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Diagnosis of architectural
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Purpose: To implement two Artificial Intelligence (AI) methods, radiomics and

deep learning, to build diagnostic models for patients presenting with

architectural distortion on Digital Breast Tomosynthesis (DBT) images.

Materials and Methods: A total of 298 patients were identified from a

retrospective review, and all of them had confirmed pathological diagnoses,

175 malignant and 123 benign. The BI-RADS scores of DBT were obtained from

the radiology reports, classified into 2, 3, 4A, 4B, 4C, and 5. The architectural

distortion areas on craniocaudal (CC) and mediolateral oblique (MLO) views

were manually outlined as the region of interest (ROI) for the radiomics

analysis. Features were extracted using PyRadiomics, and then the support

vector machine (SVM) was applied to select important features and build the

classification model. Deep learning was performed using the ResNet50

algorithm, with the binary output of malignancy and benignity. The Gradient-

weighted Class Activation Mapping (Grad-CAM) method was utilized to localize

the suspicious areas. The predicted malignancy probability was used to

construct the ROC curves, compared by the DeLong test. The binary

diagnosis was made using the threshold of ≥ 0.5 as malignant.

Results: The majority of malignant lesions had BI-RADS scores of 4B, 4C, and 5

(148/175 = 84.6%). In the benign group, a substantial number of patients also

had high BI-RADS ≥ 4B (56/123 = 45.5%), and the majority had BI-RADS ≥ 4A

(102/123 = 82.9%). The radiomics model built using the combined CC+MLO

features yielded an area under curve (AUC) of 0.82, the sensitivity of 0.78,

specificity of 0.68, and accuracy of 0.74. If only features from CC were used,

the AUC was 0.77, and if only features from MLO were used, the AUC was 0.72.

The deep-learning model yielded an AUC of 0.61, significantly lower than all
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radiomics models (p<0.01), which was presumably due to the use of the entire

image as input. The Grad-CAM could localize the architectural distortion areas.

Conclusion: The radiomics model can achieve a satisfactory diagnostic

accuracy, and the high specificity in the benign group can be used to avoid

unnecessary biopsies. Deep learning can be used to localize the architectural

distortion areas, which may provide an automatic method for ROI delineation

to facilitate the development of a fully-automatic computer-aided diagnosis

system using combined AI strategies.
KEYWORDS

architectural distortion, breast cancer diagnosis, deep learning, digital breast
tomosynthesis, radiomics
Introduction

Breast cancer is the most prevalent among all cancers in the

world (1). In 2020, there were 2.3 million women diagnosed with

breast cancer with 685,000 deaths globally. The average risk of a

woman in the United States developing breast cancer during her

lifetime is about 13%; that is, 1 in 8 women will be diagnosed (2).

In China, breast cancer is the most common and rapidly

increasing female malignancy (3). Compared with developed

countries, the prognosis is much poorer, which varies in different

geographic regions (4). The 5-year survival rates during 2003-

2015 are from 73.1% to 82.0% (55.9% to 72.9% for rural women),

lower than that of 90% for American women (5). With improved

health care, the death rate decreased by 1% per year from 2013 to

2018 (6). These decreases are thought to be the results of better

treatments, and earlier detection through screening using

mammography and ultrasound (2, 6–8).

Early signs of breast cancer on mammography include

microcalcifications, mass (space-occupying density),

architectural distortion, and bilateral asymmetry (9, 10).

Microcalcifications and masses have been studied extensively.

