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This study aimed to demonstrate clinical feasibility of deep learning (DL)-based

fully automated coronary artery calcium (CAC) scoring software using non-

electrocardiogram (ECG)-gated chest computed tomography (CT) from

patients with cancer. Overall, 913 patients with colorectal or gastric cancer

who underwent non-contrast-enhanced chest CT between 2013 and 2015

were included. Agatston scores obtained by manual segmentation of CAC on

chest CT were used as reference. Reliability of automated CAC score

acquisition was evaluated using intraclass correlation coefficients (ICCs). The

agreement for cardiovascular disease (CVD) risk stratification was assessed with

linearly weighted k statistics. ICCs between the manual and automated CAC

scores were 0.992 (95% CI, 0.991 and 0.993, p<0.001) for total Agatston scores,

0.863 (95% CI, 0.844 and 0.880, p<0.001) for the left main, 0.964 (95% CI,

0.959 and 0.968, p<0.001) for the left anterior descending, 0.962 (95% CI,

0.956 and 0.966, p<0.001) for the left circumflex, and 0.980 (95% CI, 0.978 and

0.983, p<0.001) for the right coronary arteries. The agreement for

cardiovascular risk was excellent (k=0.946, p<0.001). Current DL-based

automated CAC software showed excellent reliability for Agatston score and

CVD risk stratification using non-ECG gated CT scans and might allow the

identification of high-risk cancer patients for CVD.

KEYWORDS

coronary artery calcium score (CACS), chest CT, artificial intelligence, accuracy,
cancer patient, risk stratification
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Introduction

The coronary artery calcium (CAC) score has emerged as a

useful imaging biomarker for predicting the risk of major

cardiovascular events (1). Recent advances in dedicated

software that can automatically detect and quantify coronary

artery calcification have led to wider clinical application of CAC

(2, 3). Traditionally, the CAC score is calculated on

electrocardiogram (ECG)-gated CAC-scoring computed

tomography (CT); however, studies on lung cancer screening,

such as the Dutch-Belgian randomized lung cancer screening

trial and the National Lung Screening Trial, have shown a

significant association between the CAC assessed on low-dose

chest CT and clinical outcome (4, 5). Additionally, recent studies

have shown that CAC scores obtained from non-ECG-gated CT

are significantly correlated with those obtained from ECG-gated

CAC-scoring CT (6–8). These results provide strong evidence

for the potential application of CAC scores assessed using non-

ECG-gated chest CT in various clinical scenarios.

In particular, CAC assessment could have additional clinical

value in patients with cancer. Indeed, the number of cancer

survivors is increasing, and cardiovascular disease (CVD) is one

of the leading causes of morbidity and mortality in patients with

various cancers (9, 10). Most patients with cancer undergo

longitudinal CT follow-up for cancer surveillance; however,

CAC assessment from non-ECG-gated chest CTs and its

clinical application in cancer patients are challenging in real-

world practice. As detection of tiny pulmonary metastasis or

primary cancer among vast volume of chest CT images is of

great importance in patients with cancers, CAC lesions are easily

overlooked from non-ECG gated CT scans. We believe that the

application of deep learning algorithm-based automated CAC

scoring software to non-ECG-gated chest CTs, especially those

from patients with cancer, could have a great clinical impact on

patient management and prognostication.

Thus, the aim of this study was to validate the recently

released deep learning algorithm-based CAC scoring software

for non-ECG-gated chest CT scans from patients with cancer

and demonstrate its reliability and clinical applicability in a real-

world setting.
Materials and methods

The study was performed in accordance with relevant

guidelines and regulations and complied with the Declaration

of Helsinki. This study was approved by the institutional review

board of Chung-Ang University Hospital. Due to the

retrospective nature of the study, the need for patient consent

for the use of clinical data was waived by the institutional review

board of Chung-Ang University Hospital.
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Study population

We identified 975 patients diagnosed with colorectal or gastric

cancer and performed baseline chest CT scans, including non-

contrast-enhanced CT images, between 2013 and 2015 at our

institution. Of the 975 patients, 61 were excluded due to the

following reasons: five for poor image quality; 53 for previous

coronary stent insertion; one for previous coronary artery bypass

graft; three for having cardiac implantable electronic devices.

Finally, 913 patients (633 men and 280 women; median age,

68.3 years) were included in the analysis (Figure 1).
Reference calcium scoring

For reference CAC score determination, non-enhanced chest

CT images were analyzed for the presence and extent of CAC

according to the Agatston method (11) using dedicated software

(AquariusWorkstation, TeraRecon, Inc., SanMateo, CA, USA) by

two experienced radiology technologists with at least seven years

of experience in CAC scoring. The software overlays CAC lesions

having more than 130 Hounsfield units with colors, and the

observers manually labeled the CAC lesions according to their

anatomical locations (i.e., left main [LM], left anterior descending

artery [LAD], left circumflex artery [LCx], and right coronary

artery [RCA]) by visually confirming each CAC lesion.
Automated calcium scoring
with software

The automated CAC score was calculated using a

commercially available deep-learning-based automatic software

(AVIEW CAC, Coreline Soft, Co. Mapo-gu, Seoul, Republic of

Korea). The software is an atlas-based CAC acquisition tool,

empowered by DL technology (2). For development of the

software, the spatial information of coronary and non-coronary

regionsmanually labeled on coronary CT angiography was transfer

to non-enhanced CAC scoring CT images using image registration.

Then, DL algorithm was developed based on a 3-dimensional U-

net architecture for segmentation of coronary and non-coronary

regions on CAC scoring CTs (2, 12, 13). Calcium was detected

when the potential lesion was in contact with the coronary region,

and it did not belong to other structures. The software

automatically calculated the CAC score from the uploaded CT

images, and the results could be downloaded without the need to

open the CT images. In addition, the automatically labeled mask

for each CAC lesion was saved by the software.
Per-lesion comparisons

For cases showing substantial differences in CAC scores

(outside the 95% limits of agreement [LOA] on the Bland–
frontiersin.org
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Altman analyses), a direct comparison of the measured coronary

calcium between the manual and fully automated methods was

performed by a cardiovascular radiologist (C.M.J., eight years of

experience). The cause and location of each mismatched lesion

were analyzed. Then, the mismatched lesions were classified into

specific categories, namely, mislabeling of the coronary artery (i.e.,

LAD calcification labeled as LM), false-positive findings (i.e., aortic

wall or valve calcification labeled as CAC), and false-negative

findings (i.e., missed CAC on the fully automated method).
Statistical analyses

The reliability and correlation of the Agatston scores obtained

by the fully automated method in comparison with the manual

acquisition were evaluated using the intraclass correlation

coefficient (ICC), and the Spearman correlation coefficient,

respectively. and their agreement was assessed by examining

Bland–Altman plots with 95% LOA. Interobserver variability for

manual measurements was also assessed using an ICC. An ICC ≤

0.40 was designated as poor, 0.41–0.60 as moderate, 0.61–0.80 as

good, and ≥ 0.81 as excellent agreement (14). In addition,

participants were classified into four commonly used CVD risk

groups based on Agatston scores as follows: 0 (absent), 0 < CAC ≤

100 (low), 100 < CAC ≤ 400 (intermediate), and 400 ≤ CAC

(high) (15). The reliability of the classification was assessed using

the Cohen linearly weighted k statistics, and agreement was

assessed using the proportion of participants assigned to the

same category by manual and automatic scoring. Values of 0–

0.20 were considered as slight, 0.21–0.40 as fair, 0.41–0.60 as

moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost-
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perfect agreement (16). Statistical analyses were performed

using MedCalc software version 19.1.3 (MedCalc Software, Ltd.,

Ostend, Belgium) and Statistical Package for the Social Sciences

version 26 (IBMCorp. Armonk, NY, USA). Statistical significance

was set at p-value < 0.05.

Results

Baseline patient characteristics and CT
acquisition parameters

The baseline patient characteristics are summarized in

Table 1. All CT scans were obtained from patients with

colorectal (n=446) or stomach cancer (n=467) for the evaluation

of pulmonary metastasis. CT scans were obtained using 256-

channel detector CT in 50.6% (462/913), 64-channel detector CT

in 38.8% (354/913), and fewer than 64 channels in 10.6% (97/913).

All CT images were reconstructed with a soft tissue kernel, and

98.7% (901/913) of the CT scans were obtained at 120 kVp.

Regarding slice thickness, 514 of 913 (59.7%) CT scans were

reconstructed with a 3-mm slice thickness, 212 of 913 (23.2%) CT

scans were reconstructed with a 2.5-mm slice thickness, and 120

of 913 (13.1%) were reconstructed with a 3.75-mm slice thickness.
Reliability of the Agatston score
measurement

For the Agatston score measurement, the ICC of the total

score (per-patient analysis) was 0.992 (95% confidence interval

[CI], 0.991 and 0.993, p<0.001) between the manual and fully
FIGURE 1

Flow chart of patient enrollment.
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automated methods. On per-vessel analysis, the ICC was 0.863

(95% CI, 0.844 and 0.880, p<0001) for the LM, 0.964 (95% CI,

0.959 and 0.968, p<0.001) for the LAD, 0.962 (95% CI, 0.956 and

0.966, p<0.001) for the LCx, and 0.980 (95% CI, 0.978 and 0.983,

p<0001) for the RCA (Table 2). In terms of correlation, the

Spearman’s correlation coefficient was 0.977 (95% CI, 0.974 and
Frontiers in Oncology 04
0.980, p<0.001) for total Agatston score, 0.736 (95% CI, 0.705 and

0.764, p<0.001) for LM, 0.906 (95% CI, 0.893 and 0.917, p<0.001)

for LAD, 0.897 (95% CI, 0.884 and 0.909, p<0.001) for LCx, and

0.935 (95% CI, 0.927 and 0.943, p<0.001) for RCA, respectively.

When analyzing agreement of scores based on CAC groups, all

ICCs were excellent, with 0.912 (95% CI, 0.894–0.926, p<0.001)

for the absent plus low CAC groups (CAC ≤ 100), 0.939 (95% CI,

0.923–0.952, p<0.001) for the intermediate CAC group (100 <

CAC ≤ 400), and 0.856 (95% CI, 0.789–0.902, p<0.001) for the

high CAC group (400 < CAC) (Supplementary Table S1).

Bland–Altman analyses comparing the CAC scores obtained

by the manual and fully automated methods were performed

(Figure 2). For the total Agatston score, 31 of 913 cases fell

outside the 95% LOA. In terms of per-vessel analysis, 42 cases of

LM, 33 cases of LAD, 24 cases of LCx, and 24 cases of RCA were

outside the 95% LOA.

The inter-reader agreement between the two readers for

calculating the manual Agatston scores was excellent (ICC for

the total Agatston score, 0.999; 95% CI, 0.999 and 1.000). For per-

vessel agreement, the ICC was 0.997 (95% CI, 0.996 and 0.999,

p<0.001) for LM, 0.999 (95% CI, 0.998 and 1.000, p<0.001) for

LAD, 0.999 (95% CI, 0.999 and 1.000, p<0.001) for LCx, 0.998

(95% CI, 0.996 and 1.000, p<0.001) for RCA, respectively.
Risk category assessment

Risk category assessment was analyzed according to CAC-

based risk stratification using deep learning-based fully

automated software and manual scoring on chest CT. The

overall reliability of the CVD risk groups was almost perfect

(k=0.946, p<0.001) between the manual and fully automated

scoring methods (Table 3). The majority of patients were

assigned to the same CVD risk category (869/913, 95.2%), and

42 patients (4.6%) were assigned to the neighboring risk group.
Per-lesion comparison for the cases out
of 95% LOA

Per-lesion analysis was performed for cases that were out of

the 95% LOA in the Bland–Altman analyses. Overall, 85 cases
TABLE 1 Baseline patient characteristics and computed tomography
acquisition parameters.

Characteristics N=913

Age, year 68.2 ± 10.6

Sex (Male: Female) 633:280

Smoking

Never 650 (71.2%)

Ever 263 (28.8%)

Comorbidities

Hypertension 283 (31.0%)

Diabetes mellitus 204 (22.3%)

Chronic renal failure 107 (11.7%)

Cardiovascular disease 170 (18.6%)

Cancer type

Stomach cancer 467 (51.2%)

Colon cancer 446 (48.8%)

CT scanner

< 64 channel 97 (10.6%)

64 channel 354 (38.8%)

256 channel 462 (50.6%)

Tube voltage

100 kVp 3 (0.3%)

120 kVp 901 (98.7%)

140 kVp 9 (1.0%)

Kernel

Soft tissue kernel 913 (100%)

Sharp kernel 0 (0%)

Slice thickness

< 2.5 mm 3 (0.3%)

2.5 mm 212 (23.2%)

3 mm 545 (59.7%)

3.75 mm 120 (13.1%)

5 mm 33 (3.6%)
TABLE 2 Reliability for calculating the Agatston score using deep learning-based fully automated software and manual scoring on chest
computed tomography.

Manual scoring (Ref)* Automated scoring* Intraclass correlation coefficient 95% Confidence interval p-value

Total 89.8 (15.9 - 272.1) 81.5 (15.4 - 255.3) 0.992 0.991–0.993 <0.001

LM 0.0 (0.0 - 21.8) 1.7 (0.0 - 47.0) 0.863 0.844–0.880 <0.001

LAD 33.7 (0.0 - 139.0) 20.1 (0.0 - 106.8) 0.964 0.959–0.968 <0.001

LCx 0.0 (0.0 - 13.7) 0.0 (0.0 - 10.1) 0.962 0.956–0.966 <0.001

RCA 0.0 (0.0 - 50.2) 1.3 (0.0 - 47.8) 0.980 0.978–0.983 <0.001
fronti
Per vessel analysis, *median value with interquartile range, LM, left main; LAD, left anterior descending; LCx, left circumflex; RCA, right coronary artery.
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FIGURE 2

Bland–Altman analysis for Agatston scores obtained by manual and fully automated methods. Graphs for (A) Total Agatston score (mean
difference, 12.08; 95% limits of agreement [LOA], -133.59 and 157.74), (B) left main (mean difference, -18.70; 95% LOA, -145.23 and 107.83), (C)
left anterior descending (mean difference, 23.56; 95% LOA, -115.14 and 162.27), (D) left circumflex (mean difference, 4.55; 95% LOA, -59.88 and
68.97), and (E) right coronary (mean difference, 2.09; 95% LOA, 87.73 and 91.91) arteries.
TABLE 3 Reliability of CAC-based risk stratification using deep learning-based fully automated software and manual scoring on chest computed
tomography.

Deep learning-based fully automated scoring

Absent, CAC = 0 Low, 0 < CAC ≤ 100 Intermediate, 100 < CAC ≤ 400 High, 400 < CAC

Manual scoring (Ref) Absent,
CAC = 0

62 11 0 0

Low,
0 < CAC ≤ 100

6 395 2 0

Intermediate,
100 < CAC ≤ 400

0 13 260 1

High,
400 < CAC

0 2 9 152
Frontiers in Oncology
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Kappa, 0.946, 95% Confidence interval = 0.930-0.972, p <0.001, CAC, coronary artery calcium. Dark blue cells represent the patients who were assigned to the same CVD risk category, and
lighter blue cells represent those who were assigned to the neighboring risk group.
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were reviewed (31 cases for total Agatston score, 42 cases for LM,

33 cases for LAD, 24 cases for LCX, and 24 cases for RCA), and

90 mismatched lesions were identified. Forty percent (36/90) of

the mismatched lesions were classified as misnaming of the

coronary artery (35 cases of LAD calcification labeled as LM and

one case of LCx calcification labeled as LM). Forty out of 90

(44.4%) mismatched lesions were false-negative CACs, which

were not detected on automated software, located in the LM

(n=2), LAD (n=7), LCx (n=15), and RCA (n=16). False-positive

findings included aortic wall or valve calcification (n = 10),

mitral annular calcification (n=1), and streaky artifacts with

cardiac motion (n=3) (Table 4 and Figure 3).
Discussion

Our study demonstrated the clinical feasibility of a fully

automated CAC scoring software using non-ECG-gated chest

CT scans in patients with gastric and colorectal cancer. Our

results showed high reliability for the coronary calcium score

measurement and high accuracy for the assignment of risk

categories using the fully automated CAC software, currently a

commercially available software, compared with conventional

manual scoring systems, even with non-ECG-gated chest CTs.

The current results can contribute to the wider application of

CAC quantification in clinical practice, especially for patients

with cancer, as majority of them routinely undergo chest CT for

metastasis evaluation.

Previous studies have shown that CAC on non-ECG gated

chest CT has prognostic significance (4, 17–19). However,

different CAC grading methods were used in many of these

studies, leading to a limited general application of the results in
Frontiers in Oncology 06
routine clinical practice (4, 17–20). Recently, Gal and colleagues

showed a strong correlation between an automatically quantified

CAC obtained by radiotherapy planning CT and the risk of CVD

in patients with breast cancer (Bragatston study) (21).Their

study suggested that the CAC score could serve as a surrogate

marker for the timely identification of high-risk patients with

CVD. To date, CAC has not been fully assessed on chest CT

scans due to several factors, including the use of non-ECG-gated

CT scans, time-consuming quantification processes, and the lack

of generalized grading methods or quantification tools. Our

study showed that deep learning-based fully automated CAC

scoring software is a fast and accurate tool, potentially enabling

the implementation of CVD risk-mitigating strategies in routine

clinical practice.

To date, several studies have reported the excellent

performance of deep learning models for automated CAC

scoring on ECG-gated CT scans (2, 22, 23). Furthermore,

several recent studies have demonstrated the application of

automated CAC quantification models to non-ECG-gated CT

scans, originally used for non-cardiac indications (3, 24). The

performance of the deep learning-based automated software

used in our study for CAC score acquisition and CVD risk

stratification using routine chest CT scans was comparable to or

even superior to that of previous studies using deep learning

algorithms (3, 24).

Nevertheless, the presence of outliers was still observed.

Eighty-five cases outside the 95% LOA on the per vessel

analysis revealed 90 mismatched lesions. Forty of these 90

mismatched lesions were CACs that were not depicted as such

by the automated software, resulting in false-negative results. In

addition, an overestimation of the CAC score resulted from 14

mismatched lesions, which were subsequently found to be

calcium deposits in the aortic wall, aortic valve, and mitral

annulus. Anatomical errors and misnaming of the coronary

arteries were also observed in 36 lesions. Further studies are

warranted to eliminate the occurrence of outliers in the deep-

learning algorithm.

Our study has several limitations. First, the study was

retrospective and conducted at a single center. Second, the

CAC was assessed using the Agatston method, and other

scales, such as the volume or mass score, were not compared.

Third, we did not investigate the cardiovascular outcomes of the

participants; thus, the correlation between clinical outcomes and

automatically calculated CAC scores could not be evaluated.

Finally, we lacked ECG-gated CAC scoring CT as a reference

standard. The ground-truth CAC score should be obtained from

paired ECG-gated CT; however, previous studies have already

shown a strong correlation between the CAC score obtained

from non-ECG-gated CT and that obtained from ECG-gated

CAC scoring CT (6–8). Thus, as a next step, we focused on the

comparison between the manual and fully automatic methods

using the same dataset. Further multicenter studies validating

the use of automatic CAC scoring software with various CT
TABLE 4 Per-lesion analysis for the mismatched CACs in the cases
outside of 95% limits of agreement on Bland–Altman analysis.

Mismatched lesions
(n=90)

Mislabeling of coronary artery 36 (40%)

LAD calcification labeled as LM 35 (38.9%)

LCx calcification labeled as LM 1 (1.1%)

False positive or over-estimation of CAC 14 (15.6%)

Image artefacts 3 (3.3%)

Aortic wall or valve calcification 10 (11.1%)

Mitral annular calcification 1 (1.1%)

False-negative or under-estimation of
CAC

40 (44.4%)

LM 2 (2.2%)

LAD 7 (7.8%)

LCx 15 (16.7%)

RCA 16 (17.8%)
CAC, coronary artery calcium; LAD, left anterior descending; LM, left main; LCx, left
circumflex; RCA, right coronary artery.
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images and direct comparisons with paired ECG-gated CAC

scoring CT should be performed.

In conclusion, we demonstrated excellent reliability for the

assessment of CAC scores and CVD risk stratification using deep

learning-based fully automated software using non-ECG-gated

chest CT scans in patients with cancer. A fast and accurate

assessment of CAC can help in the real-world application of

CAC quantification on routine chest CTs, which may provide

potential opportunities for early prevention in high-risk patients.
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FIGURE 3

Representative mismatched coronary artery calcium lesions. (A) A false-negative finding was noted in the left anterior descending artery (arrow).
False-positive lesions were annotated with arrows in the (B) mitral annulus and (C) aorta wall. (D) CAC on the left circumflex artery was
mislabeled as the left main artery (arrow).
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