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Monocytes acquire
prostate cancer specific
chromatin conformations
upon indirect co-culture
with prostate cancer cells

Heba Alshaker1, Ewan Hunter2, Matthew Salter2,
Aroul Ramadass2, Willem Westra2, Mathias Winkler3,
Jayne Green2, Alexandre Akoulitchev2 and Dmitri Pchejetski1*

1School of Medicine, University of East Anglia, Norwich, United Kingdom, 2Oxford BioDynamics
Limited, Oxford, United Kingdom, 3Department of Surgery and Cancer, Imperial College London,
London, United Kingdom
Background: Three-dimensional chromosome loop conformations are

powerful regulators of gene expression. These chromosome conformations

can be detected both in tumour and in circulating cells and have significant

disease biomarker potential. We have recently detected specific chromosome

conformations in circulating cells of patients with prostate cancer (PCa) which

were similar to ones found in their primary tumours, however, the possibility of

horizontal transfer of chromosome conformations was not studied previously.

Methods: Human monocytes (U937) were co-cultured in Boyden chambers

through 0.4 uM membrane with or without PC-3 human PCa cells or their

conditioned media and a custom DNA microarray for 900,000 chromosomal

loops covering all coding loci and non-coding RNA genes was performed on

each part of the co-culture system.

Results: We have detected 684 PC-3 cell-specific chromosome conformations

across the whole genome that were absent in naïve monocytes but appeared in

monocytes co-cultured with PC-3 cells or with PC-3-conditioned media.

Comparing PC3-specific conformations to the ones we have previously

detected in systemic circulation of high-risk PCa patients revealed 9 positive

loops present in both settings.

Conclusions: Our results demonstrate for the first time a proof of concept for

horizontal transfer of chromosome conformations without direct cell-cell

contact. This carries high clinical relevance as we have previously observed

chromatin conformations in circulating cells of patients with melanoma and

PCa similar to ones in their primary tumours. These changes can be used as

highly specific biomarkers for diagnosis and prognosis. Further studies are

required to elucidate the specific mechanism of chromosome conformations

transfer and its clinical significance in particular diseases.
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Introduction

Genome-wide association studies have shown that

surprisingly the majority of cancer-risk associated loci are

located outside of known protein-coding regions (1). It is now

well established that epigenetic modifications (DNA

methylat ion, his tone acetylat ion and chromosome

conformation) have an important role in aberrant gene

expression and cancer progression. In prostate cancer (PCa)

DNA methylation (hypo- and hypermethylation) is the best-

characterized epigenetic alteration (2, 3). Histone modifications

also contribute to PCa progression (4, 5), but the role of

chromosome conformations is much less studied.

Our recent studies have shown significant involvement of 3D

chromosome loop interactions in gene expression (6). These

dynamic loops can be detected using chromosome conformation

capture (3C) technologies. Due to their apparent prevalence in

disease, they have gained considerable attention as potential

diagnostic markers (7–10). One of the main advantages of 3C-

based chromatin interactions as biomarkers is that DNA cross-

linking is relatively stable, and following proximity ligation, gives

rise to a stable DNA product (Figure 1) (12).

We have developed a novel epigenetic assay, as a next

generation of the 3C technique (13). This new technology

(EpiSwitch™) combines the 3C technique and algorithmic-

based analysis to predict and then identify a panel of stable 3D

chromosome loops. As these loops are often implicated in

aberrant gene expression this technique has significant

biomarker potential for the majority of genetic diseases (6).

One example of using this technique is distinguishing between

cancer-free controls and diseased tissue samples. Using

EpiSwitch™ technology, we have detected melanoma-specific

chromatin conformations in the circulating cells of melanoma

patients (14, 15). A similar subset of conformations were

detected in the primary tumours indicating a possible

horizontal transfer of epigenetic information (14, 15). In

addition to melanoma, we have used this technique to identify

specific circulating chromosome conformation signatures

(CCSs) for amyotropic lateral sclerosis (16), rheumatoid

arthritis (17), and thyroid cancer (18).