Architectural distortion is the third most suspicious appearance,

representing 6% of abnormalities detected on screening

mammography (11). In the Breast Imaging Reporting and

Data System (BI-RADS) lexicon (12), architectural distortion

is defined as “the normal architecture of the breast is distorted

with no definite mass visible”. This includes spiculations

radiating from a point and focal retraction or distortion at the

edge of the parenchyma. However, the detection and

interpretation of architectural distortion on 2-dimensional

(2D) mammograms is challenging. Due to the overlapping

tissues, the appearance may be subtle, and it is subjective for

radiologists to detect these abnormalities, especially when there

are co-existence of other findings such as mass and

asymmetry (13).
02
Since the approval of the digital breast tomosynthesis (DBT)

by the U.S. Food and Drug Administration (FDA) in 2011, it has

become a widely used imaging modality for screening and

diagnosis (14). DBT generates multiple images using scans

taken from different angles, and thus can better resolve

overlapping tissues. Some countries have recommended either

digital mammography (DM) or DBT as appropriate for

screening (15–17). Compared with DM, DBT can provide a

better morphological characterization of invasive cancers, while

mitigating false-positive diagnosis from the superposition of

normal parenchyma (18–20). The high sensitivity of DBT for

architectural distortion allows for improved diagnosis of

invasive ductal cancers (21–24), but many benign diseases will

be detected as suspicious, and lead to unnecessary biopsies. DBT

may also provide better visualization for invasive lobular

cancers, which were difficult to be detected on DM (14).

Recently, artificial intelligence (AI) algorithms have been

extensively applied in the medical field. Radiomics with machine

learning, and deep learning using convolutional neural network

(CNN), have been applied to analyze images for detection and

diagnosis of lesions in various clinical applications (25–27).

Several studies have applied AI for the detection of

architectural distortion (13, 28, 29). Rehman et al. proposed

an automated computer-aided diagnostic system using

computer vision and deep learning to predict breast cancer

based on the architectural distortion on DM (13). Bahl et al.

performed a retrospective review and concluded that the

presence of architectural distortion on mammography

indicated malignancy in approximately 75% of cases (30). In

another study, Shu et al. proposed a region-based pooling

architecture using a deep convolutional neural network to

classify mammography images (31). Most studies reported so

far were performed using 2D mammography. Since DBT can

provide better spatial information for detection and

characterization of architectural distortion, AI can be applied
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to develop fully-automatic computer-aided diagnostic systems

(32, 33).

The purpose of this study is to implement radiomics and

deep learning to build diagnostic models for patients presenting

with architectural distortion on DBT images. The radiomic

analysis was based on the manually outlined region of interest

(ROI) by radiologists for extracting features associated with the

architectural distortion. Then, the Support Vector Machine

(SVM) algorithm was implemented to evaluate the feature

importance, and select features to build the classification

model to differentiate benign vs. malignant lesions. The deep-

learning method was performed using the entire image as input,

without any pre-selection to only include the abnormal regions.

The algorithm will be self-trained to diagnose breast cancer, that

is, to predict that there is a malignant lesion somewhere in the

DBT image. The Gradient-weighted Class Activation Mapping

(Grad-CAM) method was utilized to localize the suspicious

areas that were focused on, including architectural distortions,

so it may provide a potential method for automatic ROI

delineation. Potentially, the suspicious area detected by deep

learning can be combined with radiomics to generate an

automatic diagnostic tool for architecture distortion.
Materials and methods

Datasets

This retrospective study was performed in accordance with

the principles of the Helsinki Declaration and was approved by

the institutional ethics committee. The need for obtaining

written informed consent from the patients was waived. The

dataset was identified by reviewing all patients receiving DBT in

The First Affiliated Hospital of Wenzhou Medical University

from October 2016 to December 2019. The inclusion criteria

were: (1) patients presenting with the architectural distortion as

the main suspicious finding on DBT; (2) patients receiving

biopsy or surgery to obtain tissues for pathological

examination. The exclusion criteria were: (1) patients receiving

any prior treatment in the breast; (2) no pathologically

confirmed diagnosis; (3) poor image quality. Finally, a total of

298 patients were included in this study. The age range was from

21 to 79 years old, with an average of 50.6 years old. The BI-

RADS scores of DBT were obtained from the radiology reports,

classified into 2, 3, 4A, 4B, 4C, and 5.
DBT protocol

The standard mode of Amulet Innovality Digital Breast

Tomosynthesis System (Fuji Film, Japan), namely small-angle

DBT-ST mode, was used to take images. DBT images were taken

first, followed by Full-field Digital Mammography (FFDM) images.
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The DBT angular range of the X-ray tube was ±7.5°, every 1.0° for a

