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prediction of muscle-invasive
bladder cancer: A mini review
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Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science
Center, Shenzhen Second People’s Hospital, Shenzhen, China
Bladder cancer is a commonmalignant tumor in the urinary system. Depending on

whether bladder cancer invades muscle tissue, it is classified into non-muscle-

invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). It is

crucial to accurately diagnose the muscle invasion of bladder cancer for its clinical

management. Although imaging modalities such as CT and multiparametric MRI

play an important role in this regard, radiomics has shown great potential with the

development and innovation of precision medicine. It features outstanding

advantages such as non-invasive and high efficiency, and takes on important

significance in tumor assessment and laor liberation. In this article, we provide an

overview of radiomics in the prediction of muscle-invasive bladder cancer and

reflect on its future trends and challenges.
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1 Introduction

Bladder cancer (BC) is the second most common cancer among urological

malignancies, with an estimated 573,200 people diagnosed with BC worldwide in

2020 (1). The rates of bladder cancer increase with age. The risk of BC is

multifactorial, with smoking (2) being the most important risk factor.

Uroepithelial carcinoma accounts for approximately 90% of bladder cancer cases

and typically presents as multifocal and recurrent; other subtypes are squamous cell

carcinoma (6-8%) and adenocarcinoma (3).

Determining the invasion of the tumor into the muscle layer of the bladder wall is

probably the most critical step in clinical management, as it directly affects the

patient’s treatment strategy. Bladder cancers are classified into non-muscle-invasive

bladder cancer (NMIBC) (≤ T1 stage) and muscle-invasive bladder cancer (MIBC) (≥
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T2 stage) according to whether they invade muscle tissue or

not. NMIBC is mostly in the early stages of the disease, with a

5-year probability of recurrence and progression of 78% and

45%, respectively (4), while MIBC has a poor prognosis, with

approximately 50% (5) of patients developing metastases

within 2 years after radical cystectomy(RC). NMIBC is

usually treated by transurethral resection of bladder tumors

(TURBT) with or without intravesical chemotherapy (6).

Whereas MIBC is usually treated with radical cystectomy

(RC), radiotherapy, chemotherapy, or combination therapy

(5). Currently, pathological examination of TURBT

specimens is the gold standard for identification of MIBC.

However, according to previous studies, the error rate is

about 20-80% due to problems such as differences in

resection (7). Even though the error rate can be reduced by

repeating TURBT, underestimation of staging and delayed

treatment of the condition may lead to disease progression

and worse prognosis, and this invasive operation also carries

some safetyoperational risks. Faced with the above problems,

scholars have searched for an alternative, non-invasive and

efficient diagnostic tool to accurately predict muscle-invasive

bladder cancer, so they have turned their attention to

“radiomics” - a hot and promising diagnostic technology.

Radiomics is the extraction and analysis of quantitative

imaging features from imaging tools (CT, MRI, PET-CT,

etc.) for the development of descriptive and predictive

models (8). Machine learning (ML), a branch of artificial

intelligence, is a typical approach used in radiomics model

generation (9). Through the inferential training of datasets,

ML aids in the development of highly accurate and effective

predictive models based on radiomics analysis (10). In this

paper, we review the current existing research related to our
Frontiers in Oncology 02
topic, summarize the results of using machine learning to

accurately predict muscle-invasive bladder cancer, and reflect

on the future directions and challenges of the topic.

2 Search criteria

A comprehensive review of current literature was performed

using the PubMed-Medline and Web of Science database up to

April 5, 2022 using “bladder cancer”, combined with one of the

following terms: “radiomics”, “machine learning”, and “artificial

intelligence” in combination with “muscle invasive”.
The exclusion criteria for the articles were as follows:

(1) Published in a language other than English.

(2) The purpose of the article study was not to predict

muscle invasion of bladder cancer.

(3) The article was not studied with imaging tools.

(4) Reviews, conference abstracts, and editorials were

excluded.

The inclusion criteria for the article were as follows:

(1) Background introduction of radiomics, machine

learning, deep learning or artificial intelligence and

bladder cancer.

(2) The purpose of the article study was to predict muscle

invasion of bladder cancer.

(3) The article was studied with imaging tools(CT, MRI,

PET-CT, SPECT e.g.).

In accordance with the PRISMA criteria, Figure 1 was

included to delineate our article

selection process.
FIGURE 1

PRISMA flowchart of included studies.
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3 Results

The final collection of 12 relevant publications found that the

first study started in 2017, reflecting the fact that radiomics is a

relatively new concept in the field of BC. The literature related to

machine learning for predicting muscle-invasive bladder cancer is

summarized in Table 1 (11–22). For studies in this field, four were

based on enhanced CT and the remaining eight were related to

MRI. Only 16.7% (2/12) of the studies were multi-center studies.
Frontiers in Oncology 03
4 Discussion

4.1 Traditional diagnostic imaging

In current clinical practice, medical imaging techniques

including CT, MRI and other non-invasive and safe diagnostic

modalities are increasingly recognized for their performance in

predicting muscle invasion and staging of bladder cancer. MRI has

mainly been found to play a crucial role in the early localization and
TABLE 1 Studies included in the systematic review.

Study characteristics Patient characteristics Imaging characteristics

Author Year Study
design

Number
of cases

Number of
selected
lesions

Surgical
technique

Pathological
stage NMIBC:

MIBC

Imaging
modality

Scanner

1 Xu 2017 Single-
center
retrospective

78 118 NA 34:84 T2WI 3.0T GE

2 Garapati 2017 Single-
center
retrospective

76 84 Cystectomy 43:41 CTU NA

3 Tong 2018 Single-
center
retrospective

65 65 Cystectomy 31:34 T2WI 1.5-3.0T

4 Xu 2019 Single-
center
retrospective

54 54 NA 24:30 T2WI、
DWI、
ADC

3.0T GE

5 Zheng 2019 Single-
center
retrospective

199 199 RC or TURBT 130:69 T2WI 3.0T MR scanner (Intera Achieva, Philips
Medical Systems)

6 Xu 2020 Single-
center
retrospective

218 218 Both TURBT
and RC

131:87 DWI 3.0T MR scanner (Ingenia;Philips
Healthcare)

7 Wang 2020 Mult-center
retrospective

106 106 RC or partial
cystectomy or
TURBT

64:42 T2WI、
DWI、
ADC

3.0T MR system (MAGNETOM Trio,
Siemens Healthineers)

8 Hammouda 2021 Single-
center
retrospective

42 NA T2WI、
DWI、
ADC

3.0T Ingenia Philips MRI scanners

9 Zhang 2021 Mult-center
retrospective

441 441 RC or TURBT 183
(development):110

(tuning )
:73(internal
validation)
:75(external
validation)

Enhanced
CT

NA

10 Zheng 2021 Single-
center
retrospective

185 185 NA 129:56 T2WI、
DCE

3.0T MRI scanner(Magnetom Verio:
Siemens, Erlangen, Germany)

11 Zhou 2021 Single-
center
retrospective

100 100 NA 70:30 Enhanced
CT

Siemens 64-row spiral CT

12 Cui 2022 Single-
center
retrospective

327 188 RC or partial
cystectomy or
TURBT

120:68 CECT GE Dis covery CT750HD, GE LightSpeed
VCT, Philips ICT 256, and Siemens
Somatom Definition Flash.
ADC, apparent diffusion coeffificient; CECT, contrast-enhanced computed tomography; CT, computed tomography; CTU, CT Urography; DCE, dynamic contrast enhanced; DWI,
diffusion-weighted imaging; MIBC, muscle-invasive bladder cancer; MR, magnetic resonance; MRI, magnetic resonance imaging; NA, not available; NMIBC, non–muscle-invasive bladder
cancer; RC, radical cystectomy; TURBT, transurethral resection of bladder tumor; T2WI, T2-weighted imaging.
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invasive diagnosis of BC. T2-weighted imaging(T2WI) is able to

illustrate detailed structural information of the lesion and bladder

wall, thus potentially reflecting the depth of invasion of the bladder

wall ofBC.The lowsignal lineof thedetrusormuscle is interruptedby

MIBC,whereas thedetrusormuscle is complete inNMIBC.Diffusion

Weighted Imaging(DWI)andApparentDiffusionCoefficient(ADC)

have a good ability to reflect signal intensity differences between

muscle, peritumoral inflammation and fibrosis (23, 24). The

significance of dynamic contrast enhanced MRI(DCE-MRI) in

assessing tumor aggressiveness depends on the neoangiogenesis of

the tumor, which is an important factor in tumor growth; the more

neovascularization there is, thehigher the tumorstageandgrade (25).

In studies on dynamic enhancement sequences, the tumor, bladder

mucosa and submucosa show early enhancement, but the bladder

wall muscle maintains its low signal and delays enhancement. As

early as 2000, Hayashi et al. observed that image signs of submucosal

linear enhancement (SLE) at the base of the tumor were frequently

seen on DCE images of NMIBC patients (26). This discovery is

unquestionably a watershed moment in imaging-based BC staging

and muscle-invasive status (MIS) diagnosis. Takeuchi et al (27)

followed up by reporting an important feature found in most

NMIBC on DWI, the tumor stalk, which improved the accuracy

and robustness of imaging-based BC staging andMIS diagnosis. The

accuracy of staging based on tumor stalk was 91.3% in Wang et al.

study, while the accuracy of SLE staging was 91.3% (23). Panebianco

et al (28) proposed Vesical Imaging-Reporting and Data System

(VI-RADS) to quantify these signs on Multi-Parametric Magnetic

Resonance Imaging (mpMRI) and to standardize the diagnostic

procedure for image-based MIS prediction based on these features.

This scoring system has effective diagnostic performance. In the

Ueno et al. study, for example, the combined area under the curve

(AUC) of five radiologists diagnosingMIBCwas as high as 0.90 (29).

Another prospective study also demonstrated the high diagnostic

reliability of the VI-RADS score (AUC value of 0.94), especially for

scores 1-2 and 3-5 (sensitivity 91.9%, 95%; specificity 91.1%, 95%)

(30).TheVI-RADSscoringmethodreliesonexpert visualperception

judgment, yet it is still semi-qualitative. As a result, research into the

objective and accurate radiomic detection of bladder cancer muscle

invasion is required.
4.2 Radiomics

Radiomics is a relatively young concept, and Prof. Lambin

originally described it in 2012 (31). Radiomics refers to the high-

throughput extraction of image features from the region of interest

(ROI) of radiological imaging techniques (CT, MR, but also PET,

etc.) for automated analysis, using machine and deep learning

techniques to extract critical information for accurate quantitative

assessment of lesions, and ultimately for aiding in the diagnosis,

classification, or grading of diseases. Radiomics inherits the

technological benefits of reproducible, non-invasive radiological
Frontiers in Oncology 04
imaging over biopsy, making patient status monitoring and

prognosis safer and more reliable.

Radiomics techniques can be classified into two groups:

those using manual radiomics features and those using deep

learning radiomics (32, 33) Traditional manual radiomics has

the following four main processing tasks: image acquisition and

preprocessing; image segmentation; feature extraction and

quantification; and model building. The difference is that

segmentation is not a necessity in the automated radiomics

pipeline (33).. Radiomics has been increasingly studied in

medical field for lung cancer, breast cancer, glioma, prostate

cancer and other disorders (34–37). One of the current topics in

bladder cancer research is the radiomics prediction of MIBC.

The pertinent radiomics literature is described below in

terms of modality selection, volumes of interest (VOIs)

segmentation, feature selection, model construction, and

integration of clinical features, respectively.

4.2.1 Input modality
Itmainly based on enhancedCT,MRI, withMRI accounting for

(8/12) of the included literature. Since CT is weaker than MRI in

discriminating soft tissues and the borders and bases of lesions are

rarely distinguishable in discriminating MIS (38), there is a greater

preference forMRI,mainly aroundT2WI, DWI andADC andDCE

sequences. In 2017, Garapati (11) and Xu et al. (12)established a

precedent for using radiomics to predict MIS using CT and MRI,

respectively, and inspired readers to combine additional MRI

sequences to improve the possibility of differentiation task

performance. As a result, extensive research on the precise

differentiation of NMIBC and MIBC using radiomic methods with

multi-parametric MRI images started to be conducted. Xu et al.

obtainedmean accuracies of 79.63%, 81.37%, and 91.22% for T2WI,

DWI, and the combined of both sequences, with AUCs of 0.8828,

0.8884, and 0.9756, respectively (14). The superiority of DWI

sequences over T2WI sequences in reflecting heterogeneous

differences between NMIBC and MIBC (14, 16) has been

repeatedly demonstrated. This might be because muscle-infiltrating

tumors have a propensity to impede water molecule diffusion by

shrinking extracellular space (39–41), which is better captured by

DWIandthe relatedADCmaps.Andmulti-sequenceMRIwasmore

helpful to predict themuscle invasion conditionofBCpreoperatively

compared with single sequence T2WI and DWI, which was

consistent with previous knowledge.

4.2.2 Volumes of interest segmentation
The three basic methods of delineating the area of interest are

manual, semi-automated, and automatic. Even with computerized

techniques, radiologists still need to examine and manually adjust

them to assure the correctness of ROI descriptions because the

majority of them are still primarily manual, which takes time and is

tiresome. Initially, academics mostly concentrated on the overall

tumor volume. As research developed, it was generally
frontiersin.org
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acknowledged that the information in the region around the tumor

also held a lot of relevant information. The body of literature

suggests that the determination of muscle invasiveness is related to

bladder tumors as well as the tumor’s base (15) and adjacent

bladder tissue (13). In addition, most of the relevant experiments

have been conducted so far at the 3D level. Compared to 2D system

analysis, 3D has higher precision and AUC (95.24% and 0.9864 vs.

92.86% and 0.9705) (18) which reflects the importance of 3D

processing as it provides a comprehensive BC assessment with full

descriptive information and details.

4.2.3 Feature extraction and quantization
Currently, there are mainly shape and intensity features

based on histogram, texture features including gray level co-

occurrence matrix (GLCM), gray Level run length matrix

(GLRLM), gray-level size zone matrix (GLSZM), gray level

dependence matrix (GLDM), neighborhood gray-tone

difference matrix (NGTDM), and higher-order feature

wavelet features. The global, local and regional distribution

features of image grayscale can be comprehensively described.

Although there are a large number of features available for

analysis, redundancy of features can seriously affect

prediction performance. So feature selection is essential for

developing optimal prediction models. Combined with other

advanced selection strategies for statistical analysis, such as

support vector machine (SVM)-based recursive feature

elimination (SVM-RFE), the least absolute shrinkage and

selection operator

(LASSO), max-relevance and min-redundancy(mRMR),

these methods are widely used to reduce the impact of

feature redundancy, and other methods such as Boruta are

also used. After feature selection, Xu et al. found that the run

length matrix (RLM) features accounted for a greater

proportion of 13/19 in the optimal subset (14), better

reflecting the regional heterogeneity differences between

NMIBC and MIBC. The Co-occurrence matrices(CM), RLM

and GLSZM features were found to be favorable feature classes

for predicting BCa muscle invasion condition by Wang

et al. (16).

4.2.4 Model construction
Different machine learning classifiers can be employed

with the chosen features to create predictive models.

Classifiers that are typically used include LASSO, SVM,

random forest (RF), logistic regression, etc. Convolutional

neural networks (CNN) are the most commonly used

artificial neural networks for deep learning. SVM-RFE was

the most commonly used machine learning method (7/12),

among all the methods used for the classification task. Table 2

demonstrates how different models’ prediction efficacy varies.

NN, SVM, and RF classifier diagnostic performance were

tested by Hammouda et al. in descending order (18).
Frontiers in Oncology 05
Garapati et al. observed that the AUC for morphological

and texture features was roughly 0.90 (11); for various other

mri-based radiomics models, the AUC ranged from 0.87 to

0.98 (14–17). However, all of the preceding experiments have

the disadvantage of lacking independent external validation,

so the true validity of the diagnostic performance of these

models must be confirmed further. In contrast, so far, the

prediction model developed by Zhang et al. is the only

experiment with external validation results. But the AUC

(0.791-0.936) of the study by Zhang et al. was slightly lower

(19). This may be the risk of misclassification of some models

influenced by tumor size, which may lead to a decrease in the

diagnostic performance of the model, and therefore tumor

size is one of the critical features to determine the muscle

invasion condition of BC.

4.2.5 Integration of other clinical factors
It has become a trend to include clinical risk factors in the

prediction model in order to better predict MIS and improve

clinical diagnostic performance and application value. These

include tumor size (15), tumor stalk (16), proteinuria and

multiple sclerosis (21), as well as VI-RADS (20) and TURBT

(14).The radiomic model incorporating clinical factors performed

significantly better than the conventional MRI examination and

simply radiomic model in terms of calibration and discrimination.

Radiomic-clinical nomogram can be used as a reliable and non-

invasive adjunct to differentiate MIBC from NMIBC

preoperatively (15).

4.2.6 Method for validating results
83.3 percent (10/12) of the retrieved literature were

single-center studies (11–15, 17, 18, 20–22), and the

internal validation method was primarily used for model

validation. Only two paper performing external validation

of the results (16, 19). Because of the lack of externally

validated results, the reliability of the remaining articles’

results in terms of diagnostic efficacy is questionable. The

sensitivity, specificity, and AUC of the internal validation

cohort in Zhang’s prediction model were 0.733, 0.810, and

0.861, respectively, while those of the external validation

cohort were 0.710, 0.773, and 0.791, respectively (19).
5 Future and prospects

Of these 12 studies, all were retrospective, subject to

selection bias and prone to data loss. Because the sample

size was insufficient, cross-validation was essentially required

to make up for it. Additionally, only two of the results were

externally validated using radiomics models, with the rest

being single-center, internally validated results that were not

convincing. The current radiomics models are mainly based
frontiersin.org
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TABLE 2 Radiomic characteristics of studies included in the systematic review.

Author Segmentation Radiomic feature categories Machine-learning Number Model AUC of radiomic model with
he best performance

clinical
factor

AUC of radiomic-
clinical model

ing set Validation set Training
set

Validation
set

.861 NA NA NA NA

.97 NA NA NA NA

tient
l:0.806,
l sector
l:0.813

NA NA NA NA

9857 NA NA NA NA

.913;
imism-
ted:0.912

0.874 Tumor size 0.922;
optimism-
corrected
AUC of
0.921

0.876

.907 0.904 RandomForest
model and
TURBT

NA NA

.88 external validation
cohort 0.813

Radscore and
tumor stalk

0.924 0.877

9864 NA NA NA

lopment
rt:0.936,
ning
rt:0.891

internal validation
cohort: 0.861,external
validation cohort:

0.791

NA NA NA

.934 0.906 VI-RADS 0.97 0.943
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on single-modality or dual-modality MRI, and there is no

multi-modality study combining the three sequences of

“T2WI, DWI and DCE” , which needs to be further

validated to improve the differentiation performance.

Therefore, investigations should be planned in a more

thorough and subtle manner for a variety of therapeutic

applications to increase the reliability of the results. To

completely understand the diagnostic usefulness of machine

learning in predicting MIBC, more prospective multi-center

and various machine trials will be required in the future. In

addition, for future optimization of this new approach, more

studies are needed to test the potential of optimizing

predictive models by combining imaging biomarkers with

other non-imaging biomarkers, such as urine and serum

biomarkers. Although there have been significant advances

in a number of s tudies , f rom fundamental tumor

identification to precise staging and grading, recent research

has also been gradually moving toward the prediction of

treatment outcomes. The needs of the clinical market can

no longer be met by illness diagnosis alone. After a bladder

cancer diagnosis, increasing focus will be placed on how well

machine learning predicts the response to treatment and

prognosis outcome of the disease In the future.
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