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carcinoma: A multicenter study
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Introduction: Post-hepatectomy liver failure (PHLF) is one of the most serious

complications and causes of death in patients with hepatocellular carcinoma

(HCC) after hepatectomy. This study aimed to develop a novel machine

learning (ML) model based on the light gradient boosting machines

(LightGBM) algorithm for predicting PHLF.

Methods: A total of 875 patients with HCC who underwent hepatectomy were

randomized into a training cohort (n=612), a validation cohort (n=88), and a

testing cohort (n=175). Shapley additive explanation (SHAP) was performed to

determine the importance of individual variables. By combining these

independent risk factors, an ML model for predicting PHLF was established.

The area under the receiver operating characteristic curve (AUC), sensitivity,

specificity, positive predictive value, negative predictive value, and decision

curve analyses (DCA) were used to evaluate the accuracy of the ML model and

compare it to that of other noninvasive models.

Results: The AUCs of the ML model for predicting PHLF in the training cohort,

validation cohort, and testing cohort were 0.944, 0.870, and 0.822,

respectively. The ML model had a higher AUC for predicting PHLF than did

other non-invasive models. The ML model for predicting PHLF was found to be

more valuable than other noninvasive models.
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Conclusion: A novel ML model for the prediction of PHLF using common

clinical parameters was constructed and validated. The novel ML model

performed better than did existing noninvasive models for the prediction

of PHLF.
KEYWORDS
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Introduction

In 2020, primary liver cancer was the sixth most commonly

diagnosed cancer and the third leading cause of cancer-related

deaths worldwide, as approximately 906,000 new cases and

830,000 deaths occurred in 2020 (1). More than 50% of the

world’s total new cases of liver cancer each year are attributed to

hepatitis B, which has a high incidence in China (2). Radical liver

resection remains the first choice of treatment for hepatocellular

carcinoma (HCC) (3). Post-hepatectomy liver failure (PHLF) is

the most common cause of postoperative death among patients

who undergo hepatectomy for HCC (4). The incidence of PHLF

has been reported to be 1.2%-32% and is attributed to different

etiologies and surgical procedures (5, 6) as the most common

cause of early death after liver surgery (7).

A variety of comprehensive scoring systems and nomogram

prediction models can be used to help predict PHLF in patients

with HCC (8–10). However, no universally recognized method for

the prediction of PHLF has been established. Machine learning

(ML), one of the most important branches of artificial intelligence

(AI), has undergone rapid development and is being widely used

in the field of disease prediction, where it has achieved remarkable

results in clinical practice (11). ML is widely used in cancer

research, where it is applied to clinical data, radiomics, and

genomics to develop predictive models for efficient and accurate

decision making (12–14). ML uses computational algorithms to

learn from and analyze large amounts of data in a short period of

time. Therefore, ML may outperform traditional risk stratification

tools via the integration of different algorithms such as decision

trees, artificial neural networks, random forests, support vector

machines, extreme gradient boosting, and light gradient boosting

machines (LightGBM) (15). LightGBM uses a histogram-based

decision tree algorithm. Compared with other ML models, the

LightGBM model is characterized by fast training speed and low

memory usage. ML based on LightGBM has only recently been

introduced in research involving liver disease (16–18), and the

LightGBM model has not yet been used to predict PHLF.

In this study, a novel ML model based on the LightGBM

algorithm, namely ML PHLF, was constructed. This novel model

may replace traditional scoring systems and facilitate the
02
assessment of liver function and reduction of the incidence of

PHLF and postoperative mortality after radical hepatectomy.
Materials and methods

Study population

This retrospective study was performed using a multicenter

database of patients who underwent radical hepatectomy for HCC

at the following hospitals: The Xingtai People’s Hospital, The

Second Affiliated Hospital of Nanjing Medical University, Fifth

Medical Center of People's Liberation Army (PLA) General

Hospital, The First Affiliated Hospital of Dalian Medical

University, and Tongji Hospital Affiliated to Huazhong University

of Science and Technology. Two independent investigators (JW and

JL) reviewed the baseline data, laboratory parameters, treatment

records, and pathological findings. All patients were randomly

divided into the training, validation, and testing cohorts at a ratio

of 7:2:1. This study was performed in accordance with the ethical

guidelines of the Declaration of Helsinki and approved by the

Institutional Review Board (2022–006).

