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Background: Biomarkers that predict the efficacy of first-line tyrosine kinase

inhibitors (TKIs) are pivotal in epidermal growth factor receptor (EGFR) mutant

advanced lung adenocarcinoma. Imaging-based biomarkers have attracted

much attention in anticancer therapy. This study aims to use the machine

learning method to distinguish EGFR mutation status and further explores the

predictive role of EGFR mutation-related radiomics features in response to

first-line TKIs.

Methods: We retrospectively analyzed pretreatment CT images and clinical

information from a cohort of lung adenocarcinomas. We entered the top-

ranked features into a support vector machine (SVM) classifier to establish a

radiomics signature that predicted EGFR mutation status. Furthermore, we

identified the best response-related features based on EGFR mutant-related

features in first-line TKI therapy patients. Then we test and validate the

predictive effect of the best response-related features for progression-free

survival (PFS).

Results: Six hundred ninety-two patients were enrolled in building radiomics

signatures. The 13 top-ranked features were input into an SVM classifier to

establish the radiomics signature of the training cohort (n = 514), and the

predictive score of the radiomics signature was assessed on an independent

validation group with 178 patients and obtained an area under the curve (AUC)

of 74.13%, an F1 score of 68.29%, a specificity of 79.55%, an accuracy of 70.79%,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.985284/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.985284/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.985284/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.985284/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.985284/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.985284/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.985284/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.985284&domain=pdf&date_stamp=2022-08-16
mailto:wulin-calf@yeah.net
https://doi.org/10.3389/fonc.2022.985284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.985284
https://www.frontiersin.org/journals/oncology


Jiang et al. 10.3389/fonc.2022.985284

Frontiers in Oncology
and a sensitivity of 62.22%. More importantly, the skewness-Low (≤0.882) or

10th percentile-Low group (≤21.132) had a superior partial response (PR) rate

than the skewness-High or 10th percentile-High group (p < 0.01). Higher

skewness (hazard ratio (HR) = 1.722, p = 0.001) was also found to be

significantly associated with worse PFS.

Conclusions: The radiomics signature can be used to predict EGFR mutation

status. Skewness may contribute to the stratification of disease progression in

lung cancer patients treated with first-line TKIs.
KEYWORDS

lung adenocarcinoma, computed tomography, radiomic response biomarker,
epidermal growth factor receptor mutation status, machine learning
Introduction

Lung cancer is the most prevalent cancer worldwide, causing

the highest cancer-related death rate of all malignancies (1).

Adenocarcinoma comprises 80% of non-small cell lung cancer

(NSCLC), and epidermal growth factor receptor (EGFR)

mutations mostly appear in this subtype (2, 3). With the

discovery and development of tyrosine kinase inhibitors

(TKIs), the clinical treatment strategy for advanced activating

EGFR mutation lung adenocarcinoma has evolved into a

personalized approach (4, 5). Based on the National

Comprehensive Cancer Network (NCCN) and Chinese Society

of Clinical Oncology (CSCO) guidelines, EGFR TKIs have been

approved as first-line standard therapy for driver mutation-

positive metastatic adenocarcinoma based on studies that have

shown better survival than chemotherapy (3, 6–9).

Nowadays, the individual diagnosis and treatment of EGFR-

mutant lung adenocarcinoma depend on invasive biopsy testing.

However, low DNA quality and testing methods can limit the

reliability of results and sequencing applications (10–14).

Furthermore, the EGFR mutation result was only determined

by a part of tumor tissue, ignoring the heterogeneity of the entire

tumor, which might be the reason for the inconsistent treatment

outcome. When patients preliminarily elect for EGFR-TKI

therapy only based on EGFR mutation, their response will not

last long and varies so markedly after treatment (4, 9, 15). In

sum, it is crucial and urgent to use the whole picture of the

tumor to predict the potential resistance or the likelihood of

rapid progression comprehensively before patients receive

EGFR TKIs.

