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Apoptosis, as a very important biological process, is a response to

developmental cues or cellular stress. Impaired apoptosis plays a central role

in the development of cancer and also reduces the efficacy of traditional

cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family

have pro- or anti-apoptotic activities and have been studied intensively over

the past decade for their importance in regulating apoptosis, tumorigenesis,

and cellular responses to anticancer therapy. Since the inflammatory response

induced by apoptosis-induced cell death is very small, at present, the

development of anticancer drugs targeting apoptosis has attracted more and

more attention. Consequently, the focus of this review is to summarize the

current research on the role of BCL-2 family proteins in regulating apoptosis

and the development of drugs targeting BCL-2 anti-apoptotic proteins.

Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis

was also explored. All the findings indicate the potential of BCL-2 family

proteins in the therapy of cancer.
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1 Introductions

Apoptosis is a genetically regulated form of cell death, which is responsible for the

programmed culling of cells during the process of maintaining normal development and

homeostasis in eukaryotes (1). As an important physiological process, apoptosis

selectively clears cells and is widely considered to be a crucial mechanism for

regulating death. It occurs not only when cells are damaged or under external stress

but also during normal cell development and morphogenesis (2). So far, researchers have

identified two major apoptotic pathways, i.e., the exogenous and endogenous pathways,

both of which have cell death as their ultimate goal (3). Among them, the exogenous

pathway, also called the “death receptor” pathway, is activated by pro-apoptotic stimuli
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outside the cell, whereas the endogenous (mitochondrial)

pathway, as the name suggests, is activated by the intrinsic

mechanisms of the cell itself (3). Evasion of apoptosis can lead

to the development of cancer, which is fundamental to cancer

pathogenesis (3).

Members of the B-cell lymphoma 2 (BCL-2) protein family

are key regulators with pro- and anti-apoptotic activities. These

regulators are held in a fine, delicate balance in healthy cells.

Actually, they can cause cells to irreversibly head toward cell

death or, conversely, allow cells to permanently escape apoptosis

and make themselves a malignant clone (4). Over the past two

decades, members of the BCL-2 family have been identified and

classified according to their domains and functions.

Characterized by the presence of short conserved sequence

regions (BCL-2 homology [BH] motifs), the proteins of BCL-2

family are classified into three subgroups, i.e., the anti-apoptotic/

pro-survival proteins represented by BCL-2 and BCL-XL, the

pro-apoptotic proteins represented by BAX and Bak, and the

pro-apoptotic BH3-only proteins represented by BAD and

BID (5).

Generally, malignant tumors are mainly treated by hand

surgery, radiotherapy, chemotherapy, immunotherapy, and

targeted therapy. Of these, chemotherapy is currently one of

the most effective, despite its many side effects (2), and small-

molecule inhibitors are a representative strategy for cancer-

targeted therapy. The mechanism of action of the targeted

therapy is that drug molecules cause loss of protein function

by occupying the binding pocket or active site of the target

protein (4). Since the expression of Bcl-2 protein in tumor cells is

much higher than that in normal cells, inhibitors targeting it

have little effect on normal cells. Consequently, overcoming the

resistance of tumor cells to apoptosis by inhibiting the BCL-2

anti-apoptotic protein is a novel therapeutic regimen based on

tumor pathogenesis (6). Due to their multiple functions in

cancer, BCL-2 family proteins have become interesting targets

for anticancer drugs, which can protect tumor cells from

apoptosis under various endogenous and exogenous pressures

(7). For instance, Venetoclax (ABT-199), the first commercially

available selective BCL-2 inhibitor, is primarily approved for

treating chronic lymphocytic leukemia (CLL) and acute myeloid

leukemia (AML) (8, 9). Targeting anti-apoptotic proteins of the

BCL-2 family can promote apoptosis to overcome tumor

chemotherapy resistance (10–12).

However, mutations in drug binding sites are a common

mechanism by which malignant cells evade therapy. Studies have

shown that mutations in the BCL-2 and BAX proteins are

frequently detected in several types of cancers, suggesting that

they play crucial roles in elucidating molecular mechanisms

driving oncogenic transformation (13) and drug resistance (14).

For example, the BCL-2 F104L and F104C mutations were

observed as venetoclax-resistance mutations in a mouse tumor

model (15) and induced drug tolerance in human cell lines (16).

Compared to wild-type BCL-2, this mutation reduces the
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binding affinity of BCL-2 to venetoclax without altering the

affinity for BAX and BIM, thus allowing the mutant protein to

maintain the pro-survival effect (17). Therefore, mutations in

BCL-2 family proteins require further studies to address the role

of BCL-2 mutations in disease etiology, their pathways to

pathogenesis, and the impact of these mutations on

drug response.

Presently, the purpose of this review is to highlight the

current findings on the role of BCL-2 family proteins in

regulating apoptosis and the development of drugs targeting

BCL-2 anti-apoptotic proteins. Additionally, the mechanism of

BCL-2 family proteins in regulating apoptosis was also

discussed. All the findings indicate the potential of BCL-2

family proteins in the therapy of cancer with the aim of

improving patient survival.
2 The structural domains of BCL-2
family proteins

Generally, the BCL-2 family proteins possess four conserved

BCL-2 homology (BH) domains, named BH1, BH2, BH3, and

BH4, which are made up of eight a-helical fragments linked

together (5). The highly conserved BH domain is an important

basis for the function of BCL-2 family molecules. According to

the homology and function of each protein, the BCL-2 family of

proteins found in mammals is divided into three subfamilies, i.e.,

anti-apoptotic proteins represented by BCL-2 and BCL-XL, pro-

apoptotic proteins represented by BAX and BAK, and BH3-

domain-only proteins represented by BAD and BID (18).

Among them, anti-apoptotic proteins exert anti-apoptotic

activity and share a sequence homology particularly within four

regions, BH1 (BCL-2 homology)–BH4 (19). Pro-apoptotic

proteins exert pro-apoptotic activities and share sequence

homology at BH1, BH2, and BH3, but not at BH4, although

significant homology at BH4 is also noticed in some members. In

addition, BH3-domain-only proteins have pro-apoptotic

activities and share a sequence homology only within BH3 and

are thus called BH3-only proteins (20).

