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Interleukin-1 receptor
associated kinase 1 (IRAK1) is
epigenetically activated in
luminal epithelial cells in
prostate cancer
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and Temuujin Dansranjav1*

1Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany,
2Working group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology,
Justus-Liebig-University Giessen, Giessen, Germany, 3Working group Urological Infectiology, Clinic of
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The use of immune adjuvants such as toll-like receptor (TLR) agonists reflects a

novel strategy in prostate cancer (PCa) therapy. However, interleukin-1

receptor associated kinase 1 (IRAK1), a central effector of TLR signaling, has

been shown to be responsible for resistance to radiation-induced tumor cell

death. In order to better understand the function and epigenetic regulation of

IRAK1 in PCa, we performed in vitro cell culture experiments together with

integrative bioinformatic studies using the latest single-cell RNA-sequencing

data of human PCa and normal prostate (NOR), and data from The Cancer

Genome Atlas. We focused on key effectors of TLR signaling, the Myddosome-

complex components IRAK1, IRAK4 and MYD88 (myeloid differentiation

primary response 88), and TRAF6 (tumor-necrosis-factor receptor associated

factor 6). In PCa, IRAK1-mRNA was specifically enriched in luminal epithelial

cells, representing 57% of all cells, whereas IRAK4 and MYD88 were

predominantly expressed in leukocytes, and TRAF6, in endothelial cells.

Compared to NOR, only IRAK1 was significantly overexpressed in PCa

(Benjamini-Hochberg adjusted p<2x10-8), whereas the expression of IRAK4,

MYD88, and TRAF6was unchanged in PCa, and IRAK1-expression was inversely

correlated with a specific differentially methylated region (IRAK1-DMR) within a

predicted promoter region enriched for H3K27ac (Spearman correlation r<-

0.36; Fisher’s test, p<10-10). Transcription factors with high binding affinities in

IRAK1-DMR were significantly enriched for canonical pathways associated with

viral infection and carcinogenic transformation in the Kyoto Encyclopedia of

Gene and Genomes analysis. DU145 cells, exhibiting hypermethylated IRAK1-

DMR and low IRAK1-expression, reacted with 4-fold increased IRAK1-

expression upon combined treatment with 5-aza-2-deoxycytidine and

trichostatin A, and were unresponsive to infection with the uropathogenic

Escherichia coli strain UTI89. In contrast, PC3 and LNCaP cells, exhibiting
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hypomethylated IRAK1-DMR and high endogenous IRAK1-mRNA levels,

responded with strong activation of IRAK1-expression to UTI89 infection. In

summary, exclusive overexpression of IRAK1 was observed in luminal epithelial

cells in PCa, suggesting it has a role in addition to Myddosome-dependent TLR

signaling. Our data show that the endogenous epigenetic status of PCa cells

within IRAK1-DMR is decisive for IRAK1 expression and should be considered as

a predictive marker when selective IRAK1-targeting therapies are considered.
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Introduction

Prostate cancer (PCa) is the second most frequent

malignancy after lung cancer, and the fifth leading cause of

cancer-related deaths among men worldwide (1). Chronic

inflammation is commonly observed in normal and malignant

prostates and is considered to be one of the main driving

mechanisms of prostate carcinogenesis (2, 3).

Toll-like receptors (TLRs) are a family of transmembrane

proteins that are the main sensors of innate and adaptive

immunity. They are responsible for the activation of pro-

inflammatory cytokines and chemokines in inflammatory cells

within tumors, as has been shown in hepatocellular, head neck,

gastric, and breast cancers (4–7). In the prostate, TLR4 and

TLR9 are known to be expressed in normal and malignant cells,

thereby enabling prostate epithelial cells to act as immune

sensors (8–10).

Under certain conditions, inflammation can counter tumor

progression, and activation of effective antitumor immunity is

considered a potent adjuvant therapy option (10). As recently

reviewed, TLR stimulation in combination with chemotherapy

or radiotherapy has been shown to be effective against tumor

progression in multiple clinical trials (11). Immunotherapy with

TLR agonists significantly improves the outcomes of radiation

therapy (RT) in preclinical models (11, 12). The antitumor

immune response, which is triggered by tumor antigens

released from irradiated tumor cells, is considered to be the

main mechanism underlying this therapeutic effect (13, 14). The

assembly of the Myddosome complex and recruitment of tumor

necrosis factor receptor-associated factor 6 (TRAF6) to the

Myddosome complex are crucial events that ultimately

promote Myddosome-dependent TLR immune signaling (15).