Radiomics is a non-invasive and high-throughput image

assessment approach based on medical imaging (16, 17). A

correlation between radiomics features and underlying

intertumoral heterogeneity of lung cancer has been observed
02
(18–26). Furthermore, molecular images have been used to

identify patients with different therapeutic outcomes of EGFR-

TKI therapy (27–30). Tian et al. built a signature to discriminate

lung cancer patients with rapid and slow progression to EGFR-

TKI therapy using the least absolute shrinkage and selection

operator (LASSO) Cox regression model based on two-direction

imaging data. Cook et al. found the association between features

and survival by Cox regression analyses. However, compared to

the predictive model that was made of an ‘unknown process’,

oncologists tend to identify some specific image features and link

them to the medical explanation.

Hence, our study aimed to locate some specific image

features that were highly related to the survival outcome and

could be linked to clinical practice. We proposed a radiomics

signature based on all three computed tomography (CT) image

dimensions for predicting EGFR mutation status. We further

explored in-depth the relevance between EGFRmutation-related

features and risk stratification of progression-free survival (PFS)

in EGFR mutant advanced adenocarcinoma.
Materials and methods

Patients

The institutional research board of Hunan Cancer Hospital

(Changsha, China) approved this retrospective study. A total of

1,219 lung adenocarcinoma patients at Hunan Cancer Hospital

were initially collected between July 2013 and September 2019.

Patients were included in this research based on the following

inclusion criteria: 1) pathologically confirmed primary

pulmonary adenocarcinoma in our institute, 2) there are

measurable target lesions under the Response Evaluation

Criteria in Solid Tumors version 1.1 (RECIST v 1.1), 3) next-
frontiersin.org
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generation sequencing-proven EGFR mutational status by

tumor tissue sample, and 4) available patient characteristic

clinical data. Finally, 692 patients were included in our study.

Furthermore, clinical data were collected, including therapy

protocol, response evaluation, and follow-up material. In the

process of building the predictive radiomics signature, patients
Frontiers in Oncology 03
confirmed between 1 July 2013 and 1 May 2018 were enrolled in

a training cohort, and those confirmed between 1 June 2018 and

1 September 2019 were enrolled in a test cohort (Figure 1).

Response assessment routinely took place 4–6 weeks after

treatment completion by diagnostic CT scans and laboratory

tests according to the RECIST v 1.1. PFS is the study endpoint
FIGURE 1

Images show study processing of radiomics. Computed tomography (CT) data were retrospectively collected. Region of interest was manually
segmented in axial view by a clinical doctor using imaging biomarker explorer software. Eight categories of radiomics features were extracted
from region of interest (ROI) in CT images and next, the top 13 features to train support vector machine classifier and validate it on independent
set (n = 178). Experiment 1 is for developing radiomics signature for epidermal growth factor receptor (EGFR) mutational status in lung
adenocarcinoma. Experiment 2 is for analyzing the relationship between progression-free survival and the top 13 features.
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considered the time from the initiation of therapy to

confirmation of progression or death.
CT scanning protocol

All thoracic CT examinations were performed at Hunan

Cancer Hospital. CT images of all patients were acquired on CT-

on-rails (Brilliance CT 16, Hunan Tumor Hospital, Changsha)

with the following parameters: a 5.0-mm slice thickness

reconstruction, 313-mA tube current, and 120-kV peak voltage.
Tumor imaging segmentation and
feature extraction

In this study, all nodules were identified by a radiologist

with more than 10 years of experience, and the clinician

manually annotated the regions of interest (ROIs) on axial

view piece by piece using imaging biomarker explorer (IBEX)

software (31, 32). In the end, each ROI of the subject was

reviewed by a radiologist. Imaging features were extracted by

the PyRadiomics toolbox (33), which is an open-source

python software package. To mine rich radiomics, each

original image was processed by eight image filters. 1)

Wavelet filter: yields eight decompositions per level (all

possible combinations of applying either a high- or low-

pass filter in each of the three dimensions). 2) Laplacian of

Gaussian filter: edge enhancement filter, emphasizes areas of

gray-level change, where sigma defines how coarse the

emphasized texture should be. A low sigma emphasis on

fine textures (change over a short distance), where a high

sigma value emphasizes coarse textures (gray-level change

over a large distance). 3) Square: takes the square of the image

intensities and linearly scales them back to the original range.

4) SquareRoot: takes the square root of the absolute image

intensities and scales them back to the original range. 5)

Logarithm: takes the logarithm of the absolute intensity + 1.