Recently we have published distinct CCSs that were present

both in circulating cells and primary tumours of PCa patients

(11). These signatures allowed both PCa diagnosis and

prognostic risk stratification. Similarly to melanoma (14, 15),

conformations detected in circulation overlapped with those in
02
PCa tumours suggesting a horizontal transfer (11). Fractionation

studies showed that these conformations were coming from

circulating white cells and not from circulating tumour cells (14,

15). It remained unclear how circulating cells acquire disease-

specific chromosome signatures. In this study, we have used

indirect co-culture systems to address a fundamental question of

the possibility of the horizontal transfer of epigenetic

information in the form of CCSs from primary tumours to

circulating blood cells.
Methods

Cell culture

Human prostate cancer cell line PC-3 and human

monocytes U937 were purchased from ATCC (Manassas, VA,

USA). Cells were cultured and maintained in RPMI 1640

Medium, GlutaMAX™ Supplement containing 10% foetal

bovine serum and penicillin-streptomycin (5,000 U/mL)

(Gibco) at 37°C in a humidified atmosphere of 5% CO2. Cell

lines were kept in culture for up to 30 passages. For co-cultures,

PC-3 cells were seeded into the 6-well plates at 1x105 cells per

well in complete medium, as shown in the Figure 1A. After 24

hours, media was changed to serum-free for a further 24 hours.

Transwells (Corning®) containing U937 cells were placed in

each well. Cells were harvested separately after 24h co-

incubation. For conditioned media experiment, serum-free

media incubated with PC-3 cells for 24 hours was collected,

centrifuged at 2500rpm for 5 minutes and supernatant added to

U937 cells.
Sample preparation

Whole cell lysate was obtained from individual components

of co-culture system by harvesting the cells, centrifuging them

2500rpm for 5 minutes and resuspending them in lysis buffer as

described before (11, 14–16). Intrachromatin associations were

captured by fixing chromatin with formaldehyde (Figure 1B).

TaqI restriction enzyme was used for restriction/digestion of

chromatin loops into fragments. DNA strands were then

rejoined favouring cross-linked fragments. The PCR was

performed on reversed crosslinks using the primers previously

established by the EpiSwitch™ software (11, 14–16) (Figure 1B).
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A

FIGURE 1

Schematic representation of the transwell model and chromosomal conformation assay. (A) PC-3 cells were cultured at the bottom chamber
for 48 hours, then U937 cells were placed in the top chamber and incubated for 24 hours. (B) Chromosome conformation assay: DNA is
crosslinked, digested, ligated and new sequences (in places where loops were) are predicted using relevance machine vector. Loops presence is
detected using DNA microarray (11).
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DNA CHIP analysis

Custom-made CGH Agilent microarray (8x60k) platform

was designed to test technical and biological repeats for >900,000

potential chromosome conformations covering all coding loci

and non-coding RNA genes. Gene sequences obtained from

www.ensembl.org were used for computational prediction of

interchromatin interactions using EpiSwitch™ software.

Samples generated as described above were hybridized to the

array, and differential presence or absence of each chromosome

conformation was identified. LIMMA linear modelling with

empirical Bayes moderation of the standard errors, subsequent

abundance filtering and cluster analysis were used in data

analysis as described before (11, 14–16) (Figure 1B).
Nested polymerase chain reaction

Chromosome conformations identified using the DNA

CHIP were confirmed using nested PCR performed as recently

described (11). Briefly: “Sequence specific oligonucleotides were

designed around the chosen sites for screening potential markers

by nested PCR using Primer3. All PCR amplified samples were

visualized by electrophoresis in the LabChip GX, using the

LabChip DNA 1K Version2 kit (Perkin Elmer, Beaconsfield,

UK) and internal DNA marker was loaded on the DNA chip

according to the manufacturer’s protocol using fluorescent dyes.

Fluorescence was detected by laser and electropherogram read-

outs translated into a simulated band on gel picture using the

instrument software. The threshold we set for a band to be

deemed positive was 30 fluorescence units and above.” (11).
Results

Identification of the group markers

PC3 cells were cultured alone or with U937 cells via

membrane (Figure 1A) and compared to U937 cells cultured

alone or co-cultured with PC3 cells or their conditioned

medium. DNA from whole cells was isolated as described in

materials and methods and intrachromatin associations were

captured using formaldehyde crosslinking, restriction digestion

and ligation as described before (11, 14–16) (Figure 1B).

A customized CGH Agilent microarray platform (>900k

chromosome conformations) was designed to identify

chromosome conformations across the whole genome.

LIMMA linear modelling with empirical Bayes moderation of

the standard errors, subsequent abundance filtering and cluster

analysis were used to define the presence or absence of each

locus. Nested PCR was used to confirm identified biomarkers.
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Group variance and presence of outlier samples were

assessed using principal component analysis that showed that

PC-3 cultured alone (points 1-3 in Figure 2A) had a separate 3C

profile from PC-3 after co-culture (points 4-6 in Figure 2A).

Similarly, U937 monocytes showed a clear distinction between

cells cultured alone (points 7-9 in Figure 2B) and those co-

cultured with PC3 cells (points 10-12 in Figure 2B) or PC3-

conditioned media (points 14,15 in Figure 2).

VENN diagram of PC3-specific CCSs (Figure 3A) shows 684

CCSs are shared between PC3 cells and U937 cells cultured with

PC-3 cells via membrane or in PC3 conditioned media. Each set

has interaction frequency over 1.2 and p value ≤0.05. Of note,

these statistically significant CCSs are absent in U937 cultured

alone. It appears conditioned media induces more CCSs transfer

(1960 conformations) than membrane co-culture (917

conformations). Interestingly, functional enrichment analysis

of 684 CCSs switching to PC3 profile under both co-culture

and conditioned media treatment fit into well-characterized

single compact protein interaction network (Figure S1). This

network has direct relationship to the genetic loci captured by

the validated 3C markers that we have identified in the

circulating cells of PCa patients (in the loci of BMP6, ERG,

MSR1, MUC1, ACAT1 and DAPK1 genes) (11) (Table S1).

We have then compared the PC3-specific CCSs to the ones

we have detected in systemic circulation of high-risk PCa

patients (11). The VENN diagram (Figure 3B) shows

significant (frequency over 1.2 and p value ≤0.05) CCSs

present in PC3 and co-cultured monocytes that overlap with

systemic PCa array. Nine CCSs are shared between all four sets,

whereas many more CCSs are shared between individual sets.

Table S2 shows the 9 Positive loops present in both high risk

PCa patients (11), PC3 cells and monocytes co-cultured with PC3

cells or their conditioned media, but not monocytes alone. Each

CCS has three entries tracking up to three nearest coding genes,

upstream, downstream and inside the loop, which would be affected

by CCS formation. Table S3 shows the result of pathway analysis for

these genes indicating their functional involvement with regulation

of prominent cancer and inflammatory pathways such as

interleukin (IL)2, epidermal growth factor (EGF), vascular

endothelial growth factor (VEGF), p53, tyrosine receptor kinase

(TRK)/mitogen activated protein kinase (MAPK), androgen

receptor (AR), focal adhesion kinase (FAK), mammalian target of

rapamycin (mTOR) and IL6.

Of interest, Figure 3C shows 122 CCSs that are present either

in naïve U937 cells or in U937 cells co-cultured with PC-3 cells

or their conditioned media. Each set has interaction frequency

over 1.2, p value ≤0.05 and represents U937 specific CCS, which

are not affected by co-culturing. When compared to the systemic

PCa signatures identified in our previous study (11), one marker

in the ACAT loci (Figure 3D) was directly shared. In our clinical

classification this CCS present only in the U397 cells was a

marker of indolent disease.
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Discussion

The CCSs have a well-recognized advantage for the

biomarker use (7). This is facilitated by a) the binary nature of

the test (the chromosomal loop is either present or not,

eliminating diagnostic overlap of continuous biomarkers) and
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b) the enormous combinatorial power (up to 2900,000

combinations are possible with ~900,000 binary loops

screened). In conjunction with well-defined clinical groups

tested, these features allow creating biomarkers that accurately

fit clinical criteria. Indeed, our previous studies demonstrate the

significant potential of CCSs as markers for various diseases with
B

A

FIGURE 2

Principal component analysis for the CCSs distribution between samples. Principal component analysis for the CCSs in PC-3 (A) and U937 (B)
before and after co-cultures demonstrating a change in CCSs distribution.
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different aetiology (11, 14–18). In our recent study in PCa, CCSs

allowed us not only to create a diagnostic test, but also a

prognostic one, discerning low-risk versus high-risk disease

(11). The observed epigenetic changes have been shown to

manifest early in tumorigenesis, making them useful for both

diagnosis and prognosis (19). It is important to note that CCSs

need to be tested in the intact nuclei (13), since the circulating

DNA does not retain original 3D conformations.

Our data demonstrate that co-culturing monocytes with PCa

cells leads to new stable chromatin loops in the loci of multiple

genes (Figure 3 and Table S2) including those we have previously

detected in systemic circulation of high-risk PCa patients (11).

There is significant evidence supporting their role in human

cancers, their prognostic significance and diagnostic value (20–

25). Pathway analysis for these genes indicates their functional
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involvement in the regulation of key pathways involved in cell

signalling mediated by cytokines (IL2 and IL6), growth factors

(EGF and VEGF), protein kinases (TRK/MAPK, mTOR),

tumour suppressors (p53) and hormones (AR) (Table S3). All

these pathways have high relevance in PCa progression and

metastasis (26–28). Using the whole genome array, we have

achieved a similar concordance between ex-vivo cell models and

blood based signatures in our study of diffuse large B-cell

lymphoma suggesting that some regulatory aspects of 3D

genomics preserve themselves between ex-vivo and systemic in

vivo cellular states (29).

Multiple previous studies have demonstrated horizontal

transfer of genetic information (30). In our studies we have

shown identical signatures detected in systemic circulation and

in the primary site of tumorigenesis (11, 14, 15). Our previous
B

C D

A

FIGURE 3

Venn diagrams of CCSs overlap between treatment groups and high-risk PCa patients. (A–D). Venn diagrams indicating the number of
overlapping CCSs between various groups.
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fractionation studies showed that signatures detected in

circulation come from white cells and not from circulating

tumour cells. We have therefore hypothesised that systemic

CCSs may originate in primary tumour upon its direct or

indirect contact with the circulating cells. A significant

proportion of CCSs are controlled by long non-coding RNAs

(31, 32). Previous studies demonstrated that tumour cells secrete

non-coding RNAs that are endocytosed by neighbouring or

circulating cells and may change their chromosomal

conformations (32, 33).

In this study, we have used classical exosome experiment

settings (Figure 1) to demonstrate how indirect contact between

cells (either though a membrane or via conditioned media) can

mediate this process. In our recent publication we have

demonstrated the CCCs that are detected in circulating cells of

PCa patients that strongly resemble CCCs detected in primary

prostate tumours (11). To replicate such clinical setting in the

current mechanistic study we have co-cultured human

metastatic hormone refractory PCa cells PC-3 and human

monocytes U937. PC-3 is a cell line initiated from a bone

metastasis of a grade IV prostatic adenocarcinoma from a 62-

year-old man. They represent late stages of PCa. U-937 cell line

was derived from malignant cells obtained from the pleural

effusion of a male patient with histiocytic lymphoma and

immortalised with Epstein-Barr virus (EBV). They are used to

study the behaviour and differentiation of monocytes and

represent typical human circulating cells.

Throughout the exosome research two of the most

important questions pertaining are: a) what is the effector

target of exosome traffic and b) what is the mechanism by

which exosomes lead to change in phenotype. Our data points

that at least partly the exosome traffic targets and switches

regulatory 3D architecture in effector cells. That switch is

binary, stable and works over the threshold similarly both in

cell-cell and cell-conditioned media settings. The switch

observed in in vitro treatments is consistent with systemic

validated switches observed in patients (11).

The results of this study provide mechanistic explanation of

the concordance between CCCs detected in circulating cells of

PCa patients and in their primary tumours (11). This is likely to

pave way to further studies identifying CCCs for PCa diagnosis

and screening.
Conclusions

In this pilot study, reported in this rapid communication, we

have identified stable CCSs that are acquired by cells upon

indirect co-culture demonstrating for the first-time direct

transfer of 3D genome architecture between cancer and

circulating cells. These CCSs are similar to the ones we have
Frontiers in Oncology 07
identified in PCa patients and have significant potential for the

development of quick diagnostic and prognostic blood tests for

PCa. Future studies are required to address: a) the means of

epigenetic information transfer (e.g. exosomes, long non-coding

RNA) and b) the potential mechanisms of their effect on the 3D

chromosome conformations.
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