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SVMMDR: Prediction of
miRNAs-drug resistance using
support vector machines based
on heterogeneous network

Tao Duan, Zhufang Kuang* and Lei Deng

School of Computer and Information Engineering, Central South University of Forestry and
Technology, Changsha, China
In recent years, the miRNA is considered as a potential high-value therapeutic

target because of its complex and delicate mechanism of gene regulation. The

abnormal expression of miRNA can cause drug resistance, affecting the

therapeutic effect of the disease. Revealing the associations between

miRNAs-drug resistance can help in the design of effective drugs or possible

drug combinations. However, current conventional experiments for

identification of miRNAs-drug resistance are time-consuming and high-cost.

Therefore, it’s of pretty realistic value to develop an accurate and efficient

computational method to predicting miRNAs-drug resistance. In this paper, a

method based on the Support Vector Machines (SVM) to predict the association

between MiRNA and Drug Resistance (SVMMDR) is proposed. The SVMMDR

integrates miRNAs-drug resistance association, miRNAs sequence similarity,

drug chemical structure similarity and other similarities, extracts path-based

Hetesim features, and obtains inclined diffusion feature through restart random

walk. By combining the multiple feature, the prediction score between miRNAs

and drug resistance is obtained based on the SVM. The innovation of the

SVMMDR is that the inclined diffusion feature is obtained by inclined restart

random walk, the node information and path information in heterogeneous

network are integrated, and the SVM is used to predict potential miRNAs-drug

resistance associations. The average AUC of SVMMDR obtained is 0.978 in 10-

fold cross-validation.

KEYWORDS

miRNA, drug resistance, support vector machines, hetesim score, random walk
with restart
1 Introduction

In recent years, the difficulty of drug target selection has led to the increase of drug

development cost and the low efficiency of pharmaceutical industry. So far, it has been

discovered that the human genome can encode up to 25,000 genes. But only 600 of the

disease-causing proteins have targeted drugs, meaning a significant number are
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“undrugable”. Therefore, the focus of target selection has now

shifted to other macromolecules, such as non-coding RNA.

According to the genetic central dogma, the DNA is a carrier

that carries genetic information. During growth and

development, the genetic information in DNA is transcribed

into RNA. Then the RNA is translated into various proteins to

perform specific biological functions. There are many types of

RNAs with complex functions. Research shows that only 2% of

the RNA could code for proteins, and 98% couldn’t. In biology,

RNAs with non-coding are called non-coding RNAs (ncRNAs).

Among ncRNAs, miRNA is a group of non-coding Rnas

encoded by the genome with a length of about 20̴ 23
nucleotides. The miRNAs play an major role in gene

expression regulation. They have a significant meaning in

many biological processes such as cell differentiation,

development and cellular signaling pathways.

The miRNAs play an important role in the understanding of

life sciences. The miRNAs are significant in many aspects such as

cellular biological processes, gene expression regulation at

transcriptional and post-transcriptional levels, and others.

There are many studies on the biological mechanisms and

interactions between genes, miRNAs, lncRNAs, diseases and

drugs, such as the relationship between genes and diseases,

miRNAs and diseases, lncRNAs and diseases, miRNAs and

lncRNAs, etc.

For the association between genes and diseases, a network

impulse dynamics framework based on multiple biological

networks NIDM is proposed by Xiang et al. (1) to predict

potential disease-gene associations. The HyMM is proposed by

Xiang et al. (2) to more effectively predict disease-related genes

by integrating information from the structure of multi-scale

modules. The PrGeFNE is proposed by Xiang et al. (3) based on

fast network embedding. An understanding of the association

between genetics and disease can help understand the

pathogenesis of disease.

For the association between miRNAs and diseases, a meta-

path-based MDPBMP is proposed by Yu et al. (4). The

information carried by the nodes is extracted and integrated

through MDPBMP, and the miRNAs-disease association is

predicted using embedded feature vectors. The VGAE-MDA, a

deep learning framework with variational graph autoencoder, is

proposed by Ding et al. (5). The MLPMDA, a miRNAs-disease

association prediction method using multilayer linear projection,

is proposed by Guo et al. (6). The prediction method GRPAMDA

is proposed by Zhong et al. (7). The GRPAMDA combines the

graph random propagation network based on DropFeature and

attention network. The NIMGSA is proposed by Jin et al. (8) to

predict miRNAs-disease association based on neural induction

matrix completion. An ensemble learning framework with

resampling method for miRNA-disease association ERMDA

prediction is proposed by Dai et al. (9). A double random walk

model is proposed by Zhu et al. (10). The end-to-end deep

learning method PDMDA is proposed by Yan et al. (11). A
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computational framework SMALF based on XGBoost is proposed

by Liu et al. (12). The algorithmMSCDE is proposed by Han et al.

(13) based on a variety of biological source information. The

method based on tensor factorization and label propagation

(TFLP) is proposed by Yu et al. (14) for multi-type miRNA-

disease association prediction.

For the association between lncRNAs and diseases, a non-

negative matrix factorization based on graph regularization

LDGRNMF is proposed by Wang et al. (15) to predict the

lncRNAs-disease association. The internal inclined random walk

with restart (IIRWR) is used by Wang et al. (16) to infer

potential lncRNA-disease associations. A lncRNAs-disease

association prediction method GBDTLRL2D based on

Gradient Boosting Decision Tree and Logistic Regression is

proposed by Duan et al. (17). The GCRFLDA, a prediction

method based on graph convolution matrix completion, is

proposed by Fan et al. (18). An end-to-end computational

method based on graph attention network GANLDA is

proposed by Lan et al. (19). A method called LRWRHLDA is

proposed byWang et al. (20). The LRWRHLDA designs a multi-

layer network using six known heterogeneous networks, and

uses Laplace normalized random walk and restart algorithm to

predict. A dual attention network is proposed by Liu et al. (21).

For the association between miRNAs and lncRNAs, the

LMI-INGI, based on interactome network and graphlet

interaction, is proposed by Zhang et al. (22) to predict the

lncRNAs-miRNAs associations. The NALMA is proposed by

Zhang et al. (23) to use network distance analysis. The DWLMI

proposed by Yang et al. (24). utilizes lncRNAs-miRNAs-disease-

protein-drug diagram. The structural perturbation method

SPMLMI is proposed by Xu et al. (25). A logical matrix

factorization with neighborhood regularized, LMFNRLMI, is

proposed by Liu et al. (26).

Advances in genomics and bioinformatics have facilitated

the identification of miRNAs. The miRNAs have also been found

to interact with a variety of drugs. It is possible to develop

resistance or sensitivity during drug treatment because of the

regulation of genes by miRNAs (27). For example, scientists have

found that miRNA let-7b is resistant to the drug cisplatin (28).

Cisplatin is an important drug in the treatment of many diseases,

such as sarcoma. Cisplatin has also been reported to down-

regulate miRNA let-7b expression, lead to up-regulation of

Cyclin D1, and induce resistance to cisplatin. Similarly,

miRNA Mir-106a is found to enhance the sensitivity of

OVCAR3/CIS cells to cisplatin (29). Since both the increase

and decrease of miRNA expression level can cause diseases,

miRNA-targeted therapy drugs can be divided into miRNA

mimics and miRNA inhibitors. Their aim is to induce gene

silencing and selective up-regulation of proteins.

There are several public databases that collate miRNAs-drug

relationships. For instance, the database of miRNAs-drug

interactions, pharmaco-miR is developed by Rukov et al. (30)

according to the interaction between miRNA target genes and
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drug proteins. The database mTD is developed by Chen et al.

(31) to collect information about the impact of miRNAs during

drug treatment. The ncDR is developed by Dai et al. (32) to

provide information of noncoding RNAs related to drug

resistance. However, the known link between miRNAs and

drug resistance is limited. Because biological experiments are

time-consuming and expensive, it is necessary to develop

computation-based methods to predict the potential

association between miRNAs and drug resistance.

Different computational methods have been developed to

identify and predict miRNAs-drug resistance. For example, an

algorithm for predicting potential miRNAs-drug resistance

associations through Bi-Random Walk (BiRW) is proposed by

Xu et al. (33). The method SNMFSMMA based on symmetric

non-negative matrix factorization and kronecker regularized

least squares is developed by Zhao et al. (34) for prediction of

small molecular-miRNAs association. The GCMDR proposed

by Huang et al. (35) uses graph convolution to built potential

factor model, learns the graph embedding feature of miRNAs

and drugs, and expresses the problem of predicting miRNA-

drug association as a link prediction problem involving two-

miRNA-drug sensitivity associations, named LGCMDS, is

proposed by Yu et al. (36). The MDIPA, a matrix factor-based

method, is proposed by Jamali et al. (37) to predict the unknown

interactions between miRNAs and drug resistance. Predicting

associations between small molecular and microRNAs using

functional similarity of miRNAs and multiple similarity

measures of small molecular is proposed by Qu et al. (38). In

addition, combined with clinical, chemical, and biological

information, a method based on non-negative matrix

factorization to predict miRNAs-small molecule relationships

is developed by Luo et al. (39).

Although there are some studies on predictive tools for

miRNAs-drug resistance associations, these methods cannot

fully utilize the structure and semantics in heterogeneous

networks to extract higher-quality information. At the same

time, the accuracy and performance obtained by these methods

need to be improved. To address these issue, a method for

predicting miRNAs-drug resistance based on support vector

machines SVMMDR is proposed in this paper. The SVMMDR

considers the path information between nodes in heterogeneous

networks. The hetesim measures the correlation between nodes

of the same type or different types within a unified framework.

At the same time, based on the search path between two nodes,

the measure between node pairs is defined by following a

sequence. The node information and path information in

heterogeneous networks are integrated. The SVM is used to

predict potential miRNAs-drug resistance associations. The

contribution of our method mainly consists of the

following parts:
Fron
• The SVMMDR introduces the concept of miRNA and

drug groups. On this basis, a roaming network is
tiers in Oncology 03
established. Walker is more inclined to choose the next

node of the walk. The inclined diffusion feature is

obtained by inclined restart random walk.

• The SVMMDR integrates node information and path

information in heterogeneous networks. The data

feature is obtained by combining the inclined diffusion

feature and hetesim score.

• The SVMMDR algorithm improves prediction accuracy

and has the highest AUC values when compared to

existing algorithms.
2 Materials and methods

The miRNAs-drug resistance association data required in

this paper are downloaded from ncDR database (32). The ncDR

collected 5864 validated relationships between 145 compounds

and 1039 ncRNAs (877 miRNAs and 162 lncRNAs) from

approximately 900 published papers. We only need the

correlation between miRNAs-drug resistance among them.

After removing duplicate data, the 625 miRNAs, 85 drugs and

2301 miRNAs-drug resistance associations are obtained.

In this paper, an SVM-based method SVMMDR is proposed

to predict the association between miRNAs-drug resistance. The

SVMMDR integrates miRNAs-drug resistance association,

miRNAs sequence similarity, drugs chemical structure

similarity and other similarities. The path-based hetesim

feature is obtained, and the concepts of miRNAs group and

drug group are introduced to obtain the inclined diffusion

feature through inclined random walk. Finally, the SVM

algorithm is used to predict the association between miRNAs

and drug resistance. This mainly includes the following steps:
(1) The miRNAs-drug resistance association data set is

downloaded from the ncDR, and the list of miRNAs

and drugs, the matrix A of miRNAs-drug resistance

association are obtained by de-duplication of the

downloaded data. Then the gaussian interaction profile

kernel similarity matrix of miRNAs GSM and of drug

GSD are calculated.

(2) The sequence of miRNA list is downloaded from

miRBase database, and the miRNAs sequence

similarity matrix SSM between miRNAs is calculated.

The drug chemical structure similarity matrix ESD is

obtained by using the published tool SimComp.

(3) The miRNAs similarity network is obtained based on

the GSM and SSM, and drugs similarity network is

obtained based on the GSD and ESD.

(4) The miRNA-resistance association network, miRNA

similarity network, and drug similarity network are

integrated to construct a heterogeneous network. In
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Fron
the heterogeneous networks, the inclined diffusion

feature are obtained based on the inclined random

walk with restart. Then the low-dimensional inclined

diffusion feature are obtained by using Singular Value

Decomposition (SVD).

(5) The hetesim scores for miRNA-drug pairs are calculated

based on paths in the heterogeneous network.

(5) The inclined diffusion feature and the hetesim score are

combined to obtain the feature data set. The combined

features are used in the SVM classifier to obtain the

predicted scores for miRNAs-drug resistance. The flow

of SVMMDR is shown in Figure 1.
2.1 Calculate Gaussian interaction profile
kernel similarity

The matrix A of miRNAs-drug resistance association

network is obtained. The number of rows of A is the number

of miRNAs, and the number of columns of A is the number of

drugs, as shown in the formula (1):
tiers in Oncology 04
A(mi, dj) =
1 mi  is   associated   with  dj

0   otherwise  

(
(1)

Where A(mi, di) = 1 indicates that there is a resistance

between miRNA mi and drug dj.

For any given miRNA mi and mj, the gaussian interaction

profile kernel similarity GSM(mi, mj) can be obtained based on

A, as shown in the formula (2) and (3):

GSMðmi,mj) = exp  −dm ǁA(i, : ) − A(j, : ) ǁ2
� �

(2)

dm = d
0
m=

1
nmo

nm

i=1
ǁA(i, : ) ǁ2

 !
(3)

where nm is the number of miRNAs and A(i, ): is the ith row

of the adjacency matrix A. The dm is used to control the

frequency band, it represents the normalized frequency band

of Gaussian interaction profile kernel similarity based on the

new frequency band parameter d’m. The gaussian interaction

profile kernel similarity between drugs can be obtained in the

same way, represented by GSD, which is given by (4) and (5):

GSDðdx , dy) = exp  −dd ǁA( :, x) − A( :, y) ǁ2
� �

(4)

dd = d
0
d=

1
ndo

nd

x=1
ǁA :, xð Þ ǁ2

� �
(5)

where nd is the number of miRNAs and A(: x) is the xth col

of the A.
2.2 Calculate miRNA sequence similarity
and drug chemical structure similarity

The sequences of relevant miRNAs are downloaded from the

public database miRBase (https://mirbase.org/) (40). The

miRBase database provides information including miRNAs

sequence data, annotations, and predicted gene targets. The

sequence similarity SSM between miRNAs is calculated as

shown in the formula (6):

SSM ðmi,mj) = 1 −
 Levenshtein(mi,mj)

len(mi) + len(mj)
(6)

0 ≤   Levenshtein  (mi,mj) ≤ len ðmi) + lenðmj) (7)

Where len(mi) represents the length of miRNAmi sequence,

len(mj) represents the length of miRNA mj sequence,

Levenshethein(mi, mj) is defined as the class editing distance

of the transformation from mi sequence to mj sequence.

With the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database entry number corresponding to drugs in the

DLREFD database as the parameter, the chemical structural
FIGURE 1

Flowchart of the SVMMDR.
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similarity matrix ESD between drugs is calculated using the

SimComp tool (41).
2.3 Integer similarity

In this section, miRNAs similarity network and drugs

similarity network are constructed. The miRNAs similarity

network is expressed as SM. The SM is fused by SSM and

GSM, which is given by (8):

SM ðmi,mj) =
GSM(mi,mj)   if  SSM(mi,mj) = 0

SSM(mi,mj)   otherwise  

(
(8)

Similarly, denote SD as the drug similarity network, which is

fused by ESD and GSD, as follows:

SD ðdi, dj) =
GSD(di, dj)   if  SSM(di, dj) = 0

SSD(di, dj)   otherwise  

(
(9)
2.4 Obtain low-dimensional network
inclined diffusion features

A global heterogeneous network is constructed by

integrating the association matrix A of miRNAs-drug

resistance network, the similarity matrix SM of miRNA and

the similarity matrix SD of drugs. The concepts of miRNAs

group and drugs group are introduced to obtain miRNA weight

matrix and drug weight matrix to construct roaming network.

The restart random walk is used to calculate the inclined

diffusion feature on the roaming network, and the high

dimensional inclined diffusion feature are obtained. Then, the

SVD is used to reduce the dimension of the high-dimensional

inclined diffusion feature, and the low-dimensional inclined

diffusion feature is obtained. The specific sub-steps are

as follows:

2.4.1 Building a heterogeneous network
The heterogeneous network G = (V, E) is constructed. The

dimension of the matrix G is (nm + nd) * (nm + nd), where nm

and nd is the number of miRNAs and drugs, as shown in

formula (10):

G =
SM A

AT SD

" #
(10)

where AT is the transpose of A.

2.4.2 Obtain the weight matrix
The drugs associated with the same miRNA are regarded as a

drug group. If one miRNA with high similarity to this miRNA

are associated with a drug in this drug group, this miRNA is
Frontiers in Oncology 05
considered to have a potential association with other drugs in the

drug group.

For example, for drug di , miRNAs associated with di are

regarded as a miRNA group. If dj with high similarity to di is

associated with miRNA in this miRNA group, then it is assumed

that di may be associated with other miRNAs in the miRNA

group. Based on the above assumptions, miRNAs weight matrix

WMM of nd * nm dimension and drugs weight matrix WDD of

nm * nd dimension are obtained, as shown in the formula (11)

and (12):

WMM(di,mj) =
SSM(di,mj)

max
1≤i≤nd

SSM(di,mj)
� � (11)

SSM(di,mj) = o
mk∈DM(di)

SM(mk,mj) (12)

where DM (di) = {mk | ∀mk ∈ {if(A (mk, di) = = 1)},1 ≤ k ≤

nm} represents the miRNA group associated with the drug di. if

(A (mk, di) = = 1, 1 ≤ k ≤ nm} represents that miRNA mk is

associated with drug di. SM(mk, mj) is the similarity between

miRNA mk and mj.

The drugs weight matrix WDD of nm * nd dimension can

also be obtained:

WDD(mj, di) =
SSD(mj, di)

max
1≤j≤nm

SSD(mj, di)
� � (13)

SSD(mj, di) = o
dz∈DD(mj)

SD(dz , di) (14)

where DD (mj) = {dz | ∀dz ∈ {if (A(dz, mj) = = 1)}, 1 ≤ z ≤ nd}

represents the drug group associated with the drug mj. if (A(dz,

mj) = = 1)}, 1 ≤ z ≤ nd} represents that drug dz is associated with

drug mj. SM (dz, mj) is the similarity between drug dz and mj.

2.4.3 Construct roaming network
When drug dx is a walker, it walks on the miRNAs node

network. TD is the transition probability matrix of the roaming

network. For any given miRNA mi and mj, denote TD as the

probability of mi transferring to mi during the walking process.

TD(mi,mj) =
STD(mi,mj)

onm
n=1STD(mn,mj)

(15)

STD(mi,mj) =
WDD(mj, dx)   If  WDD(mj, dx) > 0

SM(mi,mj)   otherwise  

(
(16)

where, mi is the current node of migration, and mj is the next

node. If the value of mj and dx in the weight matrix is not 0, it

means thatmj and dx have potential correlation, namely STD (mi,

mj) = WDD (mj, dx). Otherwise, the probability of mitransferring

to mjis related to miRNA similar matrix, STD (mi, mj) = SM

(mi, mj).
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When miRNA my is a walker, it walks on the miRNAs node

network. Denote TM as the transition probability matrix of the

roaming network. For any given drug di and di, TM represents

the probability of di transferring to di during the walking process.

TM(di, dj) =
STM(di, dj)

ond
n=1STM(dn, dj)

(17)

STM(di, dj) =
WMM(dj, dx)   If  WMM(dj,my) > 0

SD(di, dj)   otherwise 

(
(18)
2.4.4 Obtain inclined diffusion feature
by IIRWR

Based on the transfer probability matrix TD and TM

obtained, the drugs inclined diffusion feature PD = [P1, P2, P3,

…, Px,…,Pnd] can be obtained by random walk, where Px

represents the nm-dimensional inclined diffusion feature of

drug node dx. Meanwhile, the miRNAs inclined diffusion

feature PM = [P1, P2, P3,…, Py,…,Pnm], where Py denotes the

nd-dimensional inclined diffusion feature of miRNA node my.

The nm and nd denote the number of miRNA nodes and

drug nodes.

When the inclined diffusion feature Px of drug node dx is

calculated, each step of the walking is faced with two choices:

randomly selecting adjacent miRNA node or returning to the

starting node. The walking process is shown in the equation (19):

Px
t+1 = (1 − r)� TD � Px

t + r � Px
0 (19)

Px
0(mi) =

A(mi, dx)

onm
n=1A(mn, dx)

(20)

When the inclined diffusion feature Py of miRNA nodemy is

calculated, the walking process is shown as follows:

Py
t+1 = (1 − r)� TM � Py

t + r � Py
0 (21)

Py
0(dj) =

A(my , dj)

ond
n=1A(my , dj)

(22)

Where r is the restart probability, Py
t is a nd-dimensional

transition probability vector of node my, and its k-th element

represents the probability of accessing node k at t step, k ∈ {1, 2,

… nd}. Py
0 represents the initial migration probability vector of

node my, and Py
0(dj) represents the initial migration probability

of my visiting node dj.

After several iterations, the difference between the two

iterations of px and py is less than 10-10. The miRNA inclined

diffusion feature PM and the drug inclined diffusion feature PD
reach a stable state, and the final inclined diffusion feature

is obtained.
Frontiers in Oncology 06
2.4.5 Calculate the low-dimensional inclined
diffusion feature

The more nodes in the heterogeneous network, the higher

the feature dimension obtained by the inclined restart random

walk. However, when the feature dimension is high, there will be

data redundancy. The sample distribution of the high-dimension

space is sparse. The SVD is used to reduce the dimension of the

inclined diffusion feature.

Suppose that the m * n dimensional matrix P can be

decomposed by P = USVT, where U is a m * m-dimensional

matrix and V is a n * n-dimensional matrix. The U and V are left

singular vectors and the right singular vectors, both unitary

matrices, that is, UUT = 1, VVT = 1. The m * n dimensional

matrix S has values only on the main diagonal, and all other

elements are zero. Every element along the main diagonal is

called singular value. The singular values are arranged from

largest to smallest, and the decrease is extremely fast. In many

cases, the sum of the first 10% or even 1% of the singular values

accounts for more than 99% of the total singular values. In other

words, we can also use the largest d singular values and

corresponding left and right singular vectors to approximate

the matrix, as follows:

Pm*n = Um*mSm*nV
T
n*n ≈ Um*dSd*dV

T
d*n (23)

where d is far less than n, and the low-dimensional feature

vector X can be obtained by formula (24):

X = Um*d(Sd*d)
1=2 (24)

The SVD is performed on PD and PM respectively to obtain

low-dimensional node feature matrix XD and XM.
2.5 Calculate the hetesim score

In heterogeneous networks, the types of nodes are different,

and the relationship between nodes has various meanings. In

order to obtain the correlation between different nodes, the

hetesim scores are calculated (42). The hetesim is a path-based

measurement method used to measure the correlation of objects

(including objects of the same type or different types) in

heterogeneous networks.

(1) The transition probability matrix IMD from miRNA to

drug, IDD from drug to drug, IMM from miRNA to miRNA are

obtained as follows:

IMD(mi, dj) =
A(mi, dj)

ond
k=1A(mi, dk)

(25)

IDD(di, dj) =
SD(di, dj)

ond
k=1SD(di, dk)

(26)
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IMM(mi,mj) =
SM(mi,mj)

onm
k=1SM(mi,mk)

(27)

(2) The N is the node, and there are only miRNA and drug

node. The path with length l between any two nodes is

represented by r=N1 N2⋯Nl+1, and the reachable probability

matrix PM=IN1
N2IN2

N3⋯INl
Nl+1 . Divide the path in half, get the

PMrL and PMrR
.

Fron
• when l is even, rL = N1N2 ⋯N l
2+1

. rR = N l
2+1

N l
2+2

⋯

Nl+1. The PMrL and PMrR is calculated.

• When l is odd, rL1 = N1N2 ⋯Nl+1
2
, rL2 = N1N2 ⋯Nl+3

2
.

rR1
= Nl+1

2
Nl+1

2 +1
⋯Nl+1. rR2

= Nl+3
2
Nl+3

2 +1
⋯Nl+1.

Then PMrL =
PMrL1

+PMrL2
2 , PMrR =

PM

h
∘
oR1

+PMrR2

2 .
(3) The PMrL
and PMr−1R are calculated, where r−1

R represents the

r e v e r s e o f r R , f o r e x amp l e , i f rR = MMMDD,

ther−1
R = DDMMM.

Hetesim(a, b ǀ r) =
PMrL (PMr−1R

)T

ǀ ǀ PMrL ǀ ǀ2 * ǀ ǀPMr−1R
ǀ ǀ2

(28)
where Hetesim (a, b| r) represents the hetesim score of the

node a reaching the node b through path r. As shown in Table 1,

there are 14 different paths from a miRNA to a drug when the l<

5. So, the 14-dimensional hetesim feature between each miRNA-

drug node pair in the heterogeneous network is obtained.
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2.6 Training the support vector
machine classifier

Feature data are obtained by combining inclined diffusion

feature and hetesim score. For each pair of drug and miRNA

sample in the calculated Hetesim score matrix, the 50-

dimensional inclined diffusion feature of the corresponding

miRNA and drug are obtained respectively, and 114-

dimensional feature is obtained. For example, sample drug di
and miRNAmj, the 14-dimensional HeteSim score of di –mj pair

is combined with the 50-dimensional inclined diffusion feature

of the corresponding drug di and the 50-dimensional inclined

diffusion feature of miRNA mj, namely, the i-th row of the XD

and the j-th row of the matrix XM, to obtain the 114-dimensional

feature of drug diand miRNA mj. The 114-dimension feature

dataof all sample pair are obtained by a similar method. The

obtained feature data are used for SVM classifier to predict the

miRNAs-drug resistance relationship.

The SVM is an effective classification method and has been

widely used in the classification of biological data (43–45). The

SVM can transform sample space into high-dimensional or even

infinite-dimensional feature space (46). The goal of SVM is to

find a hyperplane so that the sample points close to the

hyperplane can have a larger distance. The steps of SVM for

the algorithm are as follows:

(1) The kernel function K(xi, xj) and punish parameter C

need to be selected first. The optimization problem is

constructed and solved.

min
a

1
2o

N

i=1
o
N

j=1
aiajyiyjK(xi, xj) −o

N

i=1
ai

 s : t : o
N

i=1
aiyi = 0

0 ≤ ai ≤ C, i = 1, 2,…,N

(29)

where K(xi, xj) = e−
ǁ xi−xj ǁ

2

2s2 . The punish function C = 64.

The optimal solution is obtained as a* = fa*1 ,a*2 ,…,a*NgT (2)
A positive component of a* is selected, 0 ≤ a*j ≤ C:

b* = yj −o
N

i=1
a*i yiK(xi, xj) (30)

(3) The decision function is constructed.

f (x) = sign  o
N

i=1
a*i yiK(xi, xj) + b*

 !
(31)
2.7 The SVMMDR algorithm

In this section, Algorithm 1 describes the implementation

details of SVMMDR. In lines 2 to 15 of Algorithm 1, the low-

dimensional inclined diffusion feature matrix XMand XDare
TABLE 1 The paths from a miRNA to a drug in the heterogeneous
network when l< 5.

id path meaning

1 MMD miRNA-miRNA-drug

2 MDD miRNA-drug-drug

3 MMMD miRNA-miRNA-miRNA-drug

4 MDMD miRNA-drug-miRNA-drug

5 MMDD miRNA-miRNA-drug-drug

6 MDDD miRNA- drug-drug-drug

7 MMMMD miRNA-miRNA-miRNA-miRNA-drug

8 MMMDD miRNA-miRNA-miRNA-drug-drug

9 MMDMD miRNA-miRNA-drug-miRNA-drug

10 MMDDD miRNA-miRNA-drug-drug-drug

11 MDMMD miRNA-drug-miRNA-miRNA-drug

12 MDMDM miRNA-drug-miRNA- drug-drugdrug

13 MDDMD miRNA-drug-drug-miRNA-drug

14 MDDDD miRNA-drug-drug-drug-drug
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obtained by using the inclined random walk with restart and

SVD. The hetesim score between any two nodes in a

heterogeneous network is obtained from lines 16 to 41. In

lines 42 to 45, the combined features is obtained and used to

train the SVM classifier. Then the final prediction score

is obtained.
Fron
Input: miRNAs set, drugs set, The association matrix

of the miRNA-drug resistance, A;

Output: The gaussian interaction profile kernel

similarity matrixs, GSM and GSD. The miRNAs

sequence similarity matrix, SSM. The chemical

structural similarity matrix, ESD. The similarity

matrix SM and SD. Prediction score.

Construct the adjacency matrix G;

Obtain the weight matrix WMM and WDD;

Initialize the global transition probability matrix

TD and TM;

Initialize the transition probability vector for

each node

Px
0(mi) =

A(mi ,dx)

onm
n=1A(mn, dx)

, Py
0(dj) =

A(my ,dj)

ond
n=1A(my , dj)

while Px
t+1 − Px

t > 10−10 do:

Obtain the updated probability vector:

Py
t+1 = (1 − r)*TD*P

x
t + r*P

x
0

end while

Pm*n = Um*mSm*nV
T
n*n ≈ Um*dSd*dV

T
d*nX = Un*do

1=2
d*d

Get low-dimensional inclined diffusion feature XM

and XD

Calculate IMD(mi, dj), IDD(di, dj), IMM(mi, mj)

IMD(mi, dj) =
A(mi ,dj)

ond
k=1A(mi, dk)

IDD(di, dj) =
SD(di ,dj)

ond
k=1SD(di, dk)

IMM(mi,mj) =
SM(mi ,mj)

onm
k=1SM)(mi,mk)

for l=1!5 do

Divide the path into two parts.

if l % 2 = =0 then

rL = N1N2 :::N l
2+1

rR = N l
2+1

N l
2+2

:::Nl+1

PMrL = IN1N2
IN2N3

::: IN l
2
N l

2+1

PMrR = IN l
2+1

N l
2+2
IN l

2+2
N l

2+3
:: INlNl+1

end if

if l % 2! = 0 then

rL1 = N1N2 ::Nl+1
2

rL2 = N1N2 :::Nl+3
2

rR1
= Nl+1

2
Nl+1

2 +1
:::Nl+1

rR2
= Nl+3

2
Nl+3

2 +1
:::Nl+1

PMrL1
= IN1N2

IN2N3
::: INl−1

2
Nl+1

2
PMrL2

= IN1N2
IN2N3

::: INl+1
2
Nl+3

2
PMrR1

= INl+1
2
Nl+3

2

INl+3
2
Nl+5

2

::: INlNl+1
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PMrR2
= INl+3

2
Nl+5

2

INl+5
2
Nl+7

2

::: INlNl+1

PMrL =
PMrL1

+PMrL2
2

PMrR =
PMrR1

+PMrR2
2

end if

Hetesim(a, b ǀ r) =
PMrL (PMr−1

R
)T

ǀ ǀPMrL ǀ ǀ2 * ǀ ǀ PMr−1
R

ǀ ǀ2
end for

Combined with the inclined diffusion feature and

HeteSim score to get the data set

Dtrain = f(x1, y1), (x2, y2),…, (xN , yN )g
Dtest = f(x1, y1), (x2, y2),…, (xN , yN )g
Use Dtrain to train the Support Vector Machines (SVM)

as classifier
ALGORITHM 1

SVMMDR algorithm.
3 Result and discussion

3.1 Data sets

The miRNAs-drug resistance association data are

downloaded from ncDR database. After deduplication, 85

drugs and 625 miRNAs are obtained, and 2301 miRNAs-drug

resistance known association are obtained, all as positive

samples. Negative samples are randomly selected from

unknown associations with three times the number of positive

samples. The final sample dataset is constructed from 2301

positive samples and 6903 negative samples.
3.2 Performance measures

The 10-fold Cross-Validation(10-CV) is performed to

evaluate the performance of SVMMDR. The process of 10-CV

is as follows: the sample data is equally divided into 10 groups.

The 9 group of data is used as the training set, and the remaining

group is used as the validation set. After ten times of the above

process, each of the 10 groups in turn is used as a validation data

to obtain 10 performance results. The final performance

evaluation is obtained by averaging the 10 performance results.

Multiple measures are used to evaluate performance, such as the

area under the receiver operating characteristic curves (AUC),

recall (REC), accuracy (ACC), F1-score and Matthews

Correlation Coefficient (MCC). They can be presented as below:

Recall =
TP

TP + FN ,
(32)

Accuracy =
TP + TN

TP + TN + FP + FN ,
(33)
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F1 − Score =
2� TP

2TP + FP + FN ,
(34)

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p (35)

where the TP is the number of samples that are correctly

classified as positive, the FP is the number of samples that are

misclassified as positive, the TN represents the number of

samples that are correctly classified as negative, and the FN is

the number of samples that are misclassified as negative.
3.3 Performance comparison with
existing machine learning methods

In order to reflect the performance of SVM, the proposed

SVMMDR methods will be compared with the following

solution, including using logistic regression (LR) as a classifier,
Frontiers in Oncology 09
the use of random forests (RF) used as a classifier, K nearest

neighbor (KNN) as a classifier. The same features of the same

training sample are used to train the corresponding classifiers.

To get performance, the 10-flod cross-validation is applied. For

KNN classifier, the 10 nearest neighbors and leaf size of 20 point

is used. The RF builds a number of decision tree classifiers

trained on a set of randomly selected samples of the benchmark

to improve the performance. For LR, the maxiter and tol

parameters are optimized to 500 and 0.001, respectively.

Figure 2 indicates the ROC curves of SVMMDR using other

classifiers. The AUC of SVMMDR, KNN, RF and LR are 0.978,

0.939, 0.892 and 0.948. Furthermore, Table 2 shows the values of

performance measures such as ACC, Pre, Recall, F1-score, MCC.

The results show that the AUC value obtained by SVMMDR is

the highest. The value of performance measure is also better than

other classifiers. The SVM classifier can achieve effective

classification by mapping features to higher dimensional space

through kernel function changes. At the same time, the optimal

solution is obtained with constraints, which can make the

classification more accurate.
FIGURE 2

The ROC curve comparison with existing machine learning methods.
frontiersin.org

https://doi.org/10.3389/fonc.2022.987609
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Duan et al. 10.3389/fonc.2022.987609
3.4 Performance comparison with
different topological features

To demonstrate the advantages of combining features in

SVMMDR, different feature groups (hetesim+ inclined diffusion

feature, hetesim feature, and inclined diffusion feature) are used

for comparison experiment. The comparison results are shown in

Figures 3 and 4. Denote “SVMMDR”, “Hetesim” and “in-Diff” as

the combination feature, hetesim feature and inclined diffusion

feature. Figure 3 shows the ROC curves of different feature groups.

It can be seen that the combination of hetesim and inclined

diffusion obtained a higher AUC than the two separate feature,

and the AUC obtained by inclined diffusion feature alone is higher

than that obtained by hetesim alone. Figure 4 represents the

performance achieved for the different feature groups. It can also

see that the combination of the two features has best performance.

Although the AUC of inclined diffusion feature reaches 0.96, the

Pre, F1 and MCC are all relatively low. The combination of

inclined diffusion feature and hetesim feature can solve this

problem and improve performance.
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3.5 Performance comparison with
existing methods

To further illustrate the superiority of the proposed method,

the SVMMDR is compared with existing miRNA-resistance

prediction algorithms, such as GCMDR, MDIPA and BiRW-

MD, all of which use the sample set in this paper. Performance

measures are obtained by performing 10-fold cross-validation.

GCMDR (35): Data from multiple data sources are fused.

The latent factor method are constructed using graph

convolution to learn the graph embedding feature of miRNAs

and drugs, and end-to-end prediction method are built.

MDIPA (37): The identification of potential miRNAs-drug

interactions is seen as a matrix completion problem, the

unknown associations are predicted based on weighted non-

negative matrix factorization. The path-based miRNAs

similarity matrix and drugs similarity matrix based on drugs

structure information are obtained, which are combined

with extracted drugs and miRNAs neighbor information

for prediction.
TABLE 2 Performance comparison of existing machine learning methods.

Method ACC Pre RECALL F1-score MCC

SVMMDR 0.9393 0.8705 0.8905 0.8800 0.8399

RF 0.8381 0.81733 0.4625 0.5704 0.5236

LR 0.8925 0.8020 0.7565 0.7785 0.7082

KNN 0.9080 0.8936 0.7175 0.7957 0.7448
frontier
FIGURE 3

The ROC curve comparison with different feature.
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BiRW-WD (33): The multiple similarity networks and

miRNAs-drugs association network are integrated to construct

a heterogeneous network. In the heterogeneous networks, the bi-

directional random walk (BiRW) are used to predict potential

miRNAs-drug effect associations.

Figure 5 illustrates the comparison results. It can be seen that

the proposed SVMMDR method achieves the best performance.

The reasons are as follows: (1) The drug group and miRNA group

are introduced. When restart random walk is used to obtain
Frontiers in Oncology 11
diffusion feature, the walker is more inclined to select the node of

the next walk. The inclined diffusion feature contribute to the

prediction accuracy. (2) The hetesim score is obtained from the

path information of two nodes in the heterogeneous network.

Regardless of the same or different node types, the hetesim

measures their correlation within a unified framework. At the

same time, according to the search path between two nodes, the

measure between node pairs is defined by following a sequence. (3)

The SVM with high accuracy is used as the classifier.
FIGURE 4

The performance comparison with different feature.
FIGURE 5

The ROC curve comparison with existing methods.
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3.6 Case study

In order to illustrate the effectiveness of the proposed

method, we present a case study of the drug 5-fluorouracil(5-

FU). The 5-FU is an antimetabolite drug widely used in cancer

treatment, especially colorectal cancer (CRC)Longley et al. (47).

There are 244 miRNAs related to 5-FlU in ncDR database. We

remove these associations in the association matrix A and use

the rest as test data. The SVMMDR algorithm proposed in this

paper is used for prediction, and 174 miRNAs with prediction

scores greater than 0.95 are obtained. For the top 20 predicted

miRNAs, we verify whether predicted miRNAs-drug resistance

associations are confirmed by searching the PubMed literature.

Table 3 indicates the miRNAs and the PMIDs of publications

mentioning the association between miRNAs and 5-FU. For

example, miR-21 expression levels are confirmed to lead to 5-

Fluorouracil resistance Tomimaru et al. (48). The miR-23a

enhances 5-FU resistance in microsatellite instability (MSI)

CRC cells through targeting ABCF1 Li et al. (49).
4 Conclusion

More and more evidence indicates that miRNA expression

level is related to drug resistance, affecting the therapeutic effect

of disease. Predicting the association between miRNA-drug

resistance can help to select more appropriate drugs for

clinical treatment and promote the cure of disease. However,

there are also very few computation-based predictive tools for

miRNA- drug resistance.

Therefore, in this paper, a method based on the Support

Vector Machines to predict the relationship between MiRNA

and Drug Resistance (SVMMDR) is proposed. The SVMMDR

integrates miRNAs-drug resistance association, miRNAs
Frontiers in Oncology 12
sequence similarity, drug chemical structure similarity and

other similarities, extracts path-based hetesim features, and

obtains inclined diffusion features through inclined restart

random walk. The machine learning algorithm SVM is used to

predict the association between miRNAs and drug resistance.

The 10-fold cross-validation is used to assess the

performance of SVMMDR. The area under the ROC curve

AUC is used as a measure of performance. The AUC of

SVMMDR reaches 0.978. The results show that SVMMDR has

a significant performance advantage.
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