Patients aged > 18 years with confirmed HCC based on

histopathological examination of the tumor specimen and no

history of anticancer therapy, including transarterial

chemoembolization, ablation, or targeted drugs, were included in

this study. Patients who underwent other surgical procedures at the

time of hepatectomy and those with insufficient data on important

indicators, such as total bilirubin (TBIL) and international

normalized ratio (INR) on or after the fifth postoperative day,

were excluded from the study.
Data collection

Patient demographic data, including age, weight, body mass

index (BMI), sex, presence of hypertension, etiology of liver

disease, and cirrhosis, were retrieved from the medical records.

Data on the surgical method (open or minimally invasive),

extent of liver resection (major resection: ≥ 3 segments; minor
frontiersin.org
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resection:< 3 segments), requirement of intraoperative blood

transfusion, number of tumors, maximum tumor diameter, and

intraoperative blood loss were extracted from the preoperative

and surgical records. Laboratory indicators included red blood

cell (RBC) count, white blood cell (WBC) count, platelet (PLT)

count, TBIL, direct bilirubin (DBIL), albumin (ALB), alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

serum alpha-fetoprotein (AFP), carcinoembryonic antigen

(CEA), creatinine (Cr), prothrombin time (PT), and INR.

Portal hypertension was defined as the presence of varicose

veins or a PLT count<100 x 109/L and a spleen diameter > 12 cm.

According to previous literature, the model for end-stage liver

disease (MELD) score (19) was calculated as:

11:2� ln   INRð Þ   +9:57� ln   Cr,  mg=dLð Þ + 3:78

� ln   TBIL,  mg=dLð Þ + 6:43

The fibrosis-4 (FIB-4) index (20) was calculated as:

AST   U=Lð Þ � age   (years)=½platelet   count   (� 10 9=L)�

alanine   aminotransferase  ALT   (U=LÞ   1=2�

The albumin-bilirubin (ALBI) score (21) was calculated as:

0:66� lg   (TBIL,   μmol=LÞ – 0:085� ALB,   g=Lð Þ
The aminotransferase-to-platelet ratio index (APRI) score

(22) was calculated as:

AST   level   (=ULN)=platelet   counts   (10 9=L)½ �  �100

Finally, the Child-Turcotte-Pugh (CTP) score (23) was

calculated and obtained. Based on the Chinese Society of

Hepatology guidelines for the diagnosis and treatment of liver

cirrhosis, the diagnosis of liver cirrhosis was made using

preoperative clinical variables such as the etiology, history,

clinical manifestations, complications, laboratory results,

imaging examinations, or liver biopsy histology (24).
Definition of PHLF

The International Study Group of Liver Surgery (ISGLS)

diagnostic criteria for PHLF were used in this study (5). PHLF

was defined as an increase in TBIL and INR on or after the fifth

postoperative day when compared to preoperative levels, after the

exclusion of biliary obstruction as a cause for increased TBIL or INR.
Development of the ML PHLF model

A total of 835 patients, including 192 with PHLF and 683

without PHLF, were included in this study. Twenty-five clinical

variables, including sex, age, weight, liver disease etiology,

cirrhosis, portal hypertension, PLT count, RBC count, WBC
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count, TBIL, ALB, AST, ALT, DBIL, Cr, PT, INR, AFP, CEA,

tumor size, tumor number, surgical approach, extent of

resection, intraoperative blood loss, and intraoperative blood

transfusion, were used in this study. To verify the performance

of the model, 70% of the dataset was used as the training set, 10%

was used as the validation set, and 20% was used as the testing

set. Data from the training and validation sets were applied to

LightGBM, which computed the value of each variable using a

decision tree to generate a prediction model for PHLF (Figure 1).

The Shapley additive explanation (SHAP), a game-theoretic

approach to interpreting the output of the ML PHLF (25, 26), was

used to quantitatively measure the importance of each variable and

describe the overall relationship between PHLF and all variables. To

obtain the best ML model for PHLF, the LightGBM algorithm was

optimized by adjusting the number of iterations, number of leaves,

and maximum depth of the tree. The optimal number of trees,

maximum tree depth, and number of leaves obtained were

combined with the hyperparameters adjusted by the validation set

to construct an optimal LightGBM model. In addition, the

LightGBM algorithm can speed up the training process without

affecting the performance of the model. This overall increase in

speed is the result of a combination of gradient-based one-sided

sampling and exclusive feature bundling. Subsequently, the

LightGBM model is used to establish an accurate PHLF diagnosis

model with a favorable area under the receiver operating

characteristic curve (AUROC). The AUROCs of the training,

verification, and testing cohorts were determined.
Statistical analysis

Continuous variables with normal distribution are presented as

median and interquartile range or mean and standard deviation.