Moreover, during these domains, the BH4 domain is

responsible for stable binding and covers the BH3 domain,

thus inhibiting the pro-apoptotic effect of BCL-2 family

proteins. Also, the BH3 domain is a necessary structure for the

combination of pro-apoptotic proteins and anti-apoptotic

proteins to form dimers and is also a necessary domain for the

pro-apoptotic function of BCL-2 family members. With respect

to the BH4 domain, it plays a significant role in the anti-

apoptotic function of BCL-2 family proteins since once the

BH4 domain was knocked out, BCL-2 completely lost its anti-

apoptotic ability and had no effect on BCL-2 binding to form a

dimer. The BH4 domain is also unique to apoptotic proteins. Its

deletion can cause the protein to lose its anti-apoptotic function
frontiersin.org

https://doi.org/10.3389/fonc.2022.985363
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qian et al. 10.3389/fonc.2022.985363
and even produce a pro-apoptotic mutant. In addition, the BH4

domain interacts with other effector molecules and apoptosis

regulators outside the BCL-2 family to participate in

angiogenesis, autophagy, and other apoptosis pathways (21).

Table 1 summarizes the subfamily groups, domains, and relative

molecular weights of the BCL-2 family proteins.
2.1 Anti-apoptotic proteins of the
BCL-2 family

Traditionally, the anti-apoptotic proteins of the BCL-2

family are determined by their anti-apoptotic activities and the

presence of BH4 and transmembrane domains for anchoring to

cellular membranes (22). Through affecting mitochondrial

membrane permeability change, the anti-apoptotic proteins of

the BCL-2 family participate in the regulation of apoptosis.

Herein, we focus on the BCL-2 anti-apoptotic subfamily and

known isoforms. These anti-apoptotic multidomain proteins

contain BCL-2, BCL-2-like 1 (BCL-XL), BCL-2-like 2 (BCL-

W), BCL-2-related protein A1 (BFL-1), and myeloid cell

leukemia-1 (MCL-1) mainly present in mitochondria (23–25).

2.1.1 BCL-2
BCL-2 is the most characteristic anti-apoptotic protein in the

BCL-2 protein family. The protein size is 26 ku and is located on

chromosome 18. It can inhibit apoptosis by forming a

heterodimer with BAX and ensure cell survival by regulating

the Ca2t concentration and antioxidant effect (26). Additionally,

it can also inhibit the activities of caspase-9, 3, 6, and 7 (27),

thereby inhibiting apoptosis, prolonging the survival time of

tumor cells and causing malignant transformation of cells (28).

2.1.2 BCL-XL
The BCL-XL gene, which has a similar structure to the BCL-

2 gene, was first cloned in 1993 because the chicken gene could
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be crossbred with the mouse BCL-2 cDNA gene (29). The BCL-

XL protein is the first protein whose spatial structure has been

elucidated in the BCL-2 protein family (29). Among multiple BH

domain proteins, BCL-XL has the longest sequence in the region

spanning the BH domain (30). It is a protein that locates in the

outer membrane of mitochondria and nuclear membrane

transmembrane protein that binds to nuclear proteins and

regulate transcription factor activity (31). The high expression

of BCL-XL is combined with the proliferation, growth, and

metastasis of tumor cell invasion, tumor stem cell phenotypic

maintenance, angiogenesis, and invasive increase (32), which is

closely related to apoptosis resistance. Additionally, the

expression levels of BCL-XL protein is higher in cancer cells

than that in the standard cells. Through reducing the release of

mitochondrial cytochrome C, the BCL-XL protein prolongs the

survival time of transplanted cardiac myocytes (33).
2.1.3 BCL-W
First discovered by Gibson et al. in 1996 (34), BCL-W is

found on human chromosome 14q11 and is highly conserved

between humans and mice. It has a similar sequence with BCL-

XL (35) and has higher conformational flexibility. BCL-W

interacts with BAX and BAK as well as several BH3-only

proteins like BAD (36), BIM (37), and PUMA (38), as shown

by co-immunoprecipitation. Since the protein BCL-W is mainly

located in mitochondria and exists in the form of peripheral

membrane protein, BCL-W binds to the mitochondrial outer

membrane in normal corpuscles and is inserted into the

mitochondrial membrane structure in the course of apoptosis

(39). The level of BCL-W is controlled by a variety of signaling

pathways, and the transcriptional regulatory library is largely

dependent on the cell and developmental environment (40). In

addition, the half-life of BCL-W is short. As a highly regulated

protein, BCL-W helps aging and drug-resistant cells survive

(41). Its non-apoptotic role in promoting cell migration and

invasion is also elucidated (42).
TABLE 1 Subfamily groups, domains, and relative molecular weights of the BCL-2 family proteins.

Subfamily group Protein name Structural domain Molecular weight

Anti-apoptotic proteins BCL-2
BCL-XL
MCL-1
BCL-W
BFL-1

BH1.2.3.4
BH1.2.3.4
BH1.2.3
BH1.2.3.4
BH1.3

26 kDa
30 kDa
37 kDa
18 kDa
21 kDa

Pro-apoptotic proteins BAX
BOK
BAK
BCL-XS

BH1.2.3
BH1.2.3
BH1.2.3
BH3.4

21 kDa
25 kDa
23 kDa
19 kDa

BH3-domain-only proteins BAD
BIM
PUMA
BID

BH3
BH3
BH3
BH3

24 kDa
25 kDa
26 kDa
22 kDa
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2.1.4 BFL-1
BFL-1 is also known as GRS or BCL2A1 (murine) and

encodes 175 amino acids with a relative molecular mass of

20,100, which is among the smallest molecules in the BCL-2

family (43). BFL-1 includes highly conserved BH1 and BH2

domains and conserved BH3 and BH4 and can bond to

proapoptotic proteins like NOXA and BID (44). It locates in

mitochondria and performs anti-apoptotic functions (45). In

addition, the proliferation of macrophages and mast cells in the

allergic reaction (46) was promoted by BFL-1 binding to the

Beclin-1 protein. Depolarization of the mitochondrial

membrane and release of apoptotic factors were also prevented

by this mechanism by inhibiting BAX and BAK dimerization by

the anti-apoptotic member BFL-1 (43). In this way, the

downstream caspase pathway is blocked by BFL-1, and

apoptosis is inhibited (47). The tumor necrosis factor (TNF)

can cause bleeding, necrosis, and killing of tumor tissue, which

can cause anti-infection inflammatory response and take a role

in regulation and induction of immune cells. Normal cells are

not affected, and BFL-1 may be involved in TNF-A resistance in

normal cells.
2.2 Pro-apoptotic proteins of the
BCL-2 family

As a rule, proapoptotic multidomain proteins include BAK,

BOK, BAX, and BCL-XS and contain feature regions of BCL-2

BH domains, namely, BH1~4. Apoptosis is mainly related to

MOMP. If MOMP occurs, pro-apoptotic proteins located in the

mitochondrial membrane gap are released into the cytoplasm,

triggering a caspase cascade that promotes cell apoptosis.

