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Current methods for the diagnosis and monitoring of bladder cancer are

invasive and have suboptimal sensitivity. Liquid biopsy as a non-invasive

approach has been capturing attentions recently. To explore the ability of

urine-based liquid biopsy in detecting and monitoring genitourinary tumors,

we developed a method based on promoter-targeted DNA methylation of

urine sediment DNA. We used samples from a primary bladder cancer cohort

(n=40) and a healthy cohort (n=40) to train a model and obtained an integrated

area under the curve (AUC) > 0.96 in the 10-fold cross-validation, which

demonstrated the ability of our method for detecting bladder cancer from

the healthy. We next validated the model with samples from a recurrent cohort

(n=21) and a non-recurrent cohort (n=19) and obtained an AUC > 0.91, which

demonstrated the ability of our model in monitoring the progress of bladder

cancer. Moreover, 80% (4/5) of samples from patients with benign urothelial

diseases had been considered to be healthy sample rather than cancer sample,

preliminarily demonstrating the potential of distinguishing benign urothelial

diseases from cancer. Further analysis basing on multiple-time point sampling

revealed that the cancer signal in 80% (4/5) patients had decreased as expected

when they achieved the recurrent-free state. All the results suggested that our

method is a promising approach for noninvasive detection and prognostic

monitoring of bladder cancer.
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One sentence summary

We developed a method for the highly sensitive noninvasive

detection and monitoring of bladder cancer based on promoter-

targeted DNA methylation of urine sediment DNA.
Background

Urothelial bladder cancer is a major cause of morbidity and

mortality worldwide with approximately 573,000 new cases and

213,000 deaths in 2020 (1), and the incidence of urothelial

bladder cancer is higher in men than in women (1). One of

the biggest challenges in treating bladder cancer is its high

recurrence and metastasis risk. Transurethral resection of

bladder tumor (TURBT) is currently the main diagnosis

approach and treatment for non-muscle invasive bladder

cancer (NMIBC), accompanied by other adjuvant therapies,

such as perfusion chemotherapy1 (2). To some extent,

adjuvant therapy can reduce the risk of recurrence and

metastasis of bladder cancer, but it still cannot completely

prevent cancer progression, so regular monitoring of bladder

cancer is necessary for the early detection of tumor progression

and for prolonging patient survival.

At present, the diagnosis and monitoring of bladder cancer is

mainly based on cystoscopy and biopsy, or TURBT, which is

invasive, costly and uncomfortable. Urinary cytology is an

important auxiliary method for cystoscopy, but its sensitivity

is still unsatisfactory, ranging from 21% to 50%, minimal

malignant changes can be easily missed (3). Therefore, it is

necessary to develop a new monitoring method. Liquid biopsy

has gained increasing attention in the field of cancer diagnostics,

and urinary markers may serve as an ideal source of “liquid

sample” for diagnosis and surveillance for urinary tract tumors.

Urine contains tumor cell-free DNA and exfoliated tumor cells

and can be obtained easily, regularly and noninvasively (4). In

the context of bladder cancer, studies showed urine had better

concordance with tumors compared to plasma (5), and it can be

sampled in large volumes, allowing routine sampling and

improving patient compliance (4).

At present, the potential clinical value of urine exudated cell

DNA has been widely explored. TP53 mutations in urine exuded

cells from patients with bladder cancer have already been

reported 30 years ago (6). Specific mutations in other

oncogenes, such as PIK3CA, RAS, FGFR3 and TERT, have

also been found in circulating tumor DNA (ctDNA) from

bladder cancer patients, which has led to the discovery of an

association between the presence of ctDNA mutations in genes

from urine samples and disease progression (6–9). Moreover,

other common genetic variations in bladder cancer, such as

microsatellites, the polymorphic repeat units of 1 to 6 base pairs

in length in human DNA, and the loss of heterozygosity on

chromosomes 4P, 8P, 9p, 11P and 17p are detected in urinary
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DNA samples (10–12). In general, the sensitivities of these

markers are between 72% and 97%, and the specificity range

from 80% to 100% (13, 14). In addition, the role of telomerase in

the diagnosis of bladder cancer has been extensively reviewed

(15–24), and the sensitivity of telomere repeat expansion

protocols allows the enzyme to be detected in exfoliated cells

collected in normally excreted urine or bladder irrigation, and

telomerase activity can be very easily detected in samples

containing 10 to 100 tumor cells. Despite the high sensitivity

of telomere repeat amplification protocols, studies have reported

a wide variation in detectable activity in urine from bladder

cancer patients, ranging from 0% to 86% (25–27).

Altered DNA methylation has been recognized as a crucial

cause of cancer development (28). DNA methylation sites tend

to cluster in a large number of repeated sequence regions, known

as CpG Islands (CGIs) (29). Hypermethylation of CpG islands in

the promoter regions of tumor suppressor genes can inhibit the

transcription of tumor suppressor genes, leading to the

occurrence of tumors (28, 30), DNA methylation has high

tumor cell specificity, and its genetic stability makes DNA

methylation an ideal marker for cancer diagnosis and

prognostic monitoring. Changes in genome-wide DNA

methylation patterns are common features in bladder cancer

(31–33). Previous studies have shown that changes in DNA

methylation events of bladder cancer are reflected in the

methylation status of urinary exfoliated cells in non-muscular

and muscular invasive bladder cancers, as well as in normal

urethral epithelium (31, 34, 35). Therefore, due to its heredity

and stability, abnormal DNA methylation in urinary sediment

can be used as a potential biomarker for the development of

non-invasive urine-based bladder cancer diagnosis and post-

treatment monitoring technology (32, 33).

To date, a total of 114 urine methylation markers of primary

bladder cancer have been investigated so far, of which 23

primary markers were studied in more than three articles, and

the median sensitivity of these biomarkers reached 80%. In

addition, 18 individual markers and 8 panels were used for

recurrence detection, and the most sensitive biomarker

combinations (CFTR, TWIST1 and SALL3; sensitivity 90%)

somehow had very low specificity (31%) (36). In addition,

there was a large variation in sensitivity and specificity of

biomarkers among these studies, which may be due to

differences between etiological studies, tumor heterogeneity,

technical limitations, or differences in detection sites,

highlighting the necessity for additional investigations to

determine the sensitivity and specificity of urinary DNA

methylation markers for bladder cancer, especially the

specificity of DNA methylation markers in the recurrence

stage of bladder cancer. Moreover, a major limitation of

previous research is that the number of CpG sites contained

by DNAmethylation biomarker panels is relatively small, and no

study could detect all CpG loci in the entire promoter regions, so

as to map the methylome of human bladder cancer. To address
frontiersin.org

https://doi.org/10.3389/fonc.2022.986692
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.986692
these issues, in this work, we used a large DNA methylation

panel with increased coverage of the promoter regions and

developed a specific and sensitive method for diagnosis and

recurrence surveillance of bladder cancer with urine

sediment DNA.
Materials and methods

Study patients and specimens

We collected 80 urine samples from bladder cancer patients,

classified into primary cohort (n=40), recurrent cohort(n=21) and

non-recurrent cohort (n=19), as well as 45 urine samples from

patients with benign (referred to benign cohort, n=5) and healthy

(referred to healthy cohort, n=40) donors at the Department of
Frontiers in Oncology 03
Urology, Peking University Shougang Hospital from November

2017 to December 2019 (Figure 1, Table 1 and Supplement

Table 1). All patients were treated with surgical resection and

perfusate chemotherapy using epirubicin hydrochloride or

pirarubicin hydrochloride. Urine samples from recurrent and

non- recurrent patients were collected before each perfusate

chemotherapy, while urine samples of the primary patients were

collected before the operation. In addition, clinical and follow-up

information of all patients were collected. All experiments were

performed in accordance with relevant guidelines and regulations.
Ethics statement

The study was approved by the institutional review board of

Peking University Shougang Hospital (IRBK-2017-053-09). All
FIGURE 1

The graphical abstract of analyses performed in this study 1) Urine samples of healthy individuals and different types of bladder cancer patients
(primary, recurrent and non-recurrent cohorts, diagnosed with cystoscopy & biopsy/TURBT) were collected and extracted to obtain exfoliated
tumor cells for promoter-targeted LHC-BS. 2) Reads of the sequencing data were mapped in target regions and the methylated ratios were
counted in frames with fixed number of methylation sites. 3) A model was trained with the methylated data of healthy cohort and primary
cohort in the process of 10-fold cross-validation and validated with the data of recurrent & non-recurrent cohort. 4) Advanced analysis, e.g.
pathway analysis, had been performed on the patterns of the model.
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samples were collected with written informed consent from

adult participants, and minors’ informed consent was given by

their guardians.
Sample processing and promoter-
targeted liquid hybridization capture-
based bisulfite sequencing

Before DNA extraction, 40 mL urine samples were

centrifuged at 4°C, 2000 g for 10 minutes to collect the pellet

for DNA extraction and urinary sediments were stored at -80°

Celsius. DNA of the urine sediments were extracted with

TIANamp Micro DNA Kit DP316 (TianGen) per the

manufacturer’s instructions. DNA concentrations were

measured using a Qubit fluorometer (Invitrogen) to determine

DNA input from each isolate. We optimized method based on

the published protocol (37), briefly, 500 ng of urine exfoliate

DNA was fragmented into approximately 150-200 bp using a

sonication system (Covarias). After purification, the fragmented

fractions were treated with blunt end repair, 3′adenylation, and
5′-methylcytosine index adapter ligation. The constructed

libraries were determined by Qubit (Invitrogen). Then, 250 ng

DNA from each of adapter ligated libraries were pooled together

for the liquid hybridization capture procedure. After capture

program, we then applied bisulfite treatment, and PCR

amplification based on described previous protocols (37).

Libraries was performed using BGISEQ-500 sequencing

platform developed by BGI-Shenzhen in 2015 (38). Promoter-

targeted DNA methylation sequencing data that support the
Frontiers in Oncology 04
findings of this study have been deposited into CNGB Sequence

Archive (CNSA) of CNGBdb with accession number

CNP0001248 (https://db.cngb.org/cnsa/) (39, 40).
Data processing

Raw sequencing reads were filtered by SOAPnuke v2.0.7

with parameters ‘-l 5 -q 0.5 -n 0.1 -f AAGTCGGAGGCCAAGC

GGTCTTAGGAAGACAA -r AAGTCGGATCGTAGCCATG

TCGTTCTGTGAGCCAAGGAGTTG -t 2,0,20,0 -Q 2 -G 2 -T

6 –seqType 0’ (two bases were trimmed off the 5′ end of reads1,

while 20 bases were trimmed off the 5′ end of reads2; remove

reads that containing adaptor sequence, more than 10% N bases,

or more than 50% bases with quality less than 5) (41). Clean

reads were mapped to the hg19 genome assembly downloaded

from GATK resource bundle (ftp://gsapubftp-anonymous@ftp.

broadinstitute.org/bundle/hg19/ucsc.hg19.fasta.gz) by

BitMapperBS v1.0.2.3 with default parameters (42). Duplicates

were removed by Picard v2.18.27 (http://broadinstitute.github.

io/picard/) with parameters ‘REMOVE_DUPLICATES=true’.

Quality control were performed using bamdst v 1.0.9 (https://

github.com/shiquan/bamdst) (Supplement Table 2).

A genome-wide cytosine methylation report was extracted

by MethylDackel v0.3.0-3-g084d926 (https://github.com/

dpryan79/MethylDackel) with parameters ‘–CHG –CHH –

cytosine_report’, every cytosine in any sequence context (CpG,

CHH and CHG) on both the plus and minus strands was

considered irrespective of whether they were actually covered

by any reads in the experiment or not. The capture regions
TABLE 1 Summaries of clinical characters of different cohorts*.

Healthy Primary Recurrent Non-recurrent Benign

Count 40 40 21 19 5

Age Mean ± SD 55 ± 9 72 ± 12 75 ± 11 68 ± 11 68 ± 17

p value 5.30E-09 0.041 –

Gender Female 31 8 2 4 1

Male 9 32 19 15 4

p value 4.30E-07 0.4 –

Smoking** YES 5 8 3 5 0

NO 23 32 18 14 5

p value 1 0.44 –

Stage Ta 0 14 9 0 0

T1 0 11 4 0 0

T2 0 10 3 0 0

T3 0 2 3 0 0

TIS 0 0 1 0 0

Grade Low 0 5 1 0 0

High 0 32 20 0 0
fronti
* Six patients provided multiple samples during their treatment progresses, e.g. primary, recurrent and non-recurrent, their clinical information had been used in different cohorts
repeatedly; p values were calculated with Fisher’s exact test.
** One patient who quit smoking 20+ years ago was considered to be non-smoking.
ersin.org

https://db.cngb.org/cnsa/
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/ucsc.hg19.fasta.gz
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/ucsc.hg19.fasta.gz
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/shiquan/bamdst
https://github.com/shiquan/bamdst
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://doi.org/10.3389/fonc.2022.986692
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.986692
(totally 19,050 regions) were split into non-overlapping 500bp-

fixed-length windows. Windows with length less than 500bp

were eliminated and totally 120,215 windows were retained for

methylation calculation.

To describe the methylation alteration properly, we put

forward the DNA methylation arctangent score (DMAS)

which was calculated using the arctangent of unmethylation

count and methylation count for each window from each sample

by atan2 function in Perl:

DMAS(WINi,j)=atan2(unmethyl(WINi,j), methyl(WINi,j))

where unmethyl(WINi,j) the sum of number of alignments

supporting unmethylation of all sites in window i on sample j,

methyl(WINi,j) the sum of number of alignments supporting

methylation of all sites in window i on sample j, a DMAS(WINi,j)

value ranges from 0 to p
2 the DMAS of window i on sample j

(Figure 2A). The smaller DMAS relates to the higher

methylation rate of a window (Supplement Table 3). DMAS

allows normalization of unmethylation count and methylation

count in terms of variability of the sequencing coverage

(including non-coverage which results in DMAS value of 0),

and exists highly similar value distribution (R=0.9977) with

DNA methylation rate (Figure 2B).
Training and validation

With the DMAS data, we trained a bladder cancer detecting

model using our previously developed method (43). The machine

learning method focuses on identifying and extracting patterns,

which are found frequently in one type of sample but may be rare

in other types, and uses them as features for cancer prediction.

The patterns here, refers to the relative order of windows about

their DMASs. For example, three windows WIN1, WIN2 and

WIN3 of DMASs from a sample that follow such a relationship

DMAS(WIN2)> DMAS(WIN1)> DMAS(WIN3), order (WIN1,

WIN2 and WIN3) will be a specific pattern for this sample

(Figure 2A). We believe such patterns could reflect small

changes in methylation under sub-genetic resolution and could

provide more details than genetic methylation rates. After

structuring a model with those healthy- and BLCA-specific

patterns, we validated the model with Recurrent and Non-

recurrent cohort. The whole pipeline could be found at https://

github.com/HanL233/BLCA_detecting.
Pathway analysis

We used DAVID (44) an online bioinformatic tool for

pathway enrichment analysis after annotating pattern-related

genes with ANNOVAR v2018-04-16 (45). The pattern-related

gene list was enriched with KEGG pathways by 'Functional

Annotation Tool' of DAVID.
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Results

A promoter-targeted liquid hybridization capture-based

bisulfite sequencing (LHC-BS) method (33, 39)was applied to

profile the promoter methylome of 125 urine samples collected

from 80 patients with bladder cancer, 5 patients with benign

urothelial diseases and 40 healthy individuals. Urine samples

were divided into two groups including the training set and the

validation set, the training set consisted of 40 patients with

biopsy or TURBT proven primary bladder cancer and 40 healthy

donors. The validation set included 21 patients with recurrent

bladder cancer, and 19 patients without recurrence undergoing

surveillance. Characteristics of patients from each group are

listed in Supplemental Table 1. The healthy cohort was

composed of patients with younger ages comparing to the

primary cohort (T test p=5.3e-09), and the non-recurrent

cohort is the younger cohort comparing to the recurrent

cohort (T test p=0.041) (Table 1).
The establishment of a model for
bladder cancer detection based on urine
sediments DNA methylation assay

We trained a model with the DMAS data of the healthy and

the primary cohort using an algorithm developed previously (46)

with the form of 10-fold cross-validation. Samples were divided

into 10 equal subsets randomly. For each round of the cross-

validation, samples of one subset were used as the validation set,

and the rest were used as the training set. After 10 rounds of

cross-validation, every sample had been used as a validation

sample at least once. Each validation sample would be scored by

the model to determine its types, as the results, every sample in

the healthy cohort and the primary cohort got its score. The sum

of weights of healthy-specific patterns was referred as the

sample’s H-zscore and that of the cancer-specific patterns was

referred as its C-zscore. The H-zscores and C-zscores of samples

from the same subsets were normalized with their D-zscores (z

scores), which is the result of H-zscore minus C-zscore

(Supplement Table 1). With the z scores, we obtained an

integrated AUC of 0.960 (95%CI: 0.922-0.998, Figure 3A),

which demonstrated our assay’s ability in differentiating

bladder cancer patients from healthy individuals non-invasively.
The validation of the model in bladder
cancer recurrence surveillance and
benign cancer detection

To demonstrate whether the aforementioned model could be

used in surveillance for bladder cancer recurrence, we applied it

on the recurrent and non-recurrent cohorts (Figure 3A). We
frontiersin.org
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A

B

FIGURE 2

Schematic diagram of the mechanism of the model (A) The flowchart of method. Preparation: Each target region was divided into a series of
500bp-length-fixed windows. For each window, the number of unmethylated nucleotides and that of methylated nucleotides were used to
calculated an arctangent value DMAS which was inversely proportional to the methylated ratio. In this case, the window #4 was abandoned for
insufficient length. Training: Based on the DMASs, a machine learning approach was used to mine the type-specific patterns among neighboring
windows. Prediction: A sample would be considered to be the type whose specific patterns appeared in the sample more often. (B) In this work,
we used DNA methylation angle score (DMAS) instead of DNA methylation rate for the purpose of dealing non-reads-mapped windows. DMAS
is highly similar value distribution with DNA methylation rate without extra concern about x+y=0. Left: DNA methylated ratio is calculated with
formula z(x,y)=x/(x+y), where x is the sum of number of alignments supporting unmethylation and y is the sum of number of alignments
supporting methylation of all sites in the same window. However, as a dividend, the value of x+y cannot be 0, which could cause problem when
a region has no reads mapped, we changed the dividend into max(1e-10,x+y) to make sure its value always above 0. Right: DMAS is calculated
with formula z(x,y)=atan2(x,y), where the value of x+y could be 0.
Frontiers in Oncology frontiersin.org06
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used the 10 trained models obtained from the previous 10-fold

cross-validation to score each sample, as the results, each sample

would obtain 10 zscores. We took the mean of 10 zscores of each

sample as its final zscore (Supplement Table 1), based on which

we obtained an AUC of 0.915 (95%CI: 0.825-1.000). The high

AUC indicated that our method’s ability in monitoring bladder

cancer non-invasively.

We observed significant differences in zscore among cohorts

(Figures 3B, C). Notably, for the healthy cohort, its zscores were

not only higher than that of the primary cohort (Wilcox test

p=2.3-16) and the recurrent cohort (Wilcox test p=4.5e-14) but
Frontiers in Oncology 07
also higher than that of non-recurrent cohort (Wilcox test p=3e-

7). As the lower zscore indicated higher risk of bladder cancer,

this result suggested that the urine samples of non-recurrent

cohort still to some extent remain cancerous, although non-

recurrent cohort’s zscores were higher than the primary cohort

(Wilcox test p=4.8e-6) and recurrent cohort (Wilcox test

p=9.7e-7).

We next checked how the zscores changed over the

treatment. There were 6 bladder patients donated more than

one urine sample during the treatment which provided an

opportunity to analyze how the cancer signal changed over
A

B

D EC

FIGURE 3

The establishment and validation of a model for bladder cancer detection based on urine sediments DNA methylation assay. (A) We performed
the 10-fold cross-validation on the healthy cohort and primary cohort to distinguish samples from the two cohorts. We calculated an AUC of
0.960 (95%CI: 0.922-0.998) based on all validation set samples. We test the 10 models trained during the 10-fold cross-validation to distinguish
samples from the recurrent cohort and the non-current cohort, which provided 10 zscores for each sample. For each sample, we summed its
10 scores as its integrated scores, with which we obtained an AUC of 0.915 (95%CI: 0.825-1.000). (B) The zscore distributions of samples from
different cohorts. The cutoff values were provided by function roc in R package pROC. (C) The differences in zscore among different cohorts. All
p values were calculated with the Wilcox test which was the default opinion for R package ggpubr. (D) Comparisons in zscore between samples
provided by the same patient (6 patients in total) (E) The distributions of zscores of 5 individuals with benign urothelial diseases.
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this period. All 6 patients achieved the progress-free (non-

recurrent) stage after treatment and 5 of them show zscores

higher than their previous stage, primary or recurrent

(Figure 3D). The results indicated our method is sensitivity to

track the cancer signal level in urine sample.

In addition, we also validated the model with the benign

cohort (Figure 3E). There were 5 individuals with benign

urothelial diseases in the benign cohort. We used the same

steps which used in the validation with recurrent and non-

recurrent cohort to score samples from the benign cohort. As the

results, the zscores of 4/5 individuals were above 0, which means

the model considered them could come from healthy donors

rather than bladder cancer patients. This suggested that our

method reached high accuracy (80%) in detecting benign

urothelial diseases from bladder cancer.
Analysis on potential confounding
factors of the model

We analyzed the potential effect of clinical factors on model’s

performance. We divided samples from the same cohort into

two groups with incompatible clinical conditions, such as gender

(female vs male, Figure 4A), age (<60 vs >60, Figure 4B),

smoking status (non-smoking vs smoking) and stages (early

states (Ta, T1) vs late states (T2, T3), for bladder cancer patients

only, Figures 4C, D) and measure the differences in zscore

between the two groups. The results suggested that factors like

age, smoking status, stage unlikely affected the model’s

performance (Wilcox test p value between two groups from

the same cohort were all non-significant (>0.1). However, for the
Frontiers in Oncology 08
primary and the recurrent cohort, there were significant

differences in zscores between the two groups divided by

gender factor (Wilcox test p<0.05, Figure 4A). Of note, the

sample size is extremely small in the recurrent female cohort

(n=2), so a definitive conclusion may not be drawn for

this cohort.
Pathways analysis on patterns
composing the model

We explored the biological meanings of patterns composing

the models by annotating the regions where the patterns located.

We focused on 1471 genes (for patterns which located in

intergenic region, we chose the nearest gene from its

upstream/downstream genes as its corresponding gene). With

further pathway analysis, we found two related pathways

(hsa04020: Calcium signaling pathway, Modified Fisher Exact

p=3.53E-05, Bonferroni=0.01; hsa04012: ErbB signaling

pathway, Modified Fisher Exact p=1.39E-04, Bonferroni=0.04).
Discussion

LHC-BS approach is an efficient and reliable analytical

platform (37, 47). In this study, we further optimized the

technology of LHC-BS and performed promoter methylation

analysis on urine exfoliated cell DNA of 125 urine samples. We

carried out the largest genome-wide DNAmethylation screening

of bladder cancer so far, defined a gene panel covering 91.8% of

the promoter regions, which could detect 1.86 million CpG sites.
A B DC

FIGURE 4

Comparisons in zscore between samples divided with clinical factors in different cohorts. (A) Samples were divided with gender factors (Female
vs Male). (B) Samples were divided with age factors (<60 vs >60). (C) Samples were divided with smoking status (Non-smoking vs smoking). (D)
Samples were divided with state factors (Ta, T1 as Early States; T2, T3 as Late States; for patients only).
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With the results from the optimized panel, we first trained a

model with urine samples from the primary and the healthy

cohort, which obtained an AUC > 0.96, and then validated it

with samples of the recurrent cohort and the non-recurrent

cohort, with obtained an AUC of 0.92.

We put forward the concept of DMAS to describe

methylation states. Methylation ratio is calculated by dividing

the number of total nucleotides covering target sites with the

number of methylated nucleotides. Obviously, the number of

total nucleotides couldn’t be zero, which requires extra process

to deal with sites with no reads covered. DMAS correlated highly

with methylation ratio avoiding concern of the mentioned sites.

With the DMAS data, we trained models using previous

machine learning method (42, 43). Our method focuses on the

DMAS patterns formed with adjacent bins instead of focusing

single DMAS value alteration, which could produce more robust

models in theory. Our method was developed basing on the

reads number within bins, and it worked surprisingly well in

another different kind of data and strengthened our confidence

to explore its potential in cancer detecting and monitoring.

Many studies have explored the use of urine exfoliates

cellular DNA as a biomarker for the diagnosis or prognosis

monitoring of bladder cancer (4), showing promise with

sensitivity to detect bladder cancer between 67%~100% based

on methylation assays, but none of them have progressed into

clinical practice (48–56). The quantity of loci that can be

included within a panel to analyze methylation and the low

amount of DNA that can be extracted from urinary exfoliated

cells have been important limiting factors for methylation

detection development. In the past two years, several research

groups have combined next-generation bisulfite sequencing with

target genome capture technology, to overcome these issues,

allowing a large number of epigenetic biomarkers from a single

sample. Specifically, Andrew Feber et al. evaluated DNA in the

cellular fraction of urine samples, achieving 98% sensitivity and

97% specificity in identifying bladder cancer at primary

diagnosis (57). However, this assay mainly answered the

specific question about the primary diagnosis of bladder

cancer in hematuria patients and has not been tested in the

recurrence setting. As reported in previous articles, urinary

biomarkers in detecting recurrent bladder cancer have

generally fared less well than in the primary diagnosis setting

with sensitivities ranging from 46–74% (32, 58–60). Our

promoter methylation detection panel combined with second-

generation sequencing, presented in this study, improved the

sensitivity of recurrence monitoring analysis. Additionally, for

the first time, we compared the methylation signals of the

healthy cohort and the non-recurrent cohort. Interestingly,

although the methylation signals of the non-recurrent cohort

were more similar to those in the healthy cohort than to bladder

cancer patients, there were still significant differences between

the non-recurrent cohort and the healthy cohort (Figure 3C),
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suggesting that the non-recurrent cohort still retained tumor

signals despite no progress in their disease.

Previous research has shown robust urinary test for the

detection of bladder cancer; however, few have explored the

possibility of differentiating cancer from benign genitourinary

diseases caused by inflammation. We here compared methylation

signals between patients with benign genitourinary diseases, and

those with bladder cancer (Figure 3E). In our model, 80% of

patients with benign diseases had been distinguished from cancer

samples, despite tumor and inflammatory tissues have similar

changes in the microenvironment (61). Numerous studies have

shown that epigenetic alterations, such as DNA methylation, play a

crucial role in carcinogenesis, especially in inflammation-related

cancers (62) and both inflammation and oncogenesis cause similar

alterations in methylation signals, which potentially increased

difficulty in distinguishing cancer and inflammatory diseases by

methylation signals from urine DNA. Despite a small number of

inflammatory samples used in this study, we preliminarily

demonstrated the potential of our assay in differentiating cancer

from inflammation.

As for the influence of clinical factors on model’s performance,

we found that age, smoking status and clinical stages have no

significant influence on the performance of our model. However,

the gender factor had shown significant effect on the performance,

especially in the primary cohort. This may be due to the gender-

related methylation difference globally, and it is known that the

incidence of bladder cancer is higher in men than in women (1).

Although sex differences in DNA methylation levels in human

urine have not yet been studied, it has been shown in some cell

types and human tissues, such as heart muscle, liver and blood (63–

67). Our results provide a reference for the subsequent studies on

the correlation between DNAmethylation and gender in urine. Sex

differences in DNA methylation may explain the different risk of

bladder cancer in men and women, and further studies are needed

to explain these issues.

Calcium signaling plays a crucial regulatory role in the invasion

andmigration of tumor cells by activating calcium-binding proteins

orothereffectorproteins invarioussignalingpathways(68).Through

enrichment analysis of epigenetically silenced genes signaling

pathways and gene interaction network analysis, it was found that

most calcium signaling pathways showed low expressed genes with

hypermethylation. In addition, these genes whose expression

regulated by DNA methylation are mostly located at key nodes of

thecalciumsignalingpathway, including theCa2+‐Na+exchangeand

G-protein-coupled receptor, which control the calcium flow (69).

ErbB signaling pathway also plays an important role in the

occurrence and development of cancers by the transduction of

mitogenic signals (70). Several researches reported on the

methylation of ErbB signaling network genes in various tumors

(71–73). Epigenetic changes, such as methylation of CpG islands in

the promoter region, result in significant silencing of gene

expression (74).
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Limitations of our study mainly include small sample sizes

and a lack of case-control design for patients in the primary and

surveillance groups. Due to the limited number of samples,

especially for benign bladder tumors, biological variability

between samples could be magnified, affecting the accuracy of

our model statistically and the potential of urine exocytic cells

for early prediction of bladder cancer. To overcome these

limitations, further studies with larger sample sizes that are

sequenced on a whole genome-wide methylation level and

possibly involved both inflammatory and early cancerous

samples will be needed to evaluate the sensitivity and

specificity of our model in predicting early-stage primary

bladder cancer and in distinguishing early-stage bladder

tumors from benign or from other bladder diseases.

In conclusion, our results suggest that the method we developed

could provide a high sensitivity in non-invasive detecting and

monitoring bladder cancer, which could reduce the frequency of

costly invasive cystoscopy. Despite clinical importance of this

powerful model, cautious interpretation and further studies are

warranted to improve its performance and expend its application.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: CNGB Sequence

Archive (CNSA) of CNGBdb, CNP0001248.
Author contributions

NNL, HL and JY designed the study. LW, LZ and XL

contributed to sample acquisition and clinical information

collection. NNL, HJL and TL contributed to experiment
Frontiers in Oncology 10
performance. HL, FL and QY contributed to data collection,

analysis and interpretation. KW and NCL supervised the study.

NNL, HL, FL and CL wrote the manuscript. All authors reviewed

the paper.
Funding

This work was supported by the Guangdong Provincial Key

Laboratory of Human Disease Genomics (2020B1212070028).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.986692/full#supplementary-material
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A, et al. Global
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68:394–424.
doi: 10.3322/caac.21492

2. Patel SG, Cohen A, Weiner AB, Steinberg GD. Intravesical therapy for
bladder cancer. Expert Opin Pharmacother (2015) 16(6):889–901. doi: 10.1517/
14656566.2015.1024656

3. Dudley JC, Schroers-Martin J, Lazzareschi DV, Shi WY, Chen SB, Esfahani
MS, et al. Detection and surveillance of bladder cancer using urine tumor DNA. [J].
Cancer Discovery (2019) 9(4):500–9. doi: 10.1158/2159-8290.CD-18-0825

4. Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-Methylation-based detection
of urological cancer in urine: Overview of biomarkers and considerations on
biomarker design, source of DNA, and detection technologies. Int J Mol Sci (2019)
20:2657. doi: 10.3390/ijms20112657

5. Ou Z, Li K, Yang T, Dai Y, Chandra M, Ning J, et al. Detection of bladder
cancer using urinary cell-free DNA and cellular DNA. Clin Transl Med (2020) 9:4.
doi: 10.1186/s40169-020-0257-2
6. Sidransky D, Von Eschenbach A, Jones P, Summerhayes I, Marshall F, Paul
M, et al. Identification of p53 gene mutations in bladder cancers and urine samples.
Science (1991) 252:706–9. doi: 10.1126/science.2024123

7. Patel KM, van der Vos KE, Smith CG, Mouliere F, Tsui D, Morris J, et al.
Association of plasma and urinary mutant DNA with clinical outcomes in muscle
invasive bladder cancer. Sci Rep (2017) 7(1):5554. doi: 10.1038/s41598-017-
05623-3

8. Christensen E, Birkenkamp-Demtröder K, Nordentoft I, Høyer S, van der
Keur K, van Kessel K, et al. Liquid biopsy analysis of FGFR3 and PIK3CA hotspot
mutations for disease surveillance in bladder cancer. Eur Urol (2017) 71:961–9. doi:
10.1016/j.eururo.2016.12.016

9. Gormally E, Vineis P, Matullo G, Veglia F, Caboux E, Le Roux E, et al. TP53
and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer
occurrence: A prospective study. Cancer Res (2006) 66:6871–6. doi: 10.1158/0008-
5472.CAN-05-4556

10. Utting M, Werner W, Dahse R, Schubert J, Junker K. Microsatellite analysis
of free tumor DNA in urine, serum, and plasma of patients: A minimally invasive
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.986692/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.986692/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1517/14656566.2015.1024656
https://doi.org/10.1517/14656566.2015.1024656
https://doi.org/10.1158/2159-8290.CD-18-0825
https://doi.org/10.3390/ijms20112657
https://doi.org/10.1186/s40169-020-0257-2
https://doi.org/10.1126/science.2024123
https://doi.org/10.1038/s41598-017-05623-3
https://doi.org/10.1038/s41598-017-05623-3
https://doi.org/10.1016/j.eururo.2016.12.016
https://doi.org/10.1158/0008-5472.CAN-05-4556
https://doi.org/10.1158/0008-5472.CAN-05-4556
https://doi.org/10.3389/fonc.2022.986692
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.986692
method for the detection of bladder cancer. Clin Cancer Res (2002) 8:35–40. doi:
10.1016/S0531-5131(01)00620-3

11. Christensen M, Wolf H, Orntoft TF. Microsatellite alterations in urinary
sediments from patients with cystitis and bladder cancer. Int J Cancer (2000)
85:614–7. doi : 10.1002/(SICI)1097-0215(20000301)85:5<614: :AID-
IJC3>3.0.CO;2-D

12. van Rhijn BW, Lurkin I, Kirkels WJ, van der Kwast TH, Zwarthoff EC.
Microsatellite analysis–DNA test in urine competes with cystoscopy in follow-up of
superficial bladder carcinoma: a phase II trial. Cancer (2001) 92:768–75. doi:
10.1002/1097-0142(20010815)92:4<768::AID-CNCR1381>3.0.CO;2-C

13. Czerniak B, Chaturvedi V, Li L, Hodges S, Johnston D, Roy JY, et al.
Superimposed histologic and genetic mapping of chromosome 9 in progression of
human urinary bladder neoplasia: implications for a genetic model of multistep
urothelial carcinogenesis and early detection of urinary bladder cancer. Oncogene
(1999) 18:1185–96. doi: 10.1038/sj.onc.1202385

14. Knowles MA, Elder PA, Williamson M, Cairns JP, Shaw ME, Law MG.
Allelotype of human bladder cancer. Cancer Res (1994) 54:531–8.

15. Koenig F, Jung K, Schnorr D, Loening SA. Urinary markers of malignancy.
Clin Chim Acta (2000) 297:191. doi: 10.1016/S0009-8981(00)00246-1

16. Ozen H, Hall MC. Bladder cancer. Curr Opin Oncol (2000) 12:255. doi:
10.1097/00001622-200005000-00012

17. Ross JS, Cohen MB. Ancillary methods for the detection of recurrent
urothelial neoplasia. Cancer (2000) 75:90. doi: 10.1002/(SICI)1097-0142
(20000425)90:2<75:AID-CNCR2>3.0.CO;2-W

18. Liu BC, Loughlin KR. Telomerase in human bladder cancer. Urol Clin North
Am (2000) 27:115. doi: 10.1016/S0094-0143(05)70239-1

19. Brown FM. Urine cytology. it is still the gold standard for screening? Urol
Clin North Am (2000) 25:27. doi: 10.1016/S0094-0143(05)70231-7

20. Lancelin F, Anidjar M, Villette JM, Soliman A, Teillac P, Duc AL, et al.
Telomerase activity as a potential marker in preneoplastic bladder lesions. BJU Int
(2000) 526:85. doi: 10.1046/j.1464-410x.2000.00466.x

21. Ozen H. Bladder cancer. Curr Opin Oncol (1999) 207:11. doi: 10.1097/
00001622-199905000-00013

22. Droller MJ, Kavaler E, Landman J, Liu BC. Urinary telomerase and its
possible role as a marker for bladder cancer. Keio J Med (1998) 47:135. doi:
10.2302/kjm.47.135

23. Landman J, Kavaler E, Droller MJ, Liu BC. Applications of telomerase in
urologic oncology. World J Urol (1997) 15:120. doi: 10.1007/BF02201983

24. Pirtskalaishvili G, Getzenberg RH, Konety BR. Use of urine-based markers
for detection and monitoring of bladder cancer. Tech Urol (1999) 5:179.

25. Kavaler E, Landman J, Chang Y, Droller MJ, Liu BC. Detecting human
bladder carcinoma cells in voided urine samples by assaying for the presence of
telomerase activity. Cancer (1998) 82:708. doi: 10.1002/(SICI)1097-0142
(19980215)82:4<708::AID-CNCR14>3.0.CO;2-1

26. Arai Y, Yajima T, Yagihashi A, Kobayashi D, Kameshima H, Sasaki M, et al.
Limitations of urinary telomerase activity measurement in urothelial cancer. Clin
Chim Acta (2000) 296:35. doi: 10.1016/S0009-8981(00)00202-3

27. Ito H, Kyo S, Kanaya T, Takakura M, Koshida K, Namiki M, et al. Detection
of human telomerase reverse transcriptase messenger RNA in voided urine samples
as a useful diagnostic tool for bladder cancer. Clin Cancer Res (1998) 4(11):2807–
10. doi: 10.1297/cpe.8.61

28. Esteller M. Epigenetics in cancer. N Engl J Med (2008) 358:1148–59. doi:
10.1056/NEJMra072067

29. Plass C. Cancer epigenomics. Hum Mol Genet (2002) 11(20):2479–88. doi:
10.1093/hmg/11.20.2479

30. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG
dinucleotides in the human genome distinguishes two distinct classes of
promoters. Proc Natl Acad Sci U S A. (2006) 103:1412–7. doi: 10.1073/
pnas.0510310103

31. Beukers W, Hercegovac A, Vermeij M, Kandimalla R, Blok AC, van der Aa
MM, et al. Hypermethylation of the polycomb group target gene PCDH7 in
bladder tumors from patients of all ages. J Urol (2013) 190:311–6. doi: 10.1016/
j.juro.2013.01.078

32. Kandimalla R, Masius R, Beukers W, Bangma CH, Orntoft TF, Dyrskjot L,
et al. A 3-plex methylation assay combined with the FGFR3 mutation assay
sensitively detects recurrent bladder cancer in voided urine. Clin Cancer Res
(2013) 19:4760–9. doi: 10.1158/1078-0432.CCR-12-3276

33. Su SF, de Castro Abreu AL, Chihara Y, Tsai Y, Andreu-Vieyra C,
Daneshmand S, et al. A panel of three markers hyper- and hypomethylated in
urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res
(2014) 20:1978–89. doi: 10.1158/1078-0432.CCR-13-2637

34. Shames DS, Minna JD, Gazdar AF. DNAMethylation in health, disease, and
cancer. Curr Mol Med (2007) 7:85–102. doi: 10.2174/156652407779940413
Frontiers in Oncology 11
35. Kandimalla R, Van Tilborg AA, Zwarthoff EC. DNA Methylation-based
biomarkers in bladder cancer. Nat Rev Urol (2013) 10:327–35. doi: 10.1038/
nrurol.2013.89

36. Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-Methylation-Based
detection of urological cancer in urine: Overview of biomarkers and
considerations on biomarker design, source of DNA, and detection Technologies
[J]. Int J Mol Sci (2019) 20(11):2657. doi: 10.3390/ijms20112657

37. Wang J, Jiang H, Ji G, Gao F, WuM, Sun J, et al. High resolution profiling of
human exon methylation by liquid hybridization capture-based bisulfite
sequencing. BMC Genomics (2011) 12:597. doi: 10.1186/1471-2164-12-597

38. Chen H, Huang J, Sun N, Qu S, Yu T, Gao S, et al. A reference human
genome dataset of the BGISEQ-500 sequencer. GigaScience (2017) 6(5):1–9. doi:
10.1093/gigascience/gix024

39. Chen FZ, You LJ, Yang F, Wang LN, Guo XQ, Gao F, et al. CNGBdb: China
national GeneBank DataBase. Yi Chuan (2020) 42:799–809. doi: 10.16288/
j.yczz.20-080

40. Guo X, Chen F, Gao F, Li L, Liu K, You L, et al. CNSA: a data repository for
archiving omics data. Database (Oxford) 2020 (2020) 2020:baaa055. doi: 10.1093/
database/baaa055

41. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: a
MapReduce acceleration-supported software for integrated quality control and
preprocessing of high-throughput sequencing data. [J]. GigaScience (2018) 7(1):1–
6. doi: 10.1093/gigascience/gix120

42. Cheng H, Xu Y. BitMapper BS: a fast and accurate read aligner for whole-
genome bisulfite sequencing. Cold Spring Harbor Laboratory (2018) PPR:
PPR58744. doi: 10.1101/442798

43. Liang H, Li F, Qiao S, Zhou X, Xie G, Zhao X, Zhang Y, et al. Whole-genome
sequencing of cell-free DNA yields genome-wide read distribution patterns to track
tissue of origin in cancer patients. Clin Transl Med (2020) 10(6):e177. doi: 10.1002/
ctm2.177

44. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a
web server for functional enrichment analysis and functional annotation of gene
lists (2021 update). Nucleic Acids Res (2022) 50(W1):W216–21. doi: 10.1093/nar/
gkac194

45. Yang H, Wang K. Genomic variant annotation and prioritization with
ANNOVAR and wANNOVAR. Nat Protoc (2015) 10:1556–66. doi: 10.1038/
nprot.2015.105

46. LiangH, Li F, Qiao S, Zhou X, Xie G, Zhao X, et al.Whole genome sequencing of
cell-free DNA yields genome-wide read distribution patterns to track tissue of origin in
cancer patients. Clin Transl Med (2020) 10(6):e177. doi: 10.1002/ctm2.177

47. Gao F, Wang J, Ji G, Liu S, Yao Y, Wang T, et al. Clustering of cancer cell lines
using a promoter-targeted liquid hybridization capture-based bisulfite sequencing
approach. Technol Cancer Res Treat (2014) 14(4):383–94. doi: 10.7785/tcrt.2012.500416

48. Fantony JJ, Abern MR, Gopalakrishna A, Owusu R, Jack Tay K, Lance RS,
et al. Multi-institutional external validation of urinary TWIST1 and NID2
methylation as a diagnostic test for bladder cancer. Urol Oncol (2015) 33:387 e1–
6. doi: 10.1016/j.urolonc.2015.04.014

49. Chihara Y, Kanai Y, Fujimoto H, Sugano K, Kawashima K, Liang G, et al.
Diagnostic markers of urothelial cancer based on DNA methylation analysis. BMC
Cancer (2013) 13:275. doi: 10.1186/1471-2407-13-275

50. Yegin Z, Gunes S, Buyukalpelli R. Hypermethylation of twist1 and nid2 in
tumor tissues and voided urine in urinary bladder cancer patients. DNA Cell Biol
(2013) 32:386–92. doi: 10.1089/dna.2013.2030

51. Renard I, Joniau S, van Cleynenbreugel B, Collette C, Naome C,
Vlassenbroeck I, et al. Identification and validation of the methylated twist1 and
nid2 genes through real-time methylation-specific polymerase chain reaction
assays for the noninvasive detection of primary bladder cancer in urine samples.
Eur Urol (2010) 58:96–104. doi: 10.1016/j.eururo.2009.07.041

52. Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, Skotheim
RI, et al. Three epigenetic biomarkers, gdf15, tme_2, and vim, accurately predict
bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res (2010)
16:5842–51. doi: 10.1158/1078-0432.CCR-10-1312

53. Pietrusinski M, Kepczynski L, Jedrzejczyk A, Borkowska E, Traczyk-
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