These variables were compared using Student’s t-test. Non-normal

variables were analyzed using the Mann–Whitney rank sum test.

Categorical variables are presented as numbers and frequencies (%).

The chi-squared test or Fisher’s exact test were used to analyze

categorical variables. The predictive performance of the ML PHLF

model was assessed using AUROC, sensitivity, specificity, positive

predictive value, and negative predictive value (NPV). Decision

curve analyses (DCA) were used to measure the clinical utility of

each model by calculating the net benefit at various threshold

probabilities. R software (version 4.1.2) or Python software (version

3.7.9) was used for data analysis and model building. Statistical

significance was set at P< 0.05.
Results

Study population

A total of 875 patients were enrolled in this study and

randomly assigned to the training (n=612), validation (n=88),
frontiersin.org
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and testing (n=175) cohorts at a ratio of 7:1:2. The baseline

characteristics of the three groups were not significantly

different (Table 1).
Interpretation of the model using the
SHAP algorithm

The top five factors associated with PHLF were PLT count,

age, Cr, INR, and AFP (Figure 2A). The top 20 variables and the

correlation between high or low SHAP values and the predicted

PHLF are presented in Figure 2B.
Diagnostic performance of the ML model
for PHLF

In the training, validation, and testing cohorts, the number

of patients with PHLF were 137 (22.4%), 15 (17.1%), and 40

(22.9%), respectively. The areas under the curve (AUCs) of the

ML model for detecting PHLF in the training, validation, and

testing cohorts were 0.944 (95% confidence interval [CI], 0.924-

0.964), 0.870 (95% CI, 0.791-0.950), and 0.822 (95% CI, 0.755-

0.888), respectively (Figure 3). The ML PHLF model identified

PHLF in the training cohort with a sensitivity, specificity, and

NPV of 87.6%, 85.9%, and 96.0%, respectively. The sensitivity,

specificity, and NPV of the ML PHLF model were 100%, 64.4%,

and 100%, respectively, in the validation cohort and 87.5%,

64.4%, and 94.6%, respectively, in the testing cohort

(Tables 2–4).
Frontiers in Oncology 04
Comparison of the ML PHLF model and
other noninvasive models

We further compared the diagnostic performance of the ML

PHLF model with that of routine clinical models, such as ALBI,

FIB-4, APRI, MELD, and CTP. The ML PHLF model had the

highest AUC for the prediction of PHLF among the noninvasive

models (Figure 3). In addition, the AUCs for the ALBI, FIB-4,

APRI, MELD, and CTP score were 0.570, 0.595, 0.568, 0.512,

and 0.512, respectively, in the training cohort (Figure 3A); 0.615,

0.632, 0.554, 0.539, and 0.500, respectively, in the validation

cohort (Figure 3B); and 0.703, 0.619, 0.613, 0.574, and 0.549,

respectively, in the testing cohort (Figure 3C). The diagnostic

performances of routine clinical models in the training,

validation, and testing cohorts are summarized in Tables 2, 3,

and 4, respectively.

The ML PHLF model added more value than did the FIB-4,

APRI, ALBI, MELD, or CTP score for predicting PHLF in the

training cohort (Figure 4A). The results were similar in the

validation and testing cohorts. The novel ML PHLF model was

more reliable than the traditional models (Figure 4B

and Figure 4C).
Online calculator application

The ML model is composed of 29 decision trees based on the

LightGBM algorithm. Owing to the large number of trees and

the complex structure of each tree, only the first three and last

two decision trees are shown in Supplementary Figure S1. To

increase the clinical utility, a web calculator application based on
FIGURE 1

Flowchart of the development of the ML model. ML, machine earning; PHLF, post-hepatectomy liver failure.
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TABLE 1 Baseline characteristics.

Characteristics All patients
(n=875)

Training cohort
(n=612)

Validation cohort
(n=88)

Testing cohort
(n=175)

P value

PHLF 0.522

No 683 (78.06) 475 (77.61) 73 (82.95) 135 (77.14)

Yes 192 (21.94) 137 (22.39) 15 (17.05) 40 (22.86)

Age, years 53 (46 - 60) 54 (46 - 60.2) 53 (45 - 59.2) 52 (46 - 60) 0.967

Weight, kg 67 (60 - 75) 66.5 (60 - 75) 68 (62 - 75.2) 67 (60 - 76.5) 0.268

BMI, kg/m2 23.4 (21.5 – 25.4) 23.1 (21.2 – 24.8) 23.7 (22.0 – 25.7) 23.8 (22.0 – 26.1) 0.079

Sex 0.843

Female 140 (16) 99 (16.18) 12 (13.64) 29 (16.57)

Male 735 (84) 513 (83.82) 76 (86.36) 146 (83.43)

Cirrhosis 0.796

No 107 (12.23) 78 (12.75) 9 (10.23) 20 (11.43)

Yes 768 (87.77) 534 (87.25) 79 (89.77) 155 (88.57)

Portal hypertension 0.961

No 565 (64.57) 395 (64.54) 58 (65.91) 112 (64)

Yes 310 (35.43) 217 (35.46) 30 (34.09) 63 (36)

Hepatitis B 0.805

No 105 (12) 73 (11.93) 9 (10.23) 23 (13.14)

Yes 770 (88) 539 (88.07) 79 (89.77) 152 (86.86)

Hepatitis C 0.145

No 846 (96.7) 590 (96.4) 88 (100) 168 (96.0)

Yes 29 (3.3) 22 (3.6) 0 (0) 8 (4.0)

Alcoholic 0.455

No 870 (99.4) 609 (99.5) 88 (100) 173 (98.9)

Yes 5 (0.6) 3 (0.5) 0 (0) 2 (1.1)

Surgical approach 0.668

Laparoscopy 344 (39.31) 235 (38.4) 37 (42.05) 72 (41.14)

Open surgery 531 (60.69) 377 (61.6) 51 (57.95) 103 (58.86)

Extent of resection 0.539

Minor 786 (89.83) 545 (89.05) 80 (90.91) 161 (92)

Major 89 (10.17) 67 (10.95) 8 (9.09) 14 (8)

Intraoperative blood loss, ml 200 (100 - 482) 200 (100 - 450) 255 (100 - 400) 250 (100 - 500) 0.359

Transfusion 0.069

No 688 (78.63) 494 (80.72) 65 (73.86) 129 (73.71)

Yes 187 (21.37) 118 (19.28) 23 (26.14) 46 (26.29)

Tumor number 0.597

Single 744 (85.03) 524 (85.62) 72 (81.82) 148 (84.57)

Multiple 131 (14.97) 88 (14.38) 16 (18.18) 27 (15.43)

Tumor size, cm 4 (2.5 - 5) 4 (2.5 - 5.5) 3.2 (2.1 - 5) 4 (2.5 - 5) 0.824

ALT, U/L 31 (22 - 45) 31 (22 - 45) 30.5 (22 - 43.2) 34 (22 - 45) 0.145

AST, U/L 30 (23 - 43) 30 (23 - 43) 29 (24 - 43) 30 (23 - 44) 0.193

Albumin, g/L 39.5 (37 - 42.1) 39.5 (37 - 42.2) 38.8 (36.5 - 42.1) 40 (36.4 - 42) 0.300

Total bilirubin, mmol/L 14 (10.7 - 19) 14.1 (10.8 - 18.9) 14.8 (10.7 - 20.4) 13.6 (10.6 - 18.4) 0.523

Direct bilirubin, mmol/L 4.9 (3.6 - 6.7) 4.9 (3.4 - 6.5) 5.2 (3.7 - 7.3) 4.9 (3.7 - 6.5) 0.256

Creatinine, mmol/L 76 (64.8 - 83) 76 (65 - 84) 75.5 (69 - 81.2) 75 (62.5 - 82.5) 0.718

PT, s 12.3 (11.4 - 13.6) 12.3 (11.4 - 13.5) 12.9 (11.5 - 14) 12.4 (11.5 - 13.6) 0.496

INR 1.1 (1 - 1.1) 1.1 (1 - 1.1) 1.1 (1 - 1.2) 1.1 (1 - 1.1) 0.527

Platelet count, x 109/L 140 (99 - 190) 140 (101 - 188.2) 138.5 (95.2 - 197) 139 (93 - 193) 0.225

RBC count, x 1012/L 4.5 (4.2 - 4.9) 4.5 (4.2 - 4.9) 4.5 (4.2 - 4.8) 4.5 (4.1 - 4.8) 0.545

(Continued)
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the novel ML model has been developed (http://www.pan-chess.

cn/calculator/PHLF_score) (Supplementary Figure S2).
Discussion

In this study, a novel ML PHLF model for predicting the risk

of PHLF was developed based on the LightGBM algorithm using

the data of 875 patients with HCC who underwent liver

resection. This novel model exhibited the best AUC when

compared to existing noninvasive prediction models and good

decision making in the training, validation, and testing cohorts

in this study. This valuable and reliable predictive model for

PHLF may be effective in optimizing personalized treatment

options for patients with HCC, allowing for early identification

of patients with HCC at high risk for PHLF.

Radical liver resection remains the first-choice treatment for

HCC. With the update of new surgical techniques, optimization

of innovative surgical instruments, and advancement of surgical
Frontiers in Oncology 06
intensive care medicine, the safety of liver resection has

significantly improved. Therefore, perioperative mortality after

hepatectomy has decreased (27). However, PHLF remains a

serious complication for patients with HCC after hepatectomy.

Accurate identification of patients with a high risk of PHLF is

critical. Therefore, development of a predictive model for PHLF

is crucial for clinical decision making.

Previously reported, noninvasive models for the prediction

of PHLF are mainly based on laboratory indicators. The FIB-4,

APRI, CTP score, MELD, and ALBI are widely used scoring

systems for the evaluation of liver function and have been

confirmed to predict the occurrence of PHLF (28–32).

However, the predictive efficacy of these traditional

noninvasive models that are based on simple laboratory

indicators is relatively poor, whereas AI-based combined

models using multiple clinical parameters have greater

predictive potential.

ML is a field of AI that uses data-driven mining of complex

datasets to predict future outcomes (33–35). The use of various
TABLE 1 Continued

Characteristics All patients
(n=875)

Training cohort
(n=612)

Validation cohort
(n=88)

Testing cohort
(n=175)

P value

WBC count, x 109/L 5.2 (4.1 - 6.5) 5.1 (4.1 - 6.5) 5 (4.1 - 6.4) 5.3 (4.2 - 6.8) 0.675

AFP, ng/ml 17 (5.4 - 248.7) 18 (5.2 - 286) 17.5 (9.2 - 432.6) 16.6 (5.2 - 166.5) 0.505

CEA, ng/ml 3.1 (1.8 - 3.5) 3 (1.8 - 3.5) 3 (1.9 - 3.5) 3.5 (1.9 - 3.5) 0.462

Machine learning model 0.5 (0.4 - 0.5) 0.5 (0.4 - 0.5) 0.5 (0.4 - 0.5) 0.5 (0.4 - 0.6) 0.564

ALBI -2.6 (-2.9 - -2.4) -2.6 (-2.9 - -2.4) -2.5 (-2.9 - -2.3) -2.6 (-2.9 - -2.4) 0.490

FIB-4 2.2 (1.4 - 3.5) 2.2 (1.4 - 3.5) 2.1 (1.3 - 3.3) 2.2 (1.3 - 3.7) 0.777

APRI 0.6 (0.4 - 1) 0.6 (0.4 - 1) 0.6 (0.4 - 1) 0.6 (0.3 - 1.1) 0.721

MELD 4.9 (2.9 - 6.7) 4.7 (2.9 - 6.7) 5.3 (3.3 - 7) 4.9 (2.7 - 6.5) 0.611

CTP 0.296

Class A 827 (94.51) 583 (95.26) 82 (93.18) 162 (92.57)

Class B 48 (5.49) 29 (4.74) 6 (6.82) 13 (7.43)
front
Data are presented as number (percentage) or median (range). PHLF, post hepatectomy liver failure; BMI, body mass index; ALT, alanine transaminase; AST, aspartate transaminase; PT,
prothrombin time; INR, international normalized ratio; RBC, red blood cell; WBC, write blood cell; AFP, a-fetoprotein level; CEA, carcinoembryonic antigen; ALBI, albumin-bilirubin
grade; FIB-4, fibrosis 4 score; APRI, aspartate transaminase to platelet ratio; MELD, model for end-stage liver disease; CTP, Child-Turcotte-Pugh.
BA

FIGURE 2

Summary Shapley additive explanations plot revealing the impact of individual clinical variables. (A) The importance matrix plot of clinical
variables is derived using the LightGBM model. The matrix plot ranks the importance of the variables selected for the final analysis, revealing the
contribution of each variable to PHLF versus non-PHLF. (B) The SHAP summary plot of the LightGBM model is shown. The higher the SHAP
value for each clinical variable, the higher risk of PHLF. LightGBM, light gradient boosting machines; PHLF, post-hepatectomy liver failure.
iersin.org
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ML algorithms to perform disease risk prediction has become a

research hotspot in the field of medical big data. Various

complex algorithms can be used to deeply mine the

relationships between disease variables. The ML model has

two advantages over other models, including the use of

nonlinear functions and the consideration of the possible

effects between all variables. ML algorithms have been

increasingly applied to pertinent issues in the field of liver

surgery (16). Mai et al. (36) developed an artificial neural

network-based model to predict the risk of PHLF in patients

with HCC undergoing partial hepatectomy. The predictive
Frontiers in Oncology 07
performance of the model exceeded that of traditional logistic

regression models and commonly-used scoring systems.

However, no research regarding ML models developed based

on LightGBM that predict PHLF has been reported.

Twenty-five clinically meaningful variables were used to

develop the ML PHLF model according to the SHAP analysis

in this study. Specifically, both the importance matrix plot and

the SHAP results indicate that PLT count, age, Cr, INR, and AFP

are the five most important contributors to the final model. The

preoperative PLT count was identified as the most important

factor. A meta-analysis of 13 studies (37) assessed the effects of
B CA

FIGURE 3

ROC curves. The ROC curves of the FIB-4 score, APRI score, CTP score, MELD score, and ALBI score are compared with that of the ML model
in the training (A), validation (B), and testing (C) cohorts. ROC, receiver operating characteristic curves; ML, machine learning; FIB-4, fibrosis-4;
APRI, aminotransferase to platelet ratio index; CTP, Child-Turcotte-Pugh; MELD, model for end-stage liver disease; ALBI, albumin–bilirubin.
TABLE 2 Predictive power of the ML model and routine clinical models using data of the training cohort.

Model Specificity Sensitivity Accuracy NPV PPV Recall Youden’s index

Machine learning model 85.9% 87.6% 86.3% 96.0% 64.2% 87.6% 1.735

ALBI 66.1% 49.6% 62.4% 82.0% 29.7% 49.6% 1.157

FIB-4 33.7% 81.8% 44.4% 86.5% 26.2% 81.8% 1.154

APRI 55.8% 59.1% 56.5% 82.6% 27.8% 59.1% 1.149

MELD 76.2% 31.4% 66.2% 79.4% 27.6% 31.4% 1.076

CTP 95.8% 6.6% 75.8% 78.0% 31.0% 6.6% 1.024
ML, machine learning; NPV, negative predictive value; PPV, positive predictive value; ALBI, albumin-bilirubin grade; FIB-4, fibrosis 4 score; APRI, aspartate transaminase to platelet ratio;
MELD, model for end-stage liver disease; CTP, Child-Turcotte-Pugh.
TABLE 3 Predictive power of the ML model and routine clinical models using data of the validation cohort.

Model Specificity Sensitivity Accuracy NPV PPV Recall Youden’s index

Machine learning model 64.4% 100.0% 70.5% 100.0% 36.6% 100.0% 1.644

ALBI 52.1% 73.3% 55.7% 90.5% 23.9% 73.3% 1.254

FIB-4 86.3% 53.3% 80.7% 90.0% 44.4% 53.3% 1.396

APRI 67.1% 53.3% 64.8% 87.5% 25.0% 53.3% 1.205

MELD 84.9% 33.3% 76.1% 86.1% 31.3% 33.3% 1.183

CTP 0.0% 100.0% 17.0% – 17.0% 100.0% 1.000
ML, machine learning; NPV, negative predictive value; PPV, positive predictive value; ALBI, albumin-bilirubin grade; FIB-4, fibrosis 4 score; APRI, aspartate transaminase to platelet ratio;
MELD, model for end-stage liver disease; CTP, Child-Turcotte-Pugh.
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perioperative PLT count on PHLF and mortality using two PLT

count cutoffs (100 and 150 platelets/nL). Patients with a

perioperative PLT count< 150/nL (four studies, 817 patients;

odds ratio [OR]: 4.79; 95% CI, 2.89-7.94) and those with a PLT

count< 100/nL (four studies, 949 patients; OR: 4.65; 95% CI:

2.608.31) had a high risk of developing PHLF (37). As shown in

previous studies, PLT count (38), age (39), Cr (40), INR (41),

and AFP (42) are all predictors of PHLF.

The ML PHLF model is more accurate for the prediction of

PHLF than are existing models and is convenient to use. The

AUCs of the ML PHLF model for detecting PHLF in the

training, validation, and testing cohorts were 0.944, 0.870, and

0.822, respectively, confirming that the ML PHLF model has

good predictive value for PHLF in different groups. The ML

PHLF model had the highest predictive value for AUC among

traditional scoring systems in all three cohorts. The ML model

identified PHLF in the training cohort with a sensitivity,

specificity, and NPV of 87.6%, 85.9%, and 96.0%, respectively.

The sensitivity, specificity, and NPV of the ML PHLF model

were 100%, 64.4%, and 100%, respectively, in the validation

cohort and 87.5%, 64.4%, and 94.6%, respectively, in the testing

cohort. When compared to the sensitivity, specificity, and NPV

of traditional scoring systems, those of the ML PHLFmodel were

the highest. The ML PHLF model outperformed traditional

noninvasive models according to the DCA curves. To facilitate

the use of this model in the clinic, a free web calculator to predict
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the risk of PHLF has been developed (http://www.pan-chess.cn/

calculator/PHLF_score).

This is the first multicenter study to explore the development

and validation of a LightGBM-based model for the prediction of

PHLF in patients with HCC. The ML PHLF model is based on

routine clinical parameters obtained in patients with HCC. With

the advantages of convenient data collection, availability, and

objectiveness, the novel model is suitable for the prediction of

PHLF in most clinical situations, showing good interpretability

and consistency with clinical experience and demonstrating

good reliability.

However, this study has some limitations. First, a selection bias

was unavoidable; however, this offset has been minimized via the

multicenter design. Second, the ML PHLF model is poorly

interpretable, a black box, and prone to overfitting. Therefore,

interpretable ML algorithms will be assessed in follow-up studies.

Last, the novel ML model predicts the overall risk of PHLF as

defined by the ISGLS criteria. Prospective multicenter studies are

required to determine the predictive value of ML PHLF models in

CTP class B and C subgroups and other PHLF diagnostic criteria,

such as the 50-50 criteria.

Conclusion

In conclusion, an ML PHLF model using common clinical

parameters was constructed and validated based on the
frontiersin.org
TABLE 4 Predictive power of the ML model and routine clinical models using data of the testing cohort.

Models Specificity Sensitivity Accuracy NPV PPV Recall Youden’s index

Machine learning model 64.4% 87.5% 69.7% 94.6% 42.2% 87.5% 1.519

ALBI 77.8% 55.0% 72.6% 85.4% 42.3% 55.0% 1.328

FIB-4 85.2% 40.0% 74.9% 82.7% 44.4% 40.0% 1.252

APRI 79.3% 45.0% 71.4% 82.9% 39.1% 45.0% 1.243

MELD 90.4% 25.0% 75.4% 80.3% 43.5% 25.0% 1.154

CTP 94.8% 15.0% 76.6% 79.0% 46.2% 15.0% 1.098
ML, machine learning; NPV, negative predictive value; PPV, positive predictive value; ALBI, albumin-bilirubin grade; FIB-4, fibrosis 4 score; APRI, aspartate transaminase to platelet ratio;
MELD, model for end-stage liver disease; CTP, Child-Turcotte-Pugh.
B CA

FIGURE 4

DCA curves. The DCA curves of the FIB-4 score, APRI score, CTP score, MELD score, and ALBI score are compared with that of the ML model
in the training (A), validation (B), and testing (C) cohorts. sDCA, decision curve analysis; ML, machine learning; FIB-4, fibrosis-4; APRI,
aminotransferase-to-platelet ratio index; CTP, Child-Turcotte-Pugh; MELD, model for end-stage liver disease; ALBI, albumin–bilirubin.
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LightGBM algorithm. Compared to other noninvasive models,

this novel model has the best PHLF-predictive ability. This

model can be used to help accurately predict the risk of PHLF,

screen high-risk PHLF subgroups, and help surgeons determine

personalized treatment options.
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