The interleukin-1 receptor-associated kinase 1 (IRAK1) is a

critical component of the Myddosome complex and is one of

the main effectors of TLR signaling. In human cancer cells and a

zebrafish model, IRAK1 was shown to be responsible for RT

resistance (14). Selective IRAK1 inhibitors, such as the organic
02
JAK2/FLT3 inhibitor pacritinib and chemical compounds, such

as Jh-X-119-01, are being considered for cancer treatment (16).

However, setting up individualized PCa therapy strategies may

be complicated by the molecular heterogeneity of the tumors.

Despite its critical role in tumorigenesis and tumor therapy, little

is known about PCa-associated epigenetic and transcriptional

regulation of genes encoding effectors of TLR signaling. In order

to better understand and utilize the TLR-mediated anti-tumor

immune response in PCa treatment, it is essential to first

characterize the role of epithelial cells in immune signaling

and the function of key effectors of TLR signaling.

Here, we analyzed genes encoding key components of the

Myddosome complex, including IRAK1, IRAK4, and MYD88,

and the TLR adaptor protein TRAF6, using recently published

single-cell RNA-seq data of PCa (17), The Cancer Genome Atlas

(TCGA) data bank, and in vitro cell culture experiments, with a

focus on their epigenetic regulation in PCa. We showed that in

PCa, IRAK1 plays an exclusive role in the luminal epithelial cell

population and is tightly regulated by the epigenetic status of a

specific differentially methylated region (IRAK1-DMR) within

the predicted gene promoter.
Material and methods

Analysis of single-cell RNA-sequencing
data generated in human PCa

Gene expression matrix files from single-cell RNA

sequencing (scRNA-seq) of eight radical prostatectomy (RP)

specimens from men with localized PCa were downloaded from

the Gene Expression Omnibus (GEO) database GSE176031 (17)

(Table S1). The data were computationally processed using the

Seurat (v4.1) package (18). Cells with fewer than 200 detected

genes and mitochondrial levels greater than 5% were excluded

from analysis. Doublets were identified using DoubletFinder

(v2.03) and were removed. Only the genes expressed in more
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than three cells were considered. Data were merged using the

integration method based on commonly expressed anchor genes

using ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions in

the Seurat package (19). Subsequent dimensionality reduction,

clustering, and visualization were performed using the

‘FindNeighbors’ and ‘FindClusters’ functions of the Seurat

package. Cells in clusters were annotated using the AUCell

package (v1.16) utilizing cell-type signature gene sets, which

were generated by single-cell profiling of the normal prostate

(20) (Table S2).

Gene expression across the major cell types was visualized

using the R package Nebulosa (v1.4) (21), which uses weighted

kernel density estimation to recover gene expression signals.
Analysis of bulk RNA-seq and DNA
methylation of human PCa using TCGA

To assess the role of DNA methylation in the expression of

IRAK1, IRAK4, MYD88 and TRAF6, bulk RNA sequencing and

450K Illumina methylation data from 341 PCa and 35 normal

prostate tissue specimens from The Cancer Genome Atlas

(TCGA) were utilized. Supplemental clinical data, raw

methylation data (‘IDAT’) and RNA-seq data (‘HTSeq-

counts’) were extracted from TCGA using the R package

‘TCGAbiolinks’ (v2.18.0). Data pre-processing and subsequent

analyses were performed using the R packages ‘minfi’ (v1.36.0)

and ‘missMethyl’ (v1.28) for 450K Illumina methylation data,

and ‘Biobase’ (v2.50) for RNA-seq data. Furthermore, IRAK1

expression was analyzed in castration-resistant prostate cancer

metastases (mCRPC, n=99) (TCGA: Project ID WCDT-

MCRPC). CRPC-related overexpressed hub genes, including

TARDBP, HNRNPA2B1, MRPS25, MAPK8IP3, CCDC14 and

GOLGA8B, which were also found to be associated with PCa

progression and prognosis (22), were used to select non-CRPC-

like PCa specimens (N=194) within TCGA. Differential

expression analysis was performed using the empirical Bayes

statistics (eBayes) function in the ‘limma’ package. P-values were

adjusted for multiple comparisons using the Benjamini-

Hochberg (BH) method. Differentially methylated regions were

identified using the DMRcate package (v2.8.4), hidden Markov

model and Fisher exact test (HMM-Fisher). For illustration,

ChAMP graphical user interface was used (23).
Cell culture experiments

The human PCa cell lines PC3, LNCaP, and DU145 were

obtained from German Collection of Microorganisms and Cell

Cultures GmbH (DSMZ, Braunschweig, Germany). DU145 and

LNCaP cells were cultured in RPMI 1640 medium (Gibco), and

PC3 in DMEM (Gibco) supplemented with 10% fetal bovine

serum (Gibco) and 1% penicillin/streptomycin (Gibco). Cells
Frontiers in Oncology 03
were cultured in 10 cm dishes in 5% CO2 at 37°C to 70–90%

confluency and then used for subsequent analyses.

The effects of the DNA methyltransferase 1 (DNMT1)

inhibitor 5-aza-2′-deoxycytidine (5-AZA) (Sigma Aldrich Corp,

St. Louis, MS, USA) and the histone deacetylase (HDAC)

inhibitor trichostatin A (TSA) (Upstate Biotechnology, Lake

Placid, NY, USA) on the expression of IRAK1 were examined in

PCa cell lines. Cells were grown to 40% confluency and treated

with 5µM 5-AZA for 96 h and/or with 0.3µM TSA for 24 h.

Total RNA was extracted from untreated and treated PC3,

DU145, and LNCaP cells using peqGOLD TriFast reagent

(VWR, Radnor, PA, USA) according to the manufacturer’s

protocol. Reverse transcription (RT) was performed on 1 µg

of total RNA using M-MLV transcriptase and an adjusted buffer

system (Promega, Madison, WI, USA), random hexamers, and

poly-dT primers for 1 h at 42°C. Quantitative PCR (qPCR) was

performed using 50 ng of cDNA per PCR in a Rotor-Gene Q

PCR Cycler (Qiagen, Hilden, Germany) with IRAK1 and

GAPDH, as reference genes (Table S3). Relative IRAK1

expression was calculated by normalizing to GAPDH using

the 2 -DDCt method.

IRAK1 promoter methylation was analyzed in the PCa cell

lines. DNA was isolated from proteinase K-treated cells using a

standard phenol-chloroform extraction method. In total, 2µg of

DNA was bisulfite-treated using an EZ DNA Methylation Kit

(Zymo Research, Irvine, CA, USA). Specific DNA fragments

representing IRAK1-DMR with six CpG sites were amplified

using the appropriate primer sets (Table S3). The PCR products

were separated on a 2% agarose gel according to product size and

pyrosequenced using the PyroMark Q24 System (Qiagen).

Methylation values were analyzed using the PyroMark Q24

Software (Qiagen). The degree of methylation for each CpG

site was calculated in a program as the percentage of methylated

cytosines over the sum of the total cytosines at the indicated

single CpG site.

The uropathogenic Escherichia coli strain UTI89 was

obtained from DSMZ and used to infect PCa cell lines PC3,

LNCaP, and DU145. In total, 1×106 PCa cells cultured in 6-well

plates were infected with UTI89 at a multiplicity of infection

(MOI) of 10 for two and four hours. Untreated and treated cells

were washed twice with phosphate-buffered saline and lysed

with peqGOLD TriFast reagent (VWR). RNA extraction and

RT-qPCR were performed as previously described.
Analysis of the regulatory function of
IRAK1-DMR using ENCODE

The regulatory function of IRAK1-DMR was analyzed using

the Encyclopedia of DNA Elements (ENCODE) and taking into

consideration the enrichment of histone 3 acetylated at lysine 27

(H3K27ac) in the predicted IRAK1 enhancer and promoter region

(gathered from Segway and ChromHMM data) and JASPAR-
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2022 data, a core database of transcription factor binding sites