total of 15 acquisitions, using theW-Al anode-filter. For FFDM, the

W-Rh anode-filter was used. The images were acquired with the

standard craniocaudal (CC) and mediolateral oblique (MLO)

projections under breast compression.
Radiomics feature extraction

The analysis flowchart is shown in Figure 1. The region

showing the architectural distortion was delineated by two

radiologists based on the consensus through discussion and cross-

check. For each patient, only one image that showed the most

obvious architectural distortion was used. The region of interest

(ROI) was manually drawn using the ImageJ software (https://

imagej.nih.gov/ij/index.html). The ROI on CC and MLO images

were separately outlined by two junior radiologists first and then

examined by a senior radiologist with 7 years of experience

interpreting DBT images. If needed, further modification was

made. The ROI was resampled into 0.4 × 0.4 mm2, and

quantized to 25 gray levels. The analysis was performed using

PyRadiomics v3.0.1, to extract 107 features including 14 shape, 18

first-order, 24 gray-level co-occurrence matrix (GLCM), 14 gray-

level dependence matrix (GLDM), 16 gray-level run length matrix

(GLRLM), 16 gray-level size zone matrix (GLSZM), and 5

neighboring gray tone difference matrix (NGTDM) features. For

each case, a total of 214 parameters were obtained from the ROI’s

drawn on CC and MLO images.
Feature selection and model building

The feature selection was performed using a sequential

method, by constructing multiple SVM classifiers. In this

process, SVM with Gaussian kernel was used as the objective

function to test the performance of a subset of features using 5-

fold cross-validation. In the beginning, an empty candidate set

was presented, and features were sequentially added. In each

iteration, the training process was repeated 5,000 times to

explore the robustness of each feature. After each iteration, the

feature that led to the best performance was added to the

candidate set. The process stopped when the addition of

features no longer met the criterion, i.e., 10−6 as the

termination tolerance for the objective function value. The

algorithm was designed to explore all possible subsets of the

‘‘shadow” attributes and select the final key features by

comparing their relative importance. During the feature

selection, different class weights were assigned to the benign

group and the malignant group to handle the imbalance issue.

After the final features were determined, SVM was used to

build the diagnostic model. The performance was evaluated

using 10-fold cross-validation, i.e., using 90% cases for training

and the remaining 10% for testing. The process was repeated 10
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times, and each case could only be included in the testing group

once. The radiomics score, i.e. the malignancy probability, was

calculated by the model, which was then used for constructing

the Receiver Operating Curve (ROC) curve, and making the

binary diagnosis using the threshold of ≥ 0.5 as malignant.
Deep learning analysis

Besides radiomics, deep learning was applied to differentiate

the benign and malignant lesions as well as to localize the

activation region. The whole image was used as the input. Deep

learning was performed using the ResNet50, with the binary

output of malignancy and benignity. The input network

included the slice along with its two adjacent neighboring slices

from CC and MLO. Therefore, the number of input channel was

6. The image was re-sampled to a 256 × 256 matrix using linear

interpolation, and then the pixel intensities were normalized to

have a mean of 0 and a standard deviation of 1. In contrast to

other CNNs, such as VGG or AlexNet that learns features using

large convolutional network architectures, the ResNet extracts

residual features as subtraction of features learned from the input

of that layer using “skip connections”. The ResNet50 architecture

contained one 3 × 3 convolutional layer, one max-pooling layer,

and 16 residual blocks. Each block contained one 1 × 1

convolutional layer, one 3 × 3 convolutional layer, and one 1 ×
Frontiers in Oncology 04
1 convolutional layer. The residual connection was from the

beginning of the block to the end of the block. The output of

the last block was connected to a fully connected layer with a

sigmoid function to make the prediction, by providing a

malignancy probability. One additional convolutional layer was

added to the ResNet50 at the input to reduce the input channel

number from 6 to 3.