6) Exponential: takes the exponential, where filtered intensity

is e^(absolute intensity). 7) Gradient: returns the magnitude

of the local gradient. 8) Local Binary Pattern: computes the

Local Binary Pattern in a by-slice operation (two-dimensional

(2D)) and three-dimensional (3D) using spherical harmonics

(34). Then, the features were quantified by the following eight

categories of imaging features: 1) first-order statistics with 19

features, 2) 3D shape-based with 16 features, 3) 2D shape-

based with 10 features, 4) gray-level co-occurrence matrix

(GLCM) with 24 features, 5) gray-level run length matrix

(GLRLM) with 16 features, 6) gray-level size zone matrix

(GLSZM) with 16 features, 7) neighboring gray-tone

difference matrix (NGTDM) with five features, and 8) gray-

level dependence matrix (GLDM) with 14 features. In the end,
Frontiers in Oncology 04
2,153 quantitative radiological features from each ROI

were obtained.
Feature selection and signature building

The Mann–Whitney statistical test (13) was first

conducted to distinguish the redundant features. Each

feature with a p-value >0.05 was redundant and eliminated.

After redundant features were removed, the residual

parameters were normalized by the z-score method, which

is widely used in machine learning. Then, the feature where

the variance is equal to zero was removed again. To further

decrease the dimension, the minimum redundancy maximum

relevance (mRMR) method was used to determine the most

remarkable radiomics features.

Finally, the top-ranked radiomics features were entered into

a support vector machine (SVM) classifier to establish a

radiomics signature that predicts EGFR mutation status. The

parameters of the classifier were optimized by a grid searching

technology on the training cohort using 10-fold cross-validation.

The radiomics signature with the best accuracy was confirmed.

Previous studies have shown that clinical features are associated

with the outcome of lymph node metastasis (35). In this study,

we found a radiomics signature based on the top-ranked features

and then added critical clinical features to explore the predictive

score of EGFR mutation status.
Evaluation of radiomics signature

The performance of the radiomics signature in predicting

EGFR mutation status was estimated by the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve. In

addition, accuracy, sensitivity, specificity, and an F1 score were

also used to measure the signature.
Statistical analysis

Statistical analysis was performed with SPSS version 22.

The independent-samples t-test was used to evaluate the

difference in median age between the EGFR-positive and

EGFR-negative groups. The chi-square test was used for

statistical analysis of gender, tumor stage, smoking history,

family history, and tumor position. In the EGFR mutational

advanced patients, the cutoff points of statistically significant

features were defined by the AUC value of the ROC curve.

Survival analysis included patients with disease progression

treated with first-line EGFR TKIs. Based on the cutoff points,

the chi-square test was used to identify the relationship

between radiomics features and the best response. Cox

regression analysis was used to explore the predictive
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https://doi.org/10.3389/fonc.2022.985284
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.985284
capability of the best response-related features for PFS.

Parameters with a p-value <0.1 in univariate analysis were

selected in multivariate Cox proportional hazards regression

analysis. The results were presented as hazard ratio (HR) and

95% CI. The reported statistical remarkable levels were all

two-sided, and p-values <0.05 were significant.
Results

Patient characteristics

The clinicopathologic features of patients are shown in

Table 1. In all patients, 355 patients with confirmed EGFR-

positive type were enrolled, while 337 patients were EGFR

wild type. Most patients were diagnosed with inoperable stage
Frontiers in Oncology 05
III or IV disease (677/692, 97.8%), and 50.4% of 692 patients

were former or act ive smokers (Table 1) . Pat ient

characteristics including age, gender, and smoking history

were demonstrated to be different between EGFR-positive

and EGFR-negative type cohorts, which is consistent with a

previous clinical study (Table 1).

Two hundred twenty-five patients with EGFR mutation

who experienced disease progression following first-line TKI

therapy were included in the efficacy analysis presented in

Table 2. The median follow-up time was 1 year (range, 0.7–

37.7 months). In the training and validation cohorts (187 and

38 cases, respectively), the results showed no significant

difference in PFS (median PFS: training cohort, 12 months;

validation cohort, 11.8 months; Mann–Whitney, p = 0.304).

Moreover, there were also no significant differences (p > 0.05)

regarding age, gender, smoking history, family history, tumor

stage, and position between the two cohorts (Table 2).
TABLE 1 Clinical characteristics of all patients included in the study.