2.2.1 BAX
BAX is the first BCL-2-associated protein identified by

immunoprecipitation and yeast two-hybrid screening (48).

BAX proteins mainly have domains with familial structural

characteristics: BH1, BH2, and BH3 (49). The activated BAX

can form pores in the outer membrane of mitochondria through

oligomerization, which is MOMP (50). BAX and BCL-2 can

form isodimers separately or interact with each other to form

isodimers. The level of their proteins is directly related to the

regulation of apoptosis: when BAX increases, cell apoptosis will

be promoted. Increased BCL-2 inhibited apoptosis (51). BAX

usually occurs in cytoplasm. BAX binds to the mitochondrial

membrane, forming a permeable membrane and establishing a

mitochondrial membrane channel (52). Apoptosis is regulated

by inhibiting the release of cytochrome C by inhibiting BAX

insertion into the mitochondrial membrane or directly or

indirectly inhibiting the activity of BAX channels. When cells

respond to apoptosis signals such as injury or stimulation, BAX

relocates on the surface of mitochondria and plays a role by
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disrupting the integrity of the mitochondrial membrane (53).

The activity of BAX is mainly inhibited by tumor P53 and other

members of the BCL-2 family in the cytoplasm regulation of

accumulation amount (54).

2.2.2 BAK
BAK is another major apoptotic effector which is the

transmitochondrial membrane protein, activated by apoptotic

signals (55). BAK has high homology with BH1, BH2, and BH3

of BCL-2 (53). Therefore, BAK plays an important role in

apoptosis and is an important regulatory factor in the

apoptosis process (56). BAK protein encoded by BAK gene

can promote apoptosis directly or indirectly: 1) BAK alone can

promote apoptosis by inhibiting the apoptosis activity of BCL-2

and BCL-XL (57), or BAK neutralizes the apoptosis inhibitory

protein of virus, promoting apoptosis (58). 2) BAK either

directly activates the apoptosis pathway (59) or is activated as

part of the cell death process to promote apoptosis. It is activated

by exposure to its internal BH3 domain and quickly sends bio-

oligomerization then disrupts the stability of the mitochondrial

outer membrane (60). BCL-2 anti-apoptotic member proteins

could not inhibit protein activity, and mitochondrial membranes

could trigger apoptosis independently of BAK and BAK osmosis

and downstream (61). Previous research findings showed that

the lack of BAK expression is related with gastric cancer (62),

skin cancer (63), pancreatic cancer (64), and colorectal

cancer (65).

2.2.3 BOK
BCL2-associated ovarian killer (BOK) protein was first

identified by screening rat ovarian fusion cDNA libraries using

yeast 2 hybridization with anti-apoptotic MCL-1 (66) as bait. Is a

highly conserved member of the BCL-2 family, maintaining the

same sequence and structure as members of the multi-domain

BCL-2 family (67). In normal cells, it is primarily located in the

endoplasmic reticulum. BOK is not as stable as BAX and BAK,

and its cellular level is regulated by the endoplasmic reticulum-

associated degradation (ERAD) pathway (68). Human BOK is

the only protein with a leucine sequence in BCL-2, and high

expression of BOK accelerates morphological changes in

mitochondria (69), ER (70), and Golgi bodies (67). This

finding suggests that BOK may play an important role in

shaping organelle membranes and suggests the presence of

nuclear output signals in the BH3 domain.

2.2.4 BCL-XS
BCL-XS is a small fragment mRNA product (30) of BCL-X, a

pro-apoptotic fellow of the BCL-2 family, and a reverse regulator

of BCL-2 and BCL-XL (26). It is present in mitochondria,

including BH3, BH4, and transmembrane regions, and is

induced by apoptosis and caspase activation in a BH3-

dependent manner through the liberation of cytochrome C.
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It contains the BH3 and BH4 domains and a transmembrane

region and localized in the mitochondria and induces

apoptosis in a BH3-dependent manner and caspase activation

(71) by a mechanism involving cytochrome c release (72).

Lindenboim et al. found (73) that BAX could induce apoptosis

alone and trigger apoptosis mechanism by using embryonic

fibroblasts from mice lacking apoptotic members and

apoptotic bodies in multiple domains of BCL-2, and the

apoptotic mechanism induced by BCL-XS depended on the

activation of BAK.
2.3 BH3-domain-only proteins

BH3-only protein is the most important way for cells to

respond to external apoptotic signals including BAD, BIM, BID,

and PUMAwhich receive apoptotic signals, the expression of the

BH3-only protein increases, and posttranslational modification

occurs (74), which promotes apoptosis through two

mechanisms: one antagonizes anti-apoptotic proteins in the

BCL-2 family and the other activates pro-apoptotic proteins

BAX and BAK (75). Proteins containing only BH3 domains can

induce BAX and BAK to be active and inhibit BAX and BAK

transmission through mitochondria by activating and

neutralizing their survival proteins (76).

2.3.1 BAD
BAD and BCL-2 remain with the BCL-2 gene, and their role

is to promote apoptosis. The pro-apoptotic effect of the BAD

gene is realized by the formation of heterodimers between the

expression products of BAD gene and BCL-2 gene with the

inhibition of the anti-apoptotic effect of BCL-2 (77). BAD gene

plays a regulatory role in promoting apoptosis mainly through

phosphorylation of Ser112, Ser136, and Ser155 (78). Protein

kinases downstream of the AKT signaling pathway are activated.

Regulated by the transfer chain, phosphorylated BAD forms a

dimer that cannot function in the mitochondria (79). High

expression of BAD is closely related to tumor cell apoptosis.

Therefore, promoting BAD expression has attracted more and

more attention in tumor treatment.

2.3.2 BIM
BIM usually exists in an inactive state with microtubules

or complexes with other pro-survival proteins (80). Also, it

exists in epithelial cells, reproductive cells, hematopoietic cells,

nerve cells, and other normal tissue cells (81) and plays a

crucial role in the occurrence of tumors and the prevention of

autoimmunity. The protein of BIM can promote apoptosis

only when it dissociates from the cytoplasmic protein complex

after being stimulated (82). Additionally, BIM can promote
Frontiers in Oncology 05
cell DNA damage (83) and play an important role in

transmitting death signals (84). The upregulation of BIM

gene expression can more effectively increase the apoptosis

rate of tumor cells.