(TF-BSs). Prediction of TF-BSs was made according to the

position weight matrix (PWM), and relative scores ≥ 0.8 with a

p-value < 0.001 were considered as true TF-BSs. Functional

characterization of the identified TFs was performed using the

Kyoto Encyclopedia of Genes and Genomes (KEGG).
Results

In prostate cancer, IRAK1 is expressed in
luminal epithelial cells

The expression of genes encoding the main components of the

Myddosome complex, IRAK1, IRAK4 and MYD88, and the

adaptor protein TRAF6 were assigned to specific cell types
Frontiers in Oncology 04
within PCa using scRNA-seq data generated from eight radical

prostatectomy (RP) specimens from men with localized PCa (17)

(Figure 1 and Table S1). Overall, 9643 cells underwent clustering

analysis using principal component analysis (PCA) in the Seurat

package (18). Using signature gene sets generated from single-cell

profiling of normal prostate (20), PCa cells were classified as

luminal (57%), basal (11%), hillock (1%), and club (2%) cells as

the main epithelial cell lineage; endothelial (4%), fibroblast (2%),

and smooth muscle (3%) cells as the main stromal lineage; and

leukocytes (20%) as immune cells (Figures 1A–C; Table S2). The

identities of the generated 16 cell clusters were assigned in

compliance with the major (>80%) cell type represented in a

cluster (Figures 1B, C). IRAK1 is specifically enriched in luminal

epithelial cell clusters. In comparison, IRAK4 and MYD88 were

predominantly expressed in the leukocyte cluster and TRAF6 was

expressed in the endothelial cell cluster (Figure 1D).
A B

D

C

FIGURE 1

Single cell RNA-sequencing (scRNA-seq) analysis of IRAK1, IRAK4, Myd88 and TRAF6 expression in prostate cancer. (A) Cell type proportions
within the merged scRNA-seq dataset from eight radical prostatectomy specimens (17). (B) Dot plot of top 10 marker genes for each of the
displayed cell type clusters. Dot size and color represent the percentage of marker gene expression and average scaled expression value
(minimum percentage expression 0.2%). (C) Cell type clusters detected in prostate cancer are presented in the uniform manifold approximation
and projection (UMAP). (D) Density plots of IRAK1, IRAK4, Myd88 and TRAF6 expression in prostate cancer sm. muscle: smooth muscle cells.
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IRAK1 overexpression in PCa is
associated with differential methylation
in IRAK1-DMR

By analyzing bulk RNA-seq data from TCGA using ebayes

for differential expression, we found that IRAK1 was

significantly overexpressed in prostate tumor tissue (TU)

compared to normal prostate tissue (TU, N=341; NOR, N=35;

Benjamini-Hochberg adjusted p<2x10-8) (Figures 2A, B).

Further differential analysis of IRAK1 expression in non-CRPC

and mCRPC specimens showed no difference between these two

groups (non-CRPC, N=194; CRPC, N=99; Benjamini-Hochberg

adjusted p>0.05) (data not shown). In contrast, IRAK4, TRAF6

and MYD88 were not differentially expressed in PCa and

exhibited relatively low mRNA levels (Figures 2A, B). By

analyzing 450K Illumina methylation array data from TCGA,

we detected a PCa-associated differentially methylated region

(DMR) within the predicted IRAK1-promoter (hg19

chrX:153283694-153284103) (TU, N=341; NOR, N=35;
Frontiers in Oncology 05
HMM-Fischer test, p<1.8x10-10, Figure 3A). Two CpG sites

flanking this DMR were significantly hypomethylated in PCa

(cg23604959 and cg02742918), and their methylation status

showed an inverse correlation with IRAK1 mRNA levels in

PCa (n=341, Spearman coefficient =-0.36 and -0.37,

respectively) (Figure 3B). The region including cg23604959

and cg02742918 (hg19 chrX:153283646-153284152) was

determined as IRAK1-DMR in PCa (Figures 3, 4).
IRAK1-DMR is located in a regulatory
active region

To assess the possible regulatory function of the IRAK1-DMR

that was identified, we used data from ENCODE, which includes

ChromHMM and Segway segmentation that predict and classify

the functions of different gene regions (Figure 4). For the prediction

of enhancer and promoter regions, Segway segmentation tools use

features such as DNase-1 hypersensitivity and epigenetic marks.We
A

B

FIGURE 2

Overexpression of IRAK1 in prostate cancer. (A) Comparison of bulk mRNA expression levels of IRAK1, IRAK4, Myd88 and TRAF6 in prostate
cancer. Relative RNA expression is given in fragments per kilo base per million mapped reads (FPKM). (B) Differential mRNA expression analysis
of IRAK1, IRAK4, Myd88 and TRAF6 in normal (NOR) and cancer (TU) prostate tissue. Significant difference was found only for IRAK1 (eBayes,
Benjamini-Hochberg adjusted p-value). n. s., not significant (p>0.05).
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found that IRAK1-DMR is located within the active promoter

region and is enriched for histone 3 acetylated at lysine 27

(H3K27ac), a histone mark that is often found near active gene

promoters (Figure 4).

Next, using the Transcription Factors Track database

(JASPAR-2022), we identified 211 TFs with predicted strong

binding sites in IRAK1-DMR (PWM relative score ≥ 0.8, p <

0.001) (Table S4). The biological function of TFs that bind

specifically to IRAK1-DMR was further analyzed using KEGG

enrichment analysis (Figures 5A, B). A substantial number of

TFs were enriched in pathways associated with carcinogenic

transformation and viral infection (Figure 5A). The top three

enriched KEGG pathways were transcriptional dysregulation in

cancer, herpes simplex virus 1 infection, and human T-cell

leukemia virus 1 infection. Notably, 15 TFs were identified as

members of the E26 transformation-specific (ETS) family of

transcription factors, and genes encoding these TFs are known

to fuse with hormone-regulated genes such as TMPRSS2

(transmembrane protease serine 2), SLC45A3 (solute carrier
Frontiers in Oncology 06
family 45 member 3, also known as prostate cancer-associated

protein), and DDX5 (DEAD-Box Helicase 5) (24) (Figure 5B).
Endogenous epigenetic status of
IRAK1-DMR in PCa cells is critical for
IRAK1 activation upon treatment
with epigenetic modifiers and
bacterial infection

The decisive role of DNA methylation in IRAK1-DMR in

IRAK1 activation was analyzed and confirmed in cell culture

experiments using bacterial infection. First, the methylation

status of IRAK1-DMR was analyzed in DU145, LNCaP, and

PC3 cell lines and was correlated with IRAK1 expression

(Figure 6). In DU145 cells, IRAK1-DMR hypermethylation

(62% by pyrosequencing) was associated with markedly low

endogenous gene expression (Figures 6A, B). A strong increase

in IRAK1 expression (>400%) was achieved by the combined
A

B

FIGURE 3

Characterization of the Differentially Methylated Region in IRAK1 (IRAK1-DMR). (A) A snapshot of graphical user interface from ChAMP (Chip
Analysis Methylation Pipeline) package showing a trend of DNA methylation levels (b-values) at different CpG-sites (presented as CpG-probes
cg-number) in normal prostate (NOR) and prostate cancer tissue (TU). Lines represent mean methylation levels of analyzed CpG-probes (NOR,
blue; TU, yellow). (B) Correlation plots of IRAK1-mRNA levels and IRAK1-methylation values in different CpG-probes (Spearman’s correlation
coefficient r is indicated for each correlation analysis). *CpG-sites located within IRAK1-DMR. Significance levels: ***p<0.001, *p<0.05.
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treatment of DU145 cells with the DNMT1 inhibitor 5-AZA and

HDAC inhibitor TSA (Figure 6B). 5-AZA treatment alone had

no effect on IRAK1 expression in DU145 cells (Figure 6B). In

contrast, PC3 and LNCaP cells exhibited weak methylation in

IRAK1-DMR (<14.5% by pyrosequencing) and showed >2-fold

higher endogenous IRAK1 expression than DU145 cells

(Figures 6A, B). Treatment of PC3 and LNCaP cells with 5-

AZA led to a moderate increase in IRAK1 expression (146% and

248%, respectively) (Figure 6B). In PC3 and LNCaP, no further

increase of IRAK1 expression was achieved by combined

treatment of cells with 5-AZA and TSA (Figure 6B).

Four hours after infection of PCa cell lines with

uropathogenic E. coli UTI89 at a multiplicity of infection of

10, PC3 and LNCaP cells had a 2-fold increase of IRAK1

expression. In contrast, in DU145 cells, which possess strongly

hypermethylated IRAK1-DMR and low endogenous IRAK1

expression, UTI89 infection did not induce IRAK1

activation (Figure 6C).
Discussion

In the scRNA-seq data analysis, IRAK1 was mainly enriched

in luminal prostate epithelial cells, representing the majority of

cells detected in PCa. In contrast, in PCa, IRAK4 and MYD88

were predominantly expressed in leukocytes, and TRAF6 was

predominantly expressed in endothelial cells. This result implies

a distinctive role for IRAK1 in epithelial cells in PCa in a

Myddosome-independent manner. Prior studies have

demonstrated that IRAK1 is biologically active in a

Myddosome-independent manner by interacting with
Frontiers in Oncology 07
alternative proteins and even independent of its catalytic

function. Several substrates that interact with IRAK1 have

been identified, including IRAK1 itself, Tollip, E3 ligase

Pellino, transcription factor IRF7 (interferon regulatory factor

7), and intracellular adaptor protein TRIF (TIR-domain-

containing adapter-inducing interferon-b (TRIF) (25–29). It

has been shown that IRAK1 does not necessarily need catalytic

activity to exert its function. Catalytically inactive IRAK1 with a

point mutation at the catalytic site and a splice variant lacking

part of the kinase domain were able to induce NF-kB activation

(30, 31).

Consistent with the results of the scRNA-seq data analysis,

bulk RNA sequencing data from TCGA showed in comparison

to normal prostate a PCa-associated overexpression of IRAK1.

No difference in IRAK1 expression has been found between non-

CRPC and mCRPC specimens. The remaining TLR signaling

genes, IRAK4, TRAF6 and Myd88, were not differentially

expressed in PCa and exhibited relatively low mRNA levels.

Overexpression of IRAK1 has been found in several human

carcinomas, including breast, endometrial, lung, and liver

cancers, and is significantly associated with poor survival and

unfavorable clinical parameters (32–36). Androgen deprivation

therapy induces in PCa cells apoptosis and cell death. However,

IRAK1 has been shown to have an antiapoptotic effect in cancer

cells, and to contribute to developing resistance to radiotherapy

as well as to paclitaxel and methotrexate treatment (14, 37, 38). It

is known that androgens enhance the glycolytic metabolism and

lactate export in PCa cells. Here, the conversion from pyruvate

to lactate, which is catalyzed by lactate dehydrogenase (LDH)

proteins including the androgen receptor target LDHA1

presents a critical step (39). Current evidence, gathered
FIGURE 4

Functional characterization of the differentially methylated region in IRAK1 gene (IRAK1-DMR) using ENCODE Data in the UCSC Genome
Browser. Genomic position of IRAK1-DMR is shown in the USCS genome browser with reference to positions of CpG-probes (Illumina 450K
Methylation array), enrichment of histone 3 lysine 27 acetylation (H3K27ac) peaks (layered H3K27ac peaks generated on seven human cell lines),
predicted functional genomic states assembled by ChromHMM and Segway segmentation analysis in GM12878 and K562 cell lines (red,
predicted promoter region including transcription start site, TSS). The GC percent track shows the densities of G (guanine) and C (cytosine).
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primarily from studies on beta-cells in pancreatic islets, suggests

that LDH release is reduced in the absence of IRAK1 (40). In cell

culture and xenograft tumor models, gain of IRAK1 promotes

tumorigenic growth and metastasis of breast, head neck, and

hepatocellular carcinoma. In accordance with that, specific

inhibition of IRAK1 using endogenous inhibitors, e.g. mir-

146a or shRNA, has an anti-tumorigenic effect on cells (34,

41, 42).

By analyzing 450K Illumina methylation array data

generated in PCa, we discovered a differentially methylated

region, IRAK1-DMR. The potential regulatory function of the

identified IRAK1-DMR was assessed using ENCODE data, and

supported by its localization within the active IRAK1 promoter
Frontiers in Oncology 08
region and enrichment of the activating histone mark H3K27ac.

It is well known that over 70% of regulatory DNA elements

marked by H3K27ac are active and positively affect transcription

in vivo (43). Importantly, the presence of H3K27ac and low

DNA methylation preserves the accessibility of transcription

factor-binding sites at the enhancer and promoter regions (44).

In our study, TFs with strong binding affinity for IRAK1-DMR

were found to represent key components of canonical pathways

associated with carcinogenic transformation and virus infection,

such as transcriptional misregulation in cancer, herpes simplex

virus 1 infection, and human T-cell leukemia virus 1 infection.

Notably, a considerable number of members of the ETS family of

TFs were found among TFs with strong binding sites on IRAK1-
A

B

FIGURE 5

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of transcription factors (TFs) with predicted binding sites in IRAK1-DMR.
TFs with binding scores ≥300 were considered (JASPAR-2022). (A) Cnet plot showing top three enriched KEGG pathways among TFs with
predicted strong binding sites in IRAK1-DMR. (B) The enriched KEGG pathway ‘Transcriptional misregulation in cancer’ is shown together with
implicated TFs exhibiting predicted binding sites in IRAK1-DMR (red framed).
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DMR. In approximately 50% of PCa, ETS members are known

to fuse with hormone-regulated genes such as TMPRSS2,

prostate cancer-associated protein (SLC45A3), and RNA

helicase DDX5, as reviewed by Nicholas and colleagues (24).

Our results from integrative bioinformatic analyses provide

convincing evidence for a decisive role of the DNA

methylation status of IRAK1-DMR in transcriptional

activation of IRAK1. These findings were further supported by

our in vitro cell culture experiments, showing in the PCa cell line

DU145 that weak endogenous IRAK1-mRNA expression is

correlated with hypermethylation of IRAK1-DMR and can be

dramatically increased (>400%) by combined treatment with the

DNMT1 inhibitor 5-AZA and the HDAC inhibitor TSA. In

contrast, weak DNA methylation in IRAK1-DMR, as was found

in the PCa cell lines PC3 and LNCaP, was accompanied by a 2-3-

fold higher endogenous IRAK1-mRNA expression than in

DU145 cells, and with only a moderate activation of IRAK1
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expression upon 5-AZA and TSA treatment (maximum 169%).

Importantly, different endogenous methylation statuses in

IRAK1-DMR and expression levels of IRAK1, detected in

DU145, LNCaP, and PC3 cells, respectively, were decisive

determinants for the degree of IRAK1 activation upon

uropathogenic E. coli infection. LNCaP and PC3 cells were

able to activate IRAK1 4 h after infection, but DU145 cells did

not show any response to IRAK1 expression.

The use of immune adjuvants is of growing importance in

PCa therapy. Studies on IRAK1 knockout mice and experiments

with a specific endogenous IRAK1 inhibitor, miR-146 indicate a

clinical advantage for selective IRAK1 inhibition (45, 46). To

date, only a few compounds, including the recently described

chemical compound Jh-X-119-01 and the already established

organic compound pacritinib (known as a potent tyrosine kinase

inhibitor of JAK2/FLT3) are known to selectively inhibit IRAK1

(47, 48). Our data emphasize that determining the endogenous
A

B C

FIGURE 6

Analysis of DNA methylation in IRAK1-DMR and its impact on IRAK1 expression using prostate cancer cell lines. (A) Pyrosequencing of IRAK1-
DMR showed strong methylation in DU145 (47-69%) and weak methylation in LNCaP and PC3 cells (8-22%). (B) Effect of the DNA demethylating
agent 5-Aza-2-deoxycytidine (5-AZA) and the histone-deacetylase inhibitor Trichostatin A (TSA) on IRAK1 expression. In DU145, endogenous
IRAK1-mRNA levels were low and increased over 400% after combined 5-AZA/TSA-treatment. LNCaP and PC3 cell lines showed higher
endogenous IRAK1 expression and lesser response to 5-AZA/TSA treatment than DU145. (C) Treatment with the uropathogenic E. coli strain
UTI89 for 4 hours activated IRAK1 expression in LNCaP and PC3, and had no effect in DU145 cells. Expression of IRAK1 in untreated cells is set
as 100%.
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DNA methylation status of IRAK1-DMR and expression in PCa

is of potential value in predicting the ability of PCa cells to

activate IRAK1 and should be considered in setting up

individualized PCa treatment algorithms in the clinic.
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