Factors Training cohort p-Value Validation cohort p-Value

EGFR-wild EGFR-mutant EGFR-wild EGFR-mutant

Subject (N) 514 178

Age (years) 57 ± 9 55 ± 4 <0.001b 57 ± 11 59 ± 9 <0.001b

Gender <0.001b <0.001b

Male 171 136 76 40

Female 78 129 12 50

Smoking history <0.001b <0.001b

Yes 158 95 67 29

No 91 170 21 61

Family history 0.417 0.565

Yes 31 26 11 15

No 218 239 77 75

TNM stagea 0.717 0.076

I 2 2 0 1

II 5 3 2 0

III 42 38 11 4

IV 200 222 75 85

Tumor position 0.853 0.116

RUL 81 87 18 27

RML 20 27 12 16

RLL 45 52 14 16

LUL 66 63 17 18

LLL 37 36 27 13

EGFR mutation type 0 265 0 90

Wild type 249 0 88 0

Exon 19 deletion 0 167 0 58

Exon 21 insertion 0 89 0 31

Other types 0 9 0 1
front
EGFR, epidermal growth factor receptor; RUL, right upper lung; RML, right middle lung; RLL, right lower lung; LUL, left upper lung; LLL, left lower lung.
aBased on American Joint Committee on Cancer (AJCC) 8th edition.
bOnly statistically significant (p < 0.05) results are reported for analysis.
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Building and validating the predictive
radiomics signature for epidermal
growth factor receptor mutation status

The feature with a p-value >0.05 was excluded using the

Mann–Whitney statistical test. Thus, the number of radiomics

features was reduced from 2,153 to 1,545. Then, 13 normalized

features with variance equal to zero were removed. The

residual 1,532 features were sorted using mRMR algorithm to

pick the 13 top-ranked features (34), including six (skewness,

minimum, kurtosis, variance, minimum, and 10th percentile)

in the Firstorder features that describe the distribution of voxel

intensities within the image region defined by the mask

through commonly used and bas i c met r i c s , one

(SumSquares) in the gray-level co-occurrence matrix features

that describe the second-order joint probability function of an

image region constrained by the mask and is defined, three
Frontiers in Oncology 06
(SizeZoneNonUniformity, HighGrayLevelZoneEmphasis, and

ZoneVariance) in the gray-level size zone matrix features that

quantify the number of connected voxels sharing the same

gray-level intensity in an image, and three (LargeDependence

HighGrayLevelEmphasis, LargeDependenceHighGrayLevel

Emphasis, and DependenceEntropy) in the gray-level

dependence matrix features that quantify the number of

connected voxels within distance, which are dependent on

the center voxel in an image. Then, the top-ranked features

and four clinical features (age, gender, smoking, and tumor

family history) were input into the SVM classifier to establish a

radiomics signature that predicts EGFR mutation status in the

training group (n = 514). The predictive score of the radiomics

signature was assessed on an independent validation group

with 178 patients and obtained an AUC of 74.13%, an F1 score

of 68.29%, a specificity of 79.55%, an accuracy of 70.79%, and a

sensitivity of 62.22% (Figure 2).
TABLE 2 Clinical characteristics of patients included in treatment response analysis.

Factors Training cohort Validation cohort p-Value
N (%) N (%)

Subject(N) 187 (100) 38 (100)

Age(years) 0.114

Median 55 57

Range 29–80 37–75

Gender 0.707

Male 80 (42.8) 15 (39.5)

Female 107 (57.2) 23 (60.5)

Smoking history 0.894

Yes 57 (30.5) 12 (31.6)

No 130 (69.5) 26 (68.4)

Family history 0.469

Yes 19 (10.2) 6 (15.8)

No 168 (89.8) 32 (84.2)

TNM stagea 0.083

III 19 (10.2) 0 (0)

IV 168 (89.8) 38 (100)

Tumor position 0.466

RUL 57 (30.5) 9 (23.7)

RML 17 (9.1) 9 (23.7)

RLL 33 (17.7) 9 (23.7)

LUL 53 (28.3) 7 (18.4)

LLL 27 (14.4) 4 (10.5)

EGFR-TKI therapy 0.718

Gefitinib 66 13

Erlotinib 62 15

Icotinib 59 10

Median PFS (months) 12 11.8 0.304
front
PFS, progression-free survival; RUL, right upper lung; RML, right middle lung; RLL, right lower lung; LUL, left upper lung; LLL, left lower lung; EGFR, epidermal growth factor receptor;
TKI, tyrosine kinase inhibitor.
aBased on American Joint Committee on Cancer (AJCC) 8th edition.
iersin.org

https://doi.org/10.3389/fonc.2022.985284
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.985284
Identification of the best response-
related features based on 13 epidermal
growth factor receptor mutant-
associated features in epidermal growth
factor receptor tyrosine kinase inhibitor
therapy patients

To identify the imaging biomarkers candidates for the

best response of EGFR TKI first-line treatment, the 13 top-

rank radiomics features associated with EGFR mutation were

further used to explore by logistic analysis. The two features

that significantly negatively correlated with the best response

were skewness (p = 0.004) and 10th percentile (p = 0.002)

(Table S1). Skewness and 10th percentile were divided into

two groups based on predicting the best response. ROC curve

was applied to confirm the optimal cutoff points of significant

features. For skewness and 10th percentile, the AUC values

were 0.832 (p = 0.004, Youden’s index = 0.614) and 0.653 (p =

0.002, Youden’s index =0.289), respectively. The best cutoff

points of skewness and 10th percentile, as confirmed by the

AUC value, were 0.882 and 21.132, respectively.

Among the results from skewness, the skewness-L (≤0.882)

group had a superior partial response (PR) rate than had the

skewness-H (>0.882) group (89/117, 76.1% vs 27/108, 25.0%, HR

= 9.536, 95% CI: 5.189–17.52, p < 0.0001) (Figure 3, Table S2). For

the 10th percentile, the SD/PD rate was inferior in the 10th

percentile-H group (>21.132) than in the 10th percentile-L group

(≤21.132) (76/130, 58.5% vs 33/95, 34.7%, HR = 2.644, 95% CI:
Frontiers in Oncology 07
1.529–4.574, p = 0.0005) (Figure 3, Table S2). In conclusion, we

suggest that skewness and 10th percentile may be better predictive

markers for differentiating response to first-line EGFR TKIs.
Testing the correlation between the best
response-associated features and
progression-free survival

To explore whether advanced lung cancer patients with a

good curative outcome can be distinct, we tested the defined

cutoff points of the skewness of first-orders (≤0.882 versus

>0.882) and the 10th percentile of first-orders (≤21.132 versus

>21.132) in the training cohort (n = 187). Univariate analysis

revealed that the skewness > 0.882 (p = 0.001) and the 10th

percentile > 21.132 (p = 0.015) before treatment were associated

with a significantly worse PFS. We then carried out a

multivariate Cox proportional regression analysis containing

these covariates to ensure independent factors. The

relationship between two features and PFS was obvious in

multivariate analysis; for the skewness, HR = 1.722, 95% CI:

1.261–2.352, p = 0.001 (Figure 4A, Table 3); for the 10th

percentile, HR = 1.466, 95% CI: 1.085–1.981, p = 0.013

(Figure 4B, Table 3). Therefore, the skewness and 10th

percentile of first-order features at baseline level could be used

to predict the efficacy in EGFR-mutant advanced lung

adenocarcinoma following standard first-line EGFR-

TKI therapy.
FIGURE 2

The performance of epidermal growth factor receptor (EGFR) status-related radiomics signature was evaluated by the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve.
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Validation of the predictive effect of
skewness and 10th percentile features
for progression-free survival

Next, we intended to validate the clinical effect of the

skewness and 10th percentile of first-order features in the

validation cohort (n = 38). Here, we used the aforesaid cutoff

value in the training group: high skewness value (>0.882) versus

low (≤0.882) and high 10th percentile value (>21.132) versus low

(≤21.132). The correlation between the skewness of first-order

and PFS is consistent with the training cohort (Figure 4C,

Table 3). Probably due to the limited number of samples, we

did not observe a statistical difference between the 10th

percentile of first-order before treatment and PFS in the

validation cohort (Table 3). However, the skewness of first-

order is an effective biomarker that could better indicate the

response of first-line EGFR-TKI therapy.
Discussion

Therapeutic opportunities for EGFR mutant lung

adenocarcinoma patients have radically changed because of

the application of EGFR-TKI therapy. The response varies

markedly, and more objective markers are needed to identify

patients best suited for certain targeted therapies (4, 9, 15). EGFR

mutation types are a well-studied biomarker of response to TKI

therapy (6, 7, 36–41). Next-generation sequencing of tissue

samples is the standard technique of EGFR status detection.