The dataset was augmented 20 times using random affine

transformations, including translation, scaling, and rotation. To

avoid overfitting, L2 regularization term was added to the final

loss function, and then, during the training process, the early

stop was applied based on the lowest validation loss to obtain the

optimized model. The loss function was cross-entropy. The

training was implemented using the Adaptive Moment

Estimation (Adam) optimizer. The learning rate was set to

0.0001 with momentum term b as 0.5 to stabilize training.

Parameters were initialized using ImageNet. The batch size

was set to 32 and the number of epochs was set to 100. The

evaluation was performed using 5-fold cross-validation, 4-fold

for training, and 1-fold set aside for testing. Each case had one

chance to be included in the testing dataset. The output was a

malignancy probability for each case.

In addition to the classification of benign vs. malignant, one

great feature of deep learning is the Gradient-weighted Class

Activation Mapping (Grad-CAM), which uses the gradient

information flowing into the last convolutional layer of the
FIGURE 1

The analysis flowchart. The ROI is manually outlined on the CC and MLO view of one DBT image that shows the most obvious architectural
distortion. The radiomic features are extracted using PyRadiomics, and then SVM is applied to select important features and build the
classification model to differentiate benign and malignant cases. For the deep learning analysis, the whole image is used as input into ResNet50
to train the diagnostic model. The Gradient-weighted Class Activation Mapping (Grad-CAM) reveals the suspicious area that is focused on to
perform classification.
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CNN to assign the importance values to each neuron for a

particular decision of interest. After the training of ResNet50,

DBT images were input into the system. Then the weight maps

from the last convolutional layer were extracted. To match the

original image size, the extracted maps were interpolated and

normalized to a range of [0, 1]. Then these heat maps were

overlaid on the original DBT images. To further evaluate the

detect ion of architectural dis tort ions on DBT vs.

mammography, the trained model and Grad-CAM from DBT

were applied to analyze the corresponding mammography of the

same patients.
Statistical analysis

The U-tests and chi-square tests were used to compare the

age and the proportions of BI-RADS between benign and

malignant groups, by using SPSS software (version 20.0). The

ROC curves generated by the radiomics models built using the

CC view, the MLO view, and the combined CC+MLO views

were compared using the DeLong test. For each case, the

radiomics score was used to make the binary diagnosis of

malignant (≥ 0.5) or benign (<0.5). For deep learning, the

predicted malignancy probability by the model was used for

constructing the ROC curve and making the binary diagnosis.

The sensitivity, specificity, and overall accuracy were calculated

and compared.
Results

Patients’ characteristics and BI-RADS
scores

A total of 175 (59%) malignant and 123 (41%) benign cases

were identified. The age and distribution of BI-RADS scores are

listed in Table 1. The mean age was 52.3 ± 8.7 in the malignant

group, and 48.2 ± 8.9 in the benign group. The majority of

malignant lesions had BI-RADS scores of 4B, 4C, and 5
Frontiers in Oncology 05
(148/175 = 84.6%). In the benign group, a substantial number

of patients also had high BI-RADS ≥ 4B (56/123 = 45.5%), but

significantly lower than in the malignant groups (p < 0.001). If

including 4A, (102/123 = 82.9%) had BI-RADS ≥ 4A, and these

patients would be recommended for biopsy and led to the false-

positive diagnosis. In the present study, all benign lesions had

histological confirmation. The pathological types are listed in

Table 2. Lobular carcinoma in situ (LCIS) is a high-risk

pathology and is classified into the malignant group. Figure 2

shows 2 cases presenting the typical features, and Figure 3 shows

4 cases presenting the atypical features of architectural

distortion. The ROI was drawn to cover the entire area noted

as suspicious.
Radiomics analysis

A total of 8 radiomics features were selected to build the final

CC+MLO model, in the order of importance: (1) GLCM Cluster

Prominence from MLO, (2) NGTDM Coarseness from CC, (3)

GLCM Difference Entropy from CC, (4) Skewness from MLO,

(5) GLCM Maximum Probability from CC, (6) GLRLM Long

Run Emphasis from CC, (7) Interquartile Range from CC, (8)

GLDM Dependence Entropy from CC. Among these, 6 were

from CC and 2 were from MLO.

