–38);

suggesting that high dosage PPI should be considered in the

future anti-cancer therapies. A clinical result partly supported

this pre-clinical evidence in the above-quoted paper, a study

performed on triple-negative breast cancer patients. In fact, at

the end of the study, one arm of patients was treated with PPI

alone compared to those left untreated, and the results showed a

significant increase in OS in PPI-treated patients (31).

Moreover, three retrospective metanalysis have proposed PPI

as an effective combined therapy with standard chemotherapy (39)

andpreventive treatment forbreast cancer (40, 41). Inaway, at least

three reviews have proposed repositioning PPI for cancer therapy

(42–44). Papers showed that alkalinization by oral administration

of either a potent buffer (45) or alkalinized water (46), respectively,

controlled the growthof a veryaggressivemelanomaandprevented

the development of prostate cancer inTRAMPmice.Moreover, the

control of melanoma growth was consistent with an increase in

tumor pH and the treatedmice’s urines, suggesting that a buffering

approach exerted its role in inducing both tumor and

systemic alkalinization.

Preclinical studies performed by us, and others suggested

that oral sodium bicarbonate can be translated to clinic. Three

clinical trials were conducted, phase I/IIa clinical trials to test the

tolerability of oral sodium bicarbonate. We calculated the

amount of sodium bicarbonate needed by comparing the

amount of sodium bicarbonate that mice consumed which is

around 4.2 mL per day (25). This was equivalent to 2.8 g/kg/d.

By inter-species allometric scaling, human dose will be around

16.3 g/d for a 70kg human (47). In a clinical trial study for

children with Sickle Cell Anemia, oral administration of 21 gm/

day was safe and complication free (48). Side effects of overdose

of sodium bicarbonate can include metabolic alkalosis,
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hypokalemia, hypernatremia, and metabolic disorders such as

hypoxia, however, side effects for our dose proposed is not

anticipated (49). Gastrointestinal irritability and discomfort, as

well as poor taste were that main causes for the low compliance

in all our three trials.
Materials and methods

Protocols

Clinical tr ia l NCT01350583, NCT01198821 and

NCT01846429 protocols are publicly available at clinicaltrials.gov.
Results

Trial 1: Pilot Study. The first of these trials was conducted

under IND106881 for powdered NaHCO3 for use in pain

management. NCT01350583 was a palliative trial opened on

08/08/2010 entitled “A Pilot Study of Oral Bicarbonate as

Adjuvant for Pain Reduction in Patients with Tumor Related

Pain”. The rationale for this study was the prior observation that

the major nociceptive (pain-sensing) receptor in cancer pain was

TRPV, which has been shown to be an acid receptor (50). Target

accrual was 28 patients for the 3 + 3 dose escalation study design.

This trial accrued two female patients and was closed on 04/03/

2012. Patient 1 completed her dose schedule of (0.5 g/kg/d) over

4 weeks. Patient 2 left voluntarily, withdrawing after 3 weeks.

One grade 1-2 limb edema was reported and one each grade 1

nausea and vomitus were also reported. Both patients died 10

and 14 months after going off study.

Trial 2: GemTABS. The second trial was for pancreatic cancer

(NCT01198821) patients being treated with gemcitabine under

IND108551, entitled “APhase I Study of Oral SodiumBicarbonate

in Patients with Unresectable Pancreatic Carcinoma Treated with

Gemcitabine (Gem-TABS)” with a 27-month projected accrual of

35 patients. Gemcitabine has complex ionization behavior with an

acid pKa of 11.65 (neutral below this value) and a base pKa of 4.47

(neutral above this value) indicating that its ionization state would

not be altered between a native tumor pH of 6.5 or the bicarbonate

treatedpHof7.0. Projecteddose levels1-4ofNaHCO3were0.3, 0.5,

0.7, 1.0 g/kg/d; with same patient dose escalation allowed after 2

weeks at dose if the patient experienced no treatment-related

adverse events. The trial was opened 08/27/2010 and closed on
TABLE 1 GemTABS adverse events.

Grade 1 Grade 2 Grade 3 Grade 4

diarrhea 1 1

vomiting 1 1

edema 2
fron
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06/22/2011. A total of eight (8) patients were accrued to this trial.

Treatment-related adverse events included diarrhea, limb edema

and vomitus (Table 1). Half of the patients reported grade 1-3

fatigue, which was not ascribed as treatment related. One patient

acquired a non-treatment related biliary tract infection, leading to

hospitalization. The first three patients completed the level 1 dose

with no grade 3 AEs. Escalation to dose level 2 was performed on

two patients, who voluntarily withdrew from the trial after 11 and

26 days. As a consequence, subsequent patients were accrued at

dose level 1. Overall Survival (OS) ranged from 44-718 days after

initiation of trial, with a median OS of 220 days after consent

(Table 2). A median OS of 170-177 days was reported in the

gemcitabinemonotherapy arms in the registration (51) and follow-

up (52) trials. The difference between OS in the treated and

bicarbonate groups was not significant.

These trials demonstrate multiple limitations of powdered

NaHCO3. First, virtually every patient complained about the

taste, which led to poor compliance. Second, there was an issue

of dosing as, upon questioning, patients experiencing GI issues

were likely taking too large of doses of NaHCO3, which is an

emetic, at a single setting. The trial was designed so that doses

were split between 3-4 equal doses throughout the day, which

may have led to GI issues, such as vomitus and diarrhea.