2.3.3 BID
BID is a pro-apoptotic protein whose typical biological

action is to promote apoptosis. Full-length BID is generally

inactive under normal physiological conditions (85). The BID

activation pathway is generally activated by caspase 8 in

response to FAS/TNF-R1 death receptor signaling (86). After

activation, BID exists in mitochondria, which can accelerate the

release of cytochrome C (87) and further activate downstream

caspases. The BH3 domain of BID works in conjunction with

BCL-2, BCL-XL, and BAX to attenuate cell survival induced by

BCL-2 and BCL-XL (88). Normally, intact BID is present in the

cytoplasm, but as cells begin to divide, BID is cut open and

transported to the mitochondria. The BID protein-induced

mitochondrial cytochrome C release was independent of

mitochondrial permeability alteration channels and did not

cause mitochondrial swelling. The BID protein usually works

in conjunction with BAX (89) protein to accelerate the fusion

of BAX with mitochondria, thereby altering the structure of

BAX and enhancing the mitochondrial damage induced by

BAX (90).

2.3.4 PUMA
PUMA, a pro-apoptotic gene discovered in colon cancer

cells in 2001 (91), also called BBC3 (BCL-2 binding component

3) (92), locates in the outer membrane of mitochondria. PUMA

interacts with BH1, BH2, and BH3 of BCL-2/BCL-XL (93) on

the mitochondrial membrane to promote apoptosis, thereby

removing the inhibitory effect of the BCL-2 anti-apoptotic

protein subfamily on other BCL-2 family proteins. It can also

act directly on mitochondria together with BAX/BAK and

promote cell apoptosis by acting directly on BAX/BAK (94).

Autophagy cell death is another considerable biological mode of

cell death, which is an important process of turnover of

intracellular material in eukaryotes (95). Studies have shown

that PUMA (96) can participate in mitochondrial autophagy by

the binding function of the BH3 domain (70) and PUMA can

induce mitochondrial autophagy by selective removal of

mitochondria by BAX/BAK (97). PUMA induces both

mitochondrial autophagy and apoptosis, so selective

mitochondrial autophagy can enhance apoptosis.

To sum up, BCL-2 can localize to the mitochondria,

endoplasmic reticulum, and nuclear membrane. The apoptosis

involved in the regulation is very complex, and there are many

molecules involved. The mechanism of the BCL-2 family-

regulated apoptosis is depicted in Figure 1.
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3. The role of the BCL-2 family
proteins in regulating apoptosis
of cancers

Apoptosis inhibition is the main reason for cancer

proliferation, and BCL-2 family members play a central role in

regulating apoptosis. Oncogenesis of cancers is usually

associated with an abnormal expression of members of the

BCL-2 family proteins. Figure 2 summarizes the expression of

BCL-2 protein in various cancers including breast cancer, gastric

cancer, prostate cancer, and hepatocellular carcinoma.

Obviously, the expression level of BCL-2 protein in many

cancer cells significantly increased. Additionally, high anti-

apoptotic protein also breaks the mechanism of normal cell

apoptosis, making tumor cells insensitive to apoptotic signals

and gain growth advantages and overgrow.
3.1 BCL-2 and gastric cancer

Gastric cancer is a malignant tumor originating from

gastric mucosa. Ishida et al. (98) for the first time used

deoxynucleotide terminal transferase-mediated DUtP-biotin

gap terminal labeling technology and found that apoptosis
Frontiers in Oncology 06
exists in the tissues of patients with gastric cancer. They found

that apoptosis has a very important relationship with the

development of gastr ic cancer , and many cel ls in

precancerous lesions undergo apoptosis. Actually, during the

occurrence of gastric cancer, the apoptotic effect of the general

gastric mucosa will be greatly weakened, resulting in the

survival of cancer cells and accumulation of a large number

of cells. In addition, An et al. (99) reported that BCL-2 not

only inhibits apoptosis but also acts as an antagonist of tumor-

suppressor genes. When these genes are mutated, lost, or

inactivated, they can cause malignant transformation of cells

and lead to the occurrence of tumors. For example, when BCL-

2 is highly expressed in the body, cancer cells will resist drugs

or chemotherapy during treatment, reducing the therapeutic

effect of cancer. Indeed, BCL-2 is highly expressed in vivo

when abnormal hyperplasia of gastric mucosa exists. The

expression of BCL-2 was the highest in the early stage of

gastr ic cancer and decreased gradual ly during the

development of cancer.
3.2 BCL-2 and breast cancer

Breast cancer is mammary gland epithelial cells in a variety of

carcinogenic factors below the action of proliferation out of
FIGURE 1

The mechanism of BCL-2 family proteins in regulating apoptosis. Driven by BCL-2 family proteins, which are primarily localized to mitochondria
and present on the ER, pro-apoptotic family proteins can act directly on the mitochondria to trigger the apoptosis mechanism, and anti-
apoptotic proteins need to work together with other proteins to cause apoptosis, release cytochrome C, and activation of caspase of apoptosis.
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control phenomenon which is a malignant tumor that seriously

endangers women’s life and health worldwide. Its incidence is

increasing year by year, and tends to be younger, accounting for

about 25% of female malignant tumors (100). It is reported that

breast cancer is a highly heterogeneous tumor, and its course of

disease evolution has experienced complex biological processes

such as multi-gene and multi-stage (101). Additionally, Merino

et al. (102) found that the occurrence of breast cancer is not only

related to the mutation, deletion, or activation of some proto-

oncogenes and tumor-suppressor genes but also related to the

inhibition of apoptosis. Actually, the BCL-2 gene involved in cell

apoptosis is closely related to the occurrence of breast cancer and

the proliferation of breast cancer cells. Raha et al. (103) reported

that BCL-2 gene can not only inhibit apoptosis but also prolong

the cell cycle and then delay tumor cell proliferation. Therefore,

when the expression of BCL-2 is reduced, breast cancer may be

induced. It was reported (104) that sick persons with high

expression of BCL-2 gene had relatively good pathophysiological

behavior, which can be used as one of the molecular biological

indicators to predict the development of lymph nodemetastasis in

cancer patients.
3.3 BCL-2 and lymphoma

Lymphoma is a malignant tumor originating from the

lymphatic hematopoietic system and characterized by cell

escape by apoptosis (105). During lymphoma formation, B

cells are subjected to a wide range of stress stimuli (106),
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oxygen and cytokine deficiency, all of which trigger apoptosis