The diagnostic results are summarized in Table 3. The

radiomics model built using the combined CC+MLO yielded

an AUC of 0.82, sensitivity of 0.78, specificity of 0.68, and

accuracy of 0.74. If only features from CC were used, the AUC

was 0.77, sensitivity was 0.86, specificity was 0.48, and accuracy

was 0.70. If only features from MLO were used, the AUC was

0.72, sensitivity was 0.73, specificity was 0.57, and accuracy was

0.66. The constructed ROC curves are shown in Figure 4. From

the DeLong’s test, the AUC of the combined CC+MLO model is

significantly better than the MLOmodel (p<0.01). The difference

between CC+MLO vs. CC (p=0.10), or CC vs. MLO (p=0.12),

did not reach a significant level. Figure 5 shows the radiomics

scores predicted by the combined CC+MLOmodel in the benign

and malignant groups.
TABLE 1 Age and BI-RADS of lesions determined on DBT in the study cohort.

Malignant (N=175) Benign (N=123) P-Value

Age [Range] 52.3 ± 8.7 [29, 79] 48.2 ± 8.9 [21, 73] 0.52

BI-RADS Score 0.09

BI-RADS 2 1 (0.6%) 9 (7.3%)

BI-RADS 3 4 (2.3%) 12 (9.8%)

BI-RADS 4A 22 (12.6%) 46 (37.4%)

BI-RADS 4B 54 (30.9%) 46 (37.4%)

BI-RADS 4C 61 (34.9%) 10 (8.1%)

BI-RADS 5 33 (18.9%) 0
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Deep learning analysis

The results predicted by the deep-learning model yielded an

AUC of 0.61, much worse compared to those achieved by the

radiomics models (all significant, p<0.01). This is due to the use of

the whole image as input, which is a much more challenging task.

One important feature of deep learning is to use the Grad-CAM

maps to localize the suspicious area, as shown in Figures 6–8.

Although deep learning did not reach a high diagnostic accuracy,

it could localize the area with architectural distortion very well. In

contrast, when the developed model was applied to the

corresponding mammography of the same patient, the detected

area was much larger, almost covering the entire dense tissues
Frontiers in Oncology 06
(Figures 7, 8), and had a worse diagnostic performance. The

results suggest that deep learning is highly applicable to analyzing

the DBT image to select the suspicious area for further diagnosis, e.g.,

by using the radiomics models.
Discussion

In this study, we applied two main AI strategies, including

radiomics and deep learning, to diagnose breast cancer in patients

presenting with architectural distortion on DBT. This feature has

become more noticeable after DBT is extensively applied for

breast imaging, as it can better resolve the overlapping tissues
FIGURE 2

Case examples showing the typical architectural distortion. A: The LCC and LMLO views of a 53-year-old patient diagnosed with invasive ductal
cancer. The BI-RADS score is 4B. The radiomics score of the combined model is 0.65, correctly diagnosing this case as malignant, true-positive.
B: The RCC and RMLO views of a 42-year-old patient diagnosed with sclerosing adenosis. The BI-RADS score is 4C. The radiomics score of the
combined model is 0.48, correctly diagnosing this case as benign, true-negative.
TABLE 2 Pathological types of lesions in the study cohort.