Trial 3: PainCAPS. To mitigate these problems, NaHCO3

was re-formulated as 940 mg capsules under IND118182.

NCT01846429 was designed as a phase I/II palliative trial

entitled “A Phase I/II Study of Oral Bicarbonate as Adjuvant

for Pain Reduction in Patients with Tumor Related Pain”. The

phase I component included 3 patients per cohort (12 total) with

escalating dose levels of 10, 20, 30 and 40 capsules taken

throughout the day. Dose level 2 included a lead-in period of 3

weeks at dose level 1 prior to escalating to dose level 2. Each dose

level was designed to last 3 weeks, after which patients were

allowed to choose to leave the trial, stay on trial at the same dose,

or escalate dose. The trial was opened on 09/10/2013 and

terminated on 10/12/2015 with a final accrual of 9 evaluable

subjects. 100% of the patients reported grade 1-2 GI disorders

including vomitus. One had grade-2 limb edema, and one

patient experienced grade 3 hypokalemia and was removed

from study (Table 3). All nine evaluable patients stayed on
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study for the planned 3-weeks, and eight of these opted to

continue at the same dose or escalate to dose level 2 following the

initial lead in (Table 4). Patients were asked to maintain a pain

diary, and tumor-related pain levels were recorded weekly on a

scale of 1 (no pain) to 10 (excruciating). Across all participants,

there was a significant (by Wilcoxon signed-rank test; trial

NCT01846429) reduction in perceived pain from the baseline

5.25 ± 1.16 to 3.62 ± 1.88 (P = 0.010) within the first 3 weeks, and

this level of significance was no different for patients who stayed

on therapy for >6 weeks: 3.86 ± 1.54 (p = 0.013). On an

individual patient basis, 4 of 9 patients had a reduction in pain

score after 3 weeks that was greater than 1 S.D. from a baseline

established over the first 3 measurements in the first 2 weeks.
Discussion

We could not increase the dose of any of the oral sodium

bicarbonate trials, because of taste, GI, and edema. Hence, we

presume that sodium bicarbonate buffer monotherapy is not

clinically feasible but there is some data to suggest the strategy of

reducing intratumoral acidosis may have a favorable effect on

cancer related pain. We suggest coupling the sodium carbonate

therapy with other treatments to enhance the efficacy, this

includes chemotherapy, and immunotherapy. As we

mentioned previously, adding buffer therapy to immune

blockade in mice increased response rates up to 3-fold (12).

A potential alternative strategy might reduce the requirement

for supplement NaHCO3 therapy be following an “alkaline diet”,

as discussed in (27, 53). One of the counteracts to the buffer

therapy benefit is western diets since it is typically acidic. Hence,
TABLE 2 GemTABS accrual.

pt # gender final dose days on Tx OS (days)

1 f 1 126 239

2 m 1 56 197

3 m 1 63 88

4 f 2 11 319

5 m 2 26 201

6 f 1 28 320

7 f 1 82 718

8 m 1 15 44
TABLE 3 PainCAPS adverse events.

Grade 1 Grade 2 Grade 3 Grade 4

hypokalemia 1

GI/vomitus 23 9

edema
fron
TABLE 4 PainCAPS accrual.

pt # gender final dose days on Tx OS (days)

1 f 1 36 NA

2 m 1 28 116

3 m 1 32 42

4 f 2 7 NA

5 f 2 15 NA

6 f 2 34 34

7 f 2 32 218

8 m 2 35 132

9 m 2 41 NA
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modifying the diet to include high protein content can add to the

buffering benefit of the sodium bicarbonate. As published

previously, this diet should contain low sulfur concentration

because its oxidation will result in increased acidity and thus

inhibit the net buffering effect. Essential amino acids have to be

added to diet since it cannot by synthetized by the body (54).

The potential renal acid load (PRAL) is an effective way to

measure the amount of acid produced by different types of food.

Measuring the urine pH that correspond to each food dose level,

coupled with the protein to potassium ratio (protein/K+) (55).

This food buffering mechanism completely differ from the

sodium bicarbonate buffering. The bicarbonate buffering

creates “compensated metabolic alkalosis”, where kidneys

secrete hydrogen ions because of the increased bold

bicarbonate levels (56), which then lead to the increase of pHe

in tumor microenvironment (57).

We have shown in multiple pre-clinical systems that oral buffers

(e.g., bicarbonate, imidazoles, Tris, lysine) explicitly increase tumor

pHwithout changing systemic pHbalance. These rarely affect growth

of large primary or metastatic tumors but do inhibit small cancers

thus preventing carcinogenesis or spontaneous metastases. To

translate these studies into the clinic we started phase I/II clinical

trials of buffer as a single agent in pain management trials

(NCT01350583/01846429) and pancreatic cancer patients

(NCT01198821). However, these trials failed to accrue due to poor

compliance because of unpleasant taste and/or GI disturbances.

However, data from one trial did show a decrease in tumor-related

pain suggesting clinical efficacy may be significant if alternative

treatment strategies can be devises. Thus, we suggest investigating

pharmacological alternatives to achieve the same result (i.e., reducing

tumor acidity). As one possible solution to this issue, we have

developed a point-based plan to achieve the same buffering with a

combination of diet, supplements and buffers (Urbase®), that will be

added to a trialwith support fromAnti-cancer Foundation (Brussels).
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