Nevertheless, a biopsy is an invasive procedure of locating tissue

that ignores organizational heterogeneity of tumor and

microenvironment where distinct bioactive molecules can

drive tumor development and progression.
Frontiers in Oncology 08
Radiomics is a non-invasive technology that collects routine

clinical medical images to assess the tumor phenotype (16, 17).

Previous studies used clinical and radiomics models to predict

EGFR mutation status (13, 14, 21–26). The radiomics features

combined with the clinical factors had a greater prediction effect

(13, 14, 22). For example, Aerts et al. found that homogeneity,

inverse variance, sum entropy, short-run emphasis, maximum

diameter, and tumor volume radiomics features had important

roles in discriminating EGFR mutant status in lung

adenocarcinoma (14). These features belong to GLCM,

GLRLM, and shape features that reveal that EGFR mutation is

more likely to be heterogeneous. Similarly, Ye et al., in a single

group association study of lung adenocarcinomas, showed that

CT imaging characteristics including bubble-like lucency and

homogeneous enhancement were remarkably independent

predictive factors for EGFR-activating mutation (22). The deep

learning model also revealed that the deep learning features such

as circle or arch shapes and horizontal and diagonal edges had a

significant correlation between high-dimensional CT image

characteristics and EGFR genotype (26). Based on previous

research progress, we carried out new research for further

exploration in this study, and we confirmed a radiomics

signature by the SVM classifier combined with four clinical

factors to forecast EGFR status in advanced lung

adenocarcinoma using preoperative three-dimensional CT

images. The radiomics signature showed strong predictive

performance in the test group (AUC, 0.7413; specificity,

79.55%; accuracy, 70.79%). We found 13 radiological features

that were remarkably associated with EGFR mutations; the first-

order category had six features such as skewness, minimum,

kurtosis, variance, and 10th percentile, which describes the

distribution of voxel intensities within the image region

defined by the mask through commonly used and basic
FIGURE 3

Analysis of epidermal growth factor receptor (EGFR) mutation-associated features from computed tomography (CT) imaging before treatment
and the best clinical response to tyrosine kinase inhibitor (TKI) first-line therapy. All patients were divided into two groups according to the
cutoff of skewness and 10th percentile.
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B

C

A

FIGURE 4

Kaplan–Maier survival curves of progression-free survival under biomarker-defined subgroups. In the tyrosine kinase inhibitor (TKI) therapy
training cohort, (A) stratification by the skewness of first-order category (low ≤ 0.882 versus high > 0.882); (B) stratification by the 10th
percentile of first-order category (low ≤ 21.132 versus high > 21.132). In the TKI therapy validation cohort, (C) stratification by the skewness of
first-order category (low ≤ 0.882 versus high > 0.882). p-Values are calculated with multivariate Cox models adjusted by age, gender, smoking
history, family history, TNM stage, and tumor position.
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metrics (34). The GLSZM and GLDM categories had three

features each. The GLSZM is defined as the gray-level zone

quantization of connected voxel numbers that share the same

gray-level intensity in an image, while GLDM quantifies gray-

level dependencies defined as the number of connected voxels

within a distance that are dependent on the center voxel in an

image. Together, the representation of these features indicates

tumor heterogeneous related to EGFR mutation phenotype,

which provides an alternative non-invasive way easily to

forecast EGFR status in routine CT diagnosis and supply a

good supplement to biopsy in real clinical practice.

Radiomics markers that can predict the efficacy of first-line

EGFR-TKI therapy are now more needed; we also have found

two CT features for progression risk stratification to first-line

EGFR-TKI remedy in advanced lung adenocarcinoma. The

skewness and 10th percentile of first-order features included in

ROI preprocessed by gradient and exponential filter,

respectively, were significantly negatively correlated with the

best response and PFS of EGFR TKI therapy. Few studies used

radiomics to explore the response of targeted therapy. For

example, Jie Tian et al. extracted features from two-directional

CT images and used the LASSO Cox regression analysis to select

12 CT features for discriminating between patients with rapid

and slow progression to EGFR TKI therapy. The 12 CT features

are part of GLCM, GLRLM, and first-order features (30).

However, our study retrospectively obtained more

comprehensive data of the tumors in 3D from CT images and

was the first to further explore the relationship between EGFR

mutation-related features and the response of EGFR TKI
Frontiers in Oncology 10
therapy in advanced lung adenocarcinoma. To date, several

studies have found the first-order features with response and

prognosis of EGFR TKI therapy, including energy, standard

deviation, uniformity, and entropy (26, 30), but we are the first

to find the predictive value of other first-order features for the

best response and PFS. The skewness feature assesses the

asymmetry of the distribution of values about the mean value,

while the 10th percentile represents the first 10% proportion of

voxels with positive order of susceptibility. The two features

indicated the whole tumor heterogeneity and the asymmetry

distribution of tumor parenchyma, which corresponds to the

inhomogeneity of gross findings in CT images checked by the

radiologist. It could explain why radiomics characteristics reveal

treatment outcomes, while further work is needed to explore the

potential mechanisms of the above features and predict the

efficacy of lung cancer.

There are several limitations that could not be ignored. First,

this was a retrospective study and CT images were acquired with

5-mm slice thicknesses, which is indeed used in hospitals.

Although we may ignore some tumor information, our results

are certainly closer to practice. Second, given that this was a

single-center study, the study lacks an external validation group

of patients, which is a key component of radiological analyses,

and required validation in a larger patient population study.

Third, our investigation only concentrated on EGFR mutation

status. The interrelationship among radiomics features, EGFR,

and other driver mutations (i.e., ROS-1, ALK, and c-Met) is

unknown but could be studied in future research. Nonetheless,

the study still had significant positive results. Further assessment
TABLE 3 Multivariate analysis of the categorization of two features and PFS.

Factors Categorization Training cohort (N=187) Validation cohort (N=38)

HR (95% CI) p-Value HR (95% CI) p-Value

Age Continuous 0.992 (0.976–1.009) 0.368 1.015 (0.976–1.055) 0.461

Gender Female vs male 1.181 (0.751–1.856) 0.471 0.719 (0.154–3.360) 0.675

Smoking history No vs yes 0.994 (0.609–1.621) 0.98 0.822 (0.180–3.744) 0.8

Family history No vs yes 1.246 (0.764–2.031) 0.378 1.019 (0.357–2.907) 0.972

TNM stagea III vs IV 0.854 (0.517–1.413) 0.54 0 0

Tumor position RUL vs RML vs RLL vs LUL vs LLL 0.980 (0.887–1.083) 0.695 0.879 (0.671–1.153) 0.352

Skewness ≤Cutoff1c vs >cutoff1c 1.722 (1.261–2.352) 0.001b 3.343 (1.337–8.361) 0.01b

Age Male vs female 0.995 (0.979–1.012) 0.579 0.998 (0.961–1.036) 0.905

Gender Continuous 1.154 (0.740–1.800) 0.528 1.694 (0.425–6.748) 0.455

Smoking history 0 or 1 vs 2 0.870 (0.534–1.416) 0.575 0.437 (0.109–1.751) 0.243

Family history No vs yes 1.128 (0.694–1.833) 0.628 0.638 (0.237–1.718) 0.374

TNM stagea First vs second 0.682 (0.418–1.111) 0.124 0 0

Tumor position RUL vs RML vs RLL vs LUL vs LLL 0.996 (0.902–1.101) 0.943 1.013 (0.798–1.285) 0.919

10th percentile ≤Cutoff2c vs >cut0ff2c 1.466 (1.085–1.981) 0.013b 1.122 (0.492–2.561) 0.784
fron
PFS, progression-free survival; EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; RUL, right upper lung; RML, right middle lung; RLL, right lower lung; LUL, left
upper lung; LLL, left lower lung; HR, hazard ratio; CI, confidence interval.
aBased on American Joint Committee on Cancer (AJCC) 8th edition.
bOnly statistically significant (p < 0.05) results are reported for analysis.
cCutoff1 = 0.882; Cutoff2 = 21.132.
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of two indicators could be contained together with other

predictive biomarkers in the evaluation of lung and other solid

tumor patients who are candidates for treatment efficacy.
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