Groups Case Number (%)

Pathological Types Malignant Total N = 175

Invasive Ductal Cancera 133 (76.0%)

Ductal Carcinoma In Situb 27 (15.4%)

Invasive Lobular Carcinoma 9 (5.1%)

Tubular Carcinoma 2 (1.1%)

Lobular Carcinoma In Situ 2 (1.1%)

Other Cancer 2 (1.1%)

Benign Total N = 123

Adenosis 63 (51.2%)

Fibroadenoma 42 (34.1%)

Papilloma 17 (13.8%)

Other Benign Tumor 1 (0.8%)
a: Main pathology is IDC, may have presence of DCIS or invasive lobular cancer.
b: Main pathology is DCIS, may contain micro invasion of IDC.
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compared to the 2D projection mammography. As demonstrated

in our dataset, many benign cases also had a high BI-RADS score,

46% ≥ 4B and 83% ≥ 4A. This feature can lead to many false-

positive diagnoses and many benign biopsies, and more research

is needed to improve the accuracy. In this study, we showed that

the radiomics model developed using manually outlined ROI

could achieve good accuracy. The AUC of the radiomics model

built using features extracted from the combined CC and MLO

views was 0.82, which was higher than the AUC of models built

using individual views (0.77 for CC, and 0.72 for MLO). In the

benign group, 102 of 123 patients (83%) had BI-RADS ≥ 4A, and

they would be recommended to receive a biopsy. The specificity of

the combined model was 84/123 (68%), and if the biopsy

recommendation was made according to the results, only 39

patients would be referred; therefore, the model has the

potential to decrease many unnecessary biopsies. The current

threshold was based on the probability of 0.5 as malignant, which

can be adjusted to a lower value to improve the sensitivity by

increasing true positives, but still capable of avoiding many false

positives, as shown in Zhou et al. (34).
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The deep-learning classification model had a low AUC (0.61),

due to the use of the whole image as input. It has been

demonstrated that the accuracy of deep learning is highly

dependent on the input box size (34). Therefore, the model was

trained to predict that there was a malignant lesion somewhere in

the image. This is a very challenging task that would normally

require a much larger dataset of thousands of images to train. For

architectural distortion, it is a much rare feature compared to

mass and microcalcifications, and difficult to assemble such a large

dataset. Therefore, our main goal is to use deep learning with the

Grad-CAM method to detect the architectural distortion areas on

DBT images. Then the heat maps can be used to segment the ROI

using automatic algorithms for further diagnosis, e.g., by using the

developed radiomics models. Grad-CAM is a commonly used

method to locate suspicious lesions, and different methods have

been reported. Mettivier et al. (32, 33) generated activation maps

by using different confident thresholds. We have implemented

their methods and found the results generated using both

methods were comparable, suggesting the Grad-CAM methods

were robust.
TABLE 3 The diagnostic performance of the radiomics models built using CC, MLO, and combined features, and deep learning model built
using ResNet50.

Model Sensitivity Specificity Accuracy AUC

All Radiomics Features 0.78 (136/175) 0.68 (84/123) 0.74 (220/298) 0.82

Radiomics from CC 0.86 (151/175) 0.48 (59/123) 0.70 (210/298) 0.77

Radiomics from MLO 0.73 (127/175) 0.57 (70/123) 0.66 (197/298) 0.72

ResNet50 0.53 (93/175) 0.58 (71/123) 0.55 (164/298) 0.61
frontiers
FIGURE 3

Case examples showing the atypical architectural distortion. (A) The RMLO view of a 57-year-old patient diagnosed with invasive ductal cancer.
The BI-RADS score is 5. The radiomics score of the combined model is 0.66, true-positive. (B) The LCC view of a 39-year-old patient diagnosed
with ductal carcinoma in situ. The BI-RADS score is 5. The radiomics score of the combined model is 0.61, true-positive. (C) The LMLO view of
a 39-year-old patient diagnosed with papilloma. The BI-RADS score is 4B. The radiomics score of the combined model is 0.48, true-negative.
(D) The RCC view of a 52-year-old patient diagnosed with adenosis. The BI-RADS score is 3. The radiomics score of the combined model is
0.41, true-negative.
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We also applied the DBT-trained model with Grad-CAM to

the FFDM of the same patients acquired after DBT and showed

that architectural distortion was more obvious on DBT than on

2D mammography and that it was difficult to make a diagnosis.