escape. Adams et al. (108) found the problem of high expression

of BCL-W in B-cell lymphoma and proposed some clinical

methods to inhibit anti-apoptotic BCL-2, making outstanding

contributions to the exploration of how to treat B-cell

lymphoma (109).
3.4 BCL-2 and prostate cancer

Prostate cancer, which occurs in the prostate epithelium, is

the most common malignancy in men and is the second leading

cause of cancer death in many European countries. There is

growing interest in the molecular pathways of malignant

transformation and progression of prostate cancer. Alterations

in various oncogenes and tumor-suppressor genes can

eventually lead to an imbalance between proliferation and

programmed cell death, leading to net tumor growth and

tumor progression (110). For instance, Bubendorf et al. (111)

used immunohistochemical methods to detect the

overexpression of BCL-2 in prostate cancer. Additionally,

immunohistochemistry is particularly useful for BCL-2

analysis since there is always a strong positive in lymphocytes,

basal cells, and peripheral nerve tissue, providing good internal

control for each incision examined. Besides, overexpression of

BCL-2 may promote the progression of prostate cancer by

prolonging the net growth of tumors, thereby improving the

survival rate of tumor cells.
FIGURE 2

Expression of BCL-2 in various tumors. Comparisons of BCL-2 expression levels between tumor tissues from TCGA database and normal tissues
from the GTEx database (*P < 0.05, **P < 0.01, ***P < 0.001).
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3.5 BCL-2 and hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the second largest

cancer-related death (112); the 5-year survival rate is only

18% (113), characterized by high mortality, strong

invasiveness, low sensitivity to chemotherapy drugs, and easy

resistance (114). Studies have shown that BCL-2 is highly

expressed in HCC patients (115), and the BCL-2 family is

contained in the mechanism of HCC chemoresistance (116).

BCL-2 can prevent hepatocellular carcinoma cells from

apoptosis and promote tumor formation mainly by blocking

the Fas/FasL apoptosis pathway and forming a complex with

BAX. BCL-2 inhibits apoptosis, and its overexpression and

phosphorylation participate in the regulation of cell

proliferation, playing an extremely important role in tumor

formation and multidrug resistance. The study found (117)

that mRNA and protein levels of BCL-2 were upregulated in

HCC tissues. Chang et al. (118) found that the pcDNA3-F1

vector expressing FasL could significantly induce apoptosis of

HCC cells, while the pcDNA3-FL-BCL-2 vector with high

expression of BCL-2 could significantly block the apoptosis

of HCC cells. Additionally, Wang et al. (119) reported

gan su ammon i a goos e deoxycho l i c a c id sod ium

glycochenodeoxycholate (GCDA) by enhancing BCL-2 in the

family in T163 phosphorylation and promote resistant

HCC cells.
3.6 BCL-2 and lung cancer

Lung cancer is one of the malignant tumors with the fastest-

growing morbidity and mortality and the greatest threat to the

health and life of the population (120). If the expression of BCL-

2 is abnormal in lung cancer, the cells with irreparable genetic

changes are prevented from dying and entering the cell cycle.

The accumulation of various genetic changes can lead to

tumorigenesis (121). For example, Meinhardt et al. (117)

analyzed the role of BOK in lung cancer. By constructing a

BOK−/− knockout mouse model, mice bearing the lox-stop-lox-

KrasG12D allele were used and the mutant Kras was expressed

in the lungs infected with AdenoCre virus. Subsequently, BOK-

deficient mice reduced tumor burden by decreasing the number

of lesions and histological grade and that BCL-2 family member

BOK promoted Kras-driven lung cancer progression in a p53-

dependent manner (122).

In addition, the overexpression of BCL-2 is an early event

in the development of lung cancer. With the development of

the disease, the growth rate and spread of lung cancer cells

continue to increase, making the treatment very difficult.

Emerging evidence reveals that early detection of BCL-2

expression level is of great significance for the treatment of

patients with lung cancer. For example, Martin et al. (123)
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found that BCL-2 family members can be used as prognostic

indicators for lung cancer, making outstanding contributions

to further treatment and prevention of cancer. Moreover, Alam

et al. (124) found that the EGFR pathway can modulate the role

of the BAX/BCL-2 cascade in non-small-cell lung cancer

(NSCLC). Inhibition of EGFR results in the upregulation of

pro-apoptotic proteins that stimulate apoptosis by activating

apoptotic pathways. These findings have important

implications for the further treatment and prevention of

lung cancer.
4 The mechanism of BCL-2 family
proteins in regulating apoptosis

4.1 Relationship between apoptosis and
necrosis, autophagy, and ROS generation

The most critical difference between apoptosis and

necrosis is the integrity of the cell membrane (125).

Apoptosis is the shrinkage of cells that maintains the

integrity of the cell membrane and keeps the cell membrane

wrapped even when the final cell fragment is formed. The

biggest feature of this death method is that it can limit

inflammation. The characteristic performance of cell

necrosis is the destruction of the integrity of the cell

membrane, the release of intracellular substances, and the

release of intracellular substances can cause a significant

inflammatory response (126). Among them, apoptotic

necrosis and autophagy are both accompanied by

mitochondrial permeability transition (127). Members of the

BCL-2 family are also involved in these responses. P53 can

activate or inhibit autophagy depending on cellular energy

status and associated activation of other signaling pathways

(128). Interactions between autophagy, apoptosis, and

necrosis signaling jointly maintain T-cell homeostasis (129).

Reactive oxygen species (ROS) are chemically reactive

chemicals containing oxygen (130); ROS are formed as a

natural by-product of the normal metabolism of oxygen and

have important roles in cell signaling and homeostasis (131).

ROS and mitochondria play pivotal roles in the induction of

apoptosis under physiological and pathological conditions

(132). Mitochondria are the main pro-apoptotic targets of

excess reactive oxygen species (133), which can induce the

opening of the permeable pores (PT pores) of the

mitochondrial bilayer membrane and release calcium ions,

cytochrome C, and apoptosis-inducing factor AIF, causing

caspase caspase 9 to activate caspase 3/6/7. It can decouple the

mitochondrial electron transport chain, downregulate the

level of ATP production (134), upregulate the expression

level of the pro-apoptotic protein BAX, and finally rupture

the mitochondrial outer membrane, leading to apoptosis.
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4.2 The mechanism of action of BCL-2 in
regulating apoptosis

Three main pathways of apoptosis have been elucidated.

Among them, one is the exogenous/death receptor pathway,

which is activated by linking the death receptors in the TNF

receptor superfamily (135) and contains three main receptor-

inducing sub-apoptosis signal pathways, i.e., CD95/CD95L,

TNFR, and AP03L/TRAILR pathways (136). The common

feature of these pathways is that the initiation of the apoptosis

signal is formed through the trimer of the receptor, and the

initiation of caspases is recruited. Through stimulating

the caspase cascade, apoptosis is caused (137). Additionally,

the other apoptosis pathway is the mitochondria-independent

pathway. Mitochondria, as the center of energy and metabolism

in eukaryotes, also play a key role in regulating cell apoptosis

signal transduction (138). The release of cytochrome C from

mitochondria is a key step in apoptosis. In the presence of dATP,

cytochrome C released into the cytoplasm can bind to APAF-1

to form a polymer and promote caspase-9 to bind to APAF-1 to

form apoptotic bodies, and caspase-9 is activated (139).

Activated Caspase-9 can induce other caspases such as

caspase-3 and thus induce apoptosis. With respect the third

apoptosis pathway, it is called the endoplasmic reticulum

pathway recently discovered. The endoplasmic reticulum (ER)

is a multipurpose organelle in cells, which is mainly responsible

for maintaining the dynamic balance of cell functions (140).

When the internal environment changes, it will cause the

imbalance of ER homeostasis and thus induce endoplasmic

reticulum stress (ERS). The early onset of ERS promotes cell

survival, while long-term continuous ERS triggers the initiation

of apoptosis pathways (141, 142).

Overexpression of BCL-2 can reduce oxygen free radical

production and lipid peroxide formation. BCL-2 can reduce the

transmembrane flow of calcium ions, suggesting that BCL-2

regulates apoptosis through calcium channels. Apoptotic factors

accumulate on the endoplasmic reticulum and release Ca2+

(143), activating the precursor caspase-12, which in turn

activates caspase-9 and caspase-3 and finally leads to

apoptosis. The above three pathways finally converge to the

same pathway; that is, activated caspase 8, caspase 9, and caspase

12 all cut and activate caspase 3, which ultimately leads

to apoptosis.

For the first time, we found that the BCL-2 gene was

translocated in chromosome (144) in follicular lymphoma T

(14:18). Apoptosis plays a crucial role in tissue homeostasis,

especially in the hematopoietic compartment, and its damage

may cause tumor or autoimmune disease. Interactions between

opposing components of the BCL-2 protein family largely

determine whether stressed cells can survive. The BCL-2

family has four main functions: inhibitory effects (BCL-2,

BCL-Xl, BCL-W, BCL2-A1, and MCL-1), activation (BIM and
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PUMA), effector (BAX and BAK), and sensitization (NOXA).

BCL-2 and its closest homolog promote cell survival (145), but

the other two factions promote apoptosis. In mammalian cells,

they regulate the permeability of the outer mitochondrial

membrane, most located on or transferred to the outer

mitochondrial membrane. Only BH3-containing proteins can

sense and transmit stress signals (146), but commitment to

apoptosis requires either BAX or BAK. Only the proteins of

BH3 appear to activate BAX and BAK indirectly by engaging

and neutralizing their correlations, which would otherwise limit

BAX and BAK by permeabilizing mitochondria. Additionally,

the BCL-2 family autophagy and mitochondrial fission may also

be subject to regulation of the BCL-2 family (147). Its pro-

survival components are very attractive therapeutic targets for

cancer, autoimmunity, and viral infections. Two hypotheses are

now proposed about how its family regulates apoptotic

apoptosis: direct and indirect models. The direct model

indicates that BH3 proteins contain only BH3 protein

components as stimulant or inhibitors: as stimulants, they

directly activate BAX/BAK proteins to promote apoptosis,

while the inhibitor BH3 protein activates BAX/BAK by

releasing BIM, tBID, and PUMA by binding to anti-apoptotic

members. The indirect model suggests that only the BH3-only

protein binds to anti-apoptotic BCL-2 family members and then

releases BAX/BAK to initiate apoptosis (148). There is evidence

that these two mechanisms may coexist during the regulation

of apoptosis.
5 Targeting BCL-2 family proteins
for anticancer treatment

The effective means of drug therapy for tumor cells

currently include chemotherapy, targeted therapy, and

immunotherapy, and apoptosis is the most important

manifestation of cell death caused by these drugs (149). As

we described above, deregulation of BCL-2 family proteins

contributes to the development of cancer. Since the discovery

of the BCL-2 family, people’s knowledge has changed from

being involved in the regulation of cell survival to BCL-2 being

a regulator of apoptosis (150), which is inseparable from tumor

progression, tumor regression, and antagonism of cell death.

At present, there are three types of inhibitors targeting the

BCL-2 family at home and abroad: antisense oligonucleotide

preparations (151), peptide inhibitors (152), and small-

molecule inhibitors (153). Among them, small-molecule

inhibitors are the most widely used and have the most

research significance and development prospects (150).

Therefore, the small-molecule inhibitors and their

mechanisms of action are mainly described. The mechanism

of action of small-molecule antagonists is shown in Figure 3,

and a list of BCL-2 inhibitors is summarized in Table 2.
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5.1 Antisense oligonucleotide preparations

The principle behind the therapeutic strategy of antisense

oligonucleotide preparations is to introduce a single-

oligonucleotide strand complementary to the target sequence

of the selected mRNA, forming a DNA heteroduplex, which is

easily destroyed by RNase H, ultimately leading to a decrease in

the level of the target mRNA (157).
5.2 Peptide inhibitors

Based on the pro-apoptotic program, BH3-only proteins

exert their effects by directly binding or by binding anti-
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apoptotic family proteins to liberate BAX and BAK to activate

both. Therefore, under such a research idea, a new type of

hydrocarbon-labeled peptide, represented by the BIM-BH3

peptide, targeting the BIM-BH3 domain was born, which can

effectively inhibit the interaction of BCL-2-BIM (152).
5.3 Small-molecule inhibitors

5.3.1 BCL-2 inhibitors
The function of BCL-2 can be inhibited by BH3-only

protein, and the binding site of BH3-only protein is also the

binding site of BAX and BCL-2. Therefore, a reasonable

anticancer drug design idea is to design BH3 analogs (158).
TABLE 2 Appellation, target, and clinical application of BCL-2 inhibitors.

Drug names Target Clinical application

Oblimersen (154) mRNA of BCL-2 Myeloma (stage III)

Obatoclax (155) BCL-2 CCL

MCL-1 AML

BCL-XL NSCLC

BFL-1 HL (stage II)

BCL-W SCLC (stage II)

Navitoclax (156) BCL-2 Myeloma (stage I)

CLL (stage I~III)

NHL (stage I~III)

AML (stage I~II)
FIGURE 3

Mechanism of BCL-2 drug action. BCL-2 inhibitors interact with members of the BCL2 family of proteins to reduce the production of anti-
apoptotic proteins, block the anti-apoptotic defense mechanism of tumor cells, replace and release pro-apoptotic proteins, induce apoptosis,
and thus achieve antitumor effects.
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Small-molecule compounds that mimic the BH3 domain readily

enter cells and may selectively cause cell death with high

expression of BCL-2 only. Venetoclax (VEN) is the first BCL-2

selective BH3 analogue which is an oral, potent, and selective

BCL2 inhibitor and is currently the only anticancer drug of this

type on the market. After the drug is absorbed into the human

body, it acts on the BCL-2 protein (159). By selectively binding

to BCL-2, it inhibits the production of anti-apoptotic protein

BCL-2 and activates the interaction of pro-apoptotic proteins

BAK, BAX, and mitochondria, thereby releasing cytochrome C,

activating the apoptosis pathway, and causing apoptosis to

achieve the effect of treating cancer. Its mechanism of action is

shown in Figure 4. FDA approved it in 2016 for the treatment of

patients with CLL and 17p deletion (160). Literature has found

that patients have developed resistance to Venetoclax, for

example, BCL-2 mutant G101V from clinical trials of

phosphocytic leukemia patients who initially responded to

treatment but whose clinical progression of CLL type emerged

after 19–42 months. The BCL-2 G101V mutation reduced the

drug’s affinity for BCL-2 by about 180-fold. On the other hand,

BCL-2 G101V retains its affinity for the BH3 motif of pro-

apoptotic proteins such as BAX and BIM and thus can still exert

an anti-apoptotic effect. This suggests that the BCL-2G101V

mutation confers resistance to treatment by selectively reducing

affinity for venetoclax. Additionally, ABT-737 is the first BH3

analog designed by Abbott Laboratories based on high-

throughput magnetic resonance imaging and the BAD

structure of BH3-only protein and is a small molecule capable

of targeted binding to the BH3 binding slot of BCL-XL (161). It

can specifically bind to anti-apoptotic proteins to induce
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apoptosis. Moreover, obatoclax, a class of indole–pyrrole

compounds, can bind to the BH3 domain of BCL-2 family

proteins, thereby inhibiting the expression of BCL-2, BCL-XL,

and MCL-1 proteins and inhibiting the expansion of tumor

cells (162).

5.3.2 BCL-2 antagonists
The loss or change of the hydrophobic structure leads to the

inactivation of anti-apoptotic BCL-2 and the loss of its ability to

bind to other members to form dimers (163). As a result, there

are hundreds of homomorphic antagonists that mimic the BCL-

2 BH3 domain. HA14-1, a small non-peptide organic ligand,

interacts with the hydrophobic structure of BCL-2, which was

also shown by computer screening and multiple cellular analyses

to interact with soluble BCL-2, activating mitochondrial

membrane potential changes and cytochrome C release and

inducing apoptosis of tumor cells (164). At present, many

studies have found (165–167) that the combination of HA14-1

with antitumor drugs (cisplatin) can enhance the pro-apoptotic

effect of antitumor drugs.
6 Conclusions and future prospects

Accumulating evidence suggests that members of the BCL-2

family, as important regulators of apoptosis, play crucial roles in

tumorigenesis, development, and treatment. Targeting the

apoptotic pathway is an effective option to improve or develop

new chemotherapy to help treat cancer, but it is necessary to

systematically review the role of BCL-2 family proteins in
FIGURE 4

Venetoclax mechanism diagram. Venetoclax is a highly selective inhibitor of BCL-2. Highly expressed cancer cells of BCL-2 are spared from
apoptosis by inhibiting the activation of BAX and BAK. Venetoclax selectively binds to BCL-2 in the binding tank, directly and indirectly reducing
the inhibitory effect on BAX/BAK and initiating apoptosis.
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regulating apoptosis and cancer treatment. Consequently, this

review focused on the discussion of the role of BCL-2 family

proteins in regulating the apoptosis and the development of

drugs targeting BCL-2 anti-apoptotic proteins, although BCL-2

proteins have close correlations with apoptosis, necroptosis,

autophagy, and ROS generation.

As demonstrated in the study, members of the BCL-2 family

that inhibit apoptosis, such as BCL-2 or BCL-XL, are usually

expressed in human tumor tissues at a high level, which inhibits

the apoptosis of tumor cells and grows explosively. In view of

this situation, if BCL-2 and BCL-XL can be functionally blocked,

the apoptosis of tumor cells can be restored. In clinical

applications, BCL-2 family molecules are very promising as

tumor drug targets or biomarkers of tumor diseases, bringing

hope to the targeted therapy of tumor diseases. Additionally,

studies on the molecular mechanism of apoptosis have found

that the BCL-2 family can be used for targeted therapy of

tumors. At the same time, many members of this family can

be used as tumor prognostic genes and have important effects on

tumor prevention and treatment. Therefore, some efficient and

specific antitumor drugs can be designed to treat malignant

tumors by inhibiting the expression of anti-apoptotic proteins or

activating the expression of pro-apoptotic proteins.

In addition, in the past few decades, a lot of research has

been done to find BCL-2 inhibitors for cancer treatment, but

there are still some prospective drugs that stay at the cellular

level and rarely establish animal models. Continued research in

this area should seek to define the cellular and molecular targets

that control apoptosis and explore its potential for clinical

translation. At the same time, of crucial importance in this

field is the difference between anti-apoptotic and pro-apoptotic

BCL-2 family proteins, and the effect of mutations on the

function of this family of proteins.
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30. González-Garcıá M, Pérez-Ballestero R, Ding L, Duan L, Boise LH,
Thompson CB, et al. Bcl-XL is the major bcl-x mRNA form expressed during
murine development and its product localizes to mitochondria. Development
(1994) 120(10):3033–42. doi: 10.1242/dev.120.10.3033

31. Bessou M, Lopez J, Gadet R, Deygas M, Popgeorgiev N, Poncet D, et al. The
apoptosis inhibitor bcl-xL controls breast cancer cell migration through
mitochondria-dependent reactive oxygen species production. Oncogene (2020)
39(15):3056–74. doi: 10.1038/s41388-020-1212-9

32. Hartman ML, Czyz M. BCL-w: apoptotic and non-apoptotic role in
health and disease. Cell Death Dis (2020) 11(4):1–16. doi: 10.1038/s41419-020-
2417-0

33. Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S.,
et al.Bcl-xl protein is beneficial to the survival of cardiac myocytes. Bcl-xl Protein
prolonging survival time transplanted cardiac myocytes by reducing release
mitochondrial cytochrome C prolonging Cold storage time cardiac myocytes
(2000) 102(5):577–86. doi: 10.1016/s0092-8674(00)00080-5

34. Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG, Jenkins
NA, et al. Bcl-w,a novel member of the BCL-2 family, prom otes cell survival.
Oncogene (1996) 13(4):665–75.

35. Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K,
Richardson P, et al. A novel BCL-2/Bcl-XL/Bcl-w inhibitor ABT-737 as therapy
in multiple myeloma. Oncogene (2007) 26(16):2374–80. doi: 10.1038/
sj.onc.1210028
Frontiers in Oncology 13
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161. Opydo-Chanek M, Cichoń I, Rak A, Kołaczkowska E, Mazur L. The pan-
BCL-2 inhibitor obatoclax promotes differentiation and apoptosis of acute myeloid
leukemia cells. Invest N Drugs (2020) 38(6):1664–76. doi: 10.1007/s10637-020-
00931-4

162. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J,
et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor
activity while sparing platelets. Nat Med (2013) 19(2):202–8. doi: 10.1038/
nm.3048

163. Yang S, Mao Y, Zhang H, Xu Y, An J, Huang Z, et al. The chemical biology
of apoptosis: revisited after 17 years. Eur J Medicinal Chem (2019) 177:63–75. doi:
10.1016/j.ejmech.2019.05.019

164. Verdine GL, Walensky LD. The challenge of drugging undruggable
targets in cancer: lessons learned from targeting BCL-2 family members.
Clin Cancer Res (2007) 13(24):7264–70. doi: 10.1158/1078-0432.CCR-07-
2184

165. Varela FA, Foust VL, Hyland TE, Sala-Hamrick KE, Mackinder JR, Martin
CE, et al. TMPRSS13 promotes cell survival, invasion, and resistance to drug-
induced apoptosis in colorectal cancer. Sci Rep (2020) 10(1):1–14. doi: 10.1038/
s41598-020-70636-4

166. Arisan ED, Kutuk O, Tezil T, Bodur C, Telci D, Basaga H, et al. Small
inhibitor of BCL-2, HA14-1, selectively enhanced the apoptotic effect of
cisplatin by modulating BCL-2 family members in MDA-MB-231 breast
cancer cells. Breast Cancer Res Treat (2010) 119(2):271–81. doi: 10.1007/
s10549-009-0343-z

167. Simonin K, Brotin E, Dufort S, Dutoit S, Goux D, N'diaye M, et al. Mcl-1 is
an important determinant of the apoptotic response to the BH3-mimetic molecule
HA14-1 in cisplatin-resistant ovarian carcinoma cells. Mol Cancer Ther (2009) 8
(11):3162–70. doi: 10.1158/1535-7163.MCT-09-0493
frontiersin.org

https://doi.org/10.21203/rs.3.rs-936588/v1
https://doi.org/10.1021/acsomega.1c03385
https://doi.org/10.1053/j.seminoncol.2003.08.015
https://doi.org/10.1038/s41375-018-0223-9
https://doi.org/10.1038/s41375-018-0223-9
https://doi.org/10.1080/22221751.2022.2026739
https://doi.org/10.3109/10428194.2015.1030638
https://doi.org/10.3109/10428194.2015.1030638
https://doi.org/10.3390/molecules27020536
https://doi.org/10.3390/molecules27020536
https://doi.org/10.1016/bs.ircmb.2019.12.005
https://doi.org/10.7573/dic.212574
https://doi.org/10.1016/j.bcp.2017.03.006
https://doi.org/10.1007/s10637-020-00931-4
https://doi.org/10.1007/s10637-020-00931-4
https://doi.org/10.1038/nm.3048
https://doi.org/10.1038/nm.3048
https://doi.org/10.1016/j.ejmech.2019.05.019
https://doi.org/10.1158/1078-0432.CCR-07-2184
https://doi.org/10.1158/1078-0432.CCR-07-2184
https://doi.org/10.1038/s41598-020-70636-4
https://doi.org/10.1038/s41598-020-70636-4
https://doi.org/10.1007/s10549-009-0343-z
https://doi.org/10.1007/s10549-009-0343-z
https://doi.org/10.1158/1535-7163.MCT-09-0493
https://doi.org/10.3389/fonc.2022.985363
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	The role of BCL-2 family proteins in regulating apoptosis and cancer therapy
	1 Introductions
	2 The structural domains of BCL-2 family proteins
	2.1 Anti-apoptotic proteins of the BCL-2 family
	2.1.1 BCL-2
	2.1.2 BCL-XL
	2.1.3 BCL-W
	2.1.4 BFL-1

	2.2 Pro-apoptotic proteins of the BCL-2 family
	2.2.1 BAX
	2.2.2 BAK
	2.2.3 BOK
	2.2.4 BCL-XS

	2.3 BH3-domain-only proteins
	2.3.1 BAD
	2.3.2 BIM
	2.3.3 BID
	2.3.4 PUMA


	3. The role of the BCL-2 family proteins in regulating apoptosis of cancers
	3.1 BCL-2 and gastric cancer
	3.2 BCL-2 and breast cancer
	3.3 BCL-2 and lymphoma
	3.4 BCL-2 and prostate cancer
	3.5 BCL-2 and hepatocellular carcinoma
	3.6 BCL-2 and lung cancer

	4 The mechanism of BCL-2 family proteins in regulating apoptosis
	4.1 Relationship between apoptosis and necrosis, autophagy, and ROS generation
	4.2 The mechanism of action of BCL-2 in regulating apoptosis

	5 Targeting BCL-2 family proteins for anticancer treatment
	5.1 Antisense oligonucleotide preparations
	5.2 Peptide inhibitors
	5.3 Small-molecule inhibitors
	5.3.1 BCL-2 inhibitors
	5.3.2 BCL-2 antagonists


	6 Conclusions and future prospects
	Author contributions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