In the small set of patients that were tested, the probability

generated from the mammography was close to 0.5, which was
Frontiers in Oncology 08
ambiguous and not able to point to the more likely diagnosis as

benign or malignant.

For managing breast cancer, early detection is the cornerstone

of preventing morbidity and mortality. Several studies have

investigated how architectural distortion detected on DBT should

be managed (35–37). According to the BI-RADS lexicon,
FIGURE 5

The distribution of the radiomics scores predicted by using the combined model in the benign and malignant groups. By using the threshold of
0.5 as the cut-off value, there are 136 true-positive, 84 true-negative, 39 false-negative, and 39 false-positive cases, with an overall accuracy of
220/298 = 74%.
FIGURE 4

The ROC curves constructed by using the radiomics scores obtained from the models built using the combined CC and MLO features, CC
features only, MLO features only; and the ROC curve constructed by using the probability obtained from the deep learning model. The AUC of
the combined radiomics model is the highest, 0.82. The AUC of the deep learning model is the lowest, 0.61, likely due to the use of the whole
image as the input.
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architectural distortion includes thin straight lines or spiculations

radiating from a point, and focal retraction, distortion, or

straightening at the anterior or posterior edge of the parenchyma

(12). Architectural distortion can also be a secondary finding

associated with a primary finding such as a mass or asymmetry

(12). The study by Posso et al. found that compared with women

who had masses, the highest risk of subsequent breast cancer was

found in those with architectural distortions (38). Benign causes of

architectural distortion include radial scars, complex sclerosing

lesions, sclerosing adenosis, fat necrosis, postprocedural change,
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and rare spiculated benign lesions, such as breast fibromatosis and

granular cell tumor. The major cancer types (IDC and DCIS) can

present architectural distortion as a star-shaped pattern. On the

other hand, the complex and radial sclerosing lesions presenting

with architectural distortion with larger than 1 cm are probably

benign (11). Studies have also shown that invasive lobular

carcinomas (ILC) are highly associated with architectural

distortions (39, 40).

All the patients in our study had confirmed pathological

results, with 175/298 (59%) malignant, and 123/289 (41%)
FIGURE 7

An example of the Grad-CAM map of the architectural distortion in the LMLO view of (A) DBT and (B) FFDM images of a 53-year-old patient
diagnosed with invasive ductal cancer. The BI-RADS score is 4B. The radiomics score is 0.65, and the deep learning probability is 0.62, both
correctly diagnosing this case as malignant. When the developed deep learning model from DBT is applied to FFDM, the probability is 0.32,
false-negative. The detected suspicious area covers the entire dense tissues, showing the architectural distortion on FFDM cannot be detected.
FIGURE 6

Examples of Grad-CAM maps of architectural distortion on DBT images, predicted by ResNet50 deep learning. (A) The RMLO view of a 61-year-
old patient diagnosed with invasive ductal cancer. The BI-RADS score is 5. The radiomics score of the combined model is 0.72, and the
probability predicted by deep learning is 0.54, both correctly diagnosing this case as malignant. (B) The RMLO view of a 42-year-old patient
diagnosed with adenosis. The BI-RADS score is 4C. The radiomics score of the combined model is 0.48, and the probability predicted by deep
learning is 0.52. The radiomics model makes a correct benign diagnosis, but deep learning gives a false-positive diagnosis. (C) The RMLO view
of a 46-year-old patient diagnosed with fibroadenoma. The BI-RADS score is 4B. The radiomics score of the combined model is 0.41, and the
probability predicted by deep learning is 0.51. The radiomics model makes a correct benign diagnosis, not deep learning. However, although
deep learning does not give a correct diagnosis, it can localize the suspicious area.
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benign. There is a high chance of malignancy, and it is necessary

to pay attention to the architectural distortions detected by DBT

(41). The results are consistent with those reported by Pujara

et al. and Ambinder et al. (37, 42). DBT reduces the

superimposition of fibroglandular tissues, thereby improving

visualization of findings that may be subtle or occult on DM,

particularly the architectural distortion (37, 43, 44). Ahmed et al.

showed that DBT-detected architectural distortion is less likely

to represent malignancy compared to those detected on DM;

however, the risk of malignancy is not low enough to forgo

biopsy (45). DBT-guided biopsy has been demonstrated to be

feasible, safe, and effective for the pathologic diagnosis of lesions

presenting with architectural distortion and may be particularly

valuable for the detection of early-stage malignancies (41, 46).

Nevertheless, considering the risks of procedures and the

psychological burden on the patients, the best approach for

the low-risk lesions may be imaging surveillance rather than

biopsy/surgery. In a recent study by Villa-Camacho et al., the

upgrade rates of architectural distortion on DBT from

nonmalignant pathology at biopsy to malignancy at surgery

were investigated (35). It was reported that nonmalignant

pathology at biopsy has an overall upgrade rate to malignancy

at the surgery of 10.2%, but architectural distortion without

atypia has a low upgrade rate of 2.2% (35).

Architectural distortion is a particularly challenging pattern

for radiologists as it may be difficult to discern from the normal

overlapping of the various soft tissue, parenchyma, vessels, and

density ligamentous structures (47). In fact, due to its subtle

nature, architectural distortion has been shown to have

poor interobserver reproducibility in terms of agreement for

recall among radiologists compared with masses and

calcifications (43).
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Furthermore, not all architectural distortions appear like

thin straight lines or spiculation radiating from a point. Some

atypical features are difficult to detect due to the lack of common

characteristics, as shown in the case examples in Figure 3.

Radiologists need long-term training to detect these atypical

architectural distortions. In our study, we used Grad-CAM to

localize the distortion areas by generating gradient heat maps.

The results suggest that deep learning can provide a tool to aid in

the localization of the distortions in the images. It has the

potential to reduce the intra- or inter-reader variation.

Li et al. proposed a deep-learning-based model that used

mammary gland distribution as prior information to detect

architectural distortions in DBT (48). The proposed network

was faster-RCNN, which has been proven capable of yielding a

satisfactory performance to search and detect lesions in medical

images. However, due to the difficulty to obtain the ground truth

of the distortion on DBT, the training was difficult, and further

hampered by the limited cases because architectural distortion is

not a common feature. In our study, we did not train a detection-

specified network, but used Grad-CAM to visualize the

suspicious areas, which can help physicians, especially

inexperienced junior physicians, to detect and diagnose

architectural distortion or other unclear abnormalities.

There are some limitations in our study. First of all, the ROI

was delineated manually. As shown in the case examples, the

architectural distortion was a subtle feature, and it did not have a

clear boundary that could be traced, so the drawing was done by

encompassing all abnormal areas. It was not practical to

compare the ROI drawing done by different readers, so we

used the consensus, verified by an experienced radiologist.

Secondly, only the most obvious distortion shown on one

DBT slice was used in the analysis. The performance by using
FIGURE 8

An example of the Grad-CAM map of the architectural distortion in the LMLO view of (A) DBT and (B) FFDM images of a 46-year-old patient
diagnosed with adenosis. The BI-RADS score is 4B. The radiomics score is 0.41, and the deep learning probability is 0.38, both correctly
diagnosing this case as benign. When the developed deep learning model from DBT is applied to FFDM, the probability is 0.48, which is also
true-negative but reaches the threshold for malignancy. The detected suspicious area covers the entire dense tissues, showing the architectural
distortion on FFDM cannot be detected.
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the ROI’s from multiple slices needs to be investigated. One

advantage of DBT compared to 2D mammography was that the

distortion can be seen clearly on one slice, so we started with a

single-slice approach. Thirdly, for model training, particularly

using deep learning, a much larger dataset is required. The

developed models will need to be tested using an independent

dataset to validate the performance. Nonetheless, the present

study should be able to lay down a good foundation for future

studies. After the models are validated, such a tool may assist

radiologists in diagnosing architectural distortion, especially for

junior and inexperienced radiologists. If a case has a very high

benign possibility, a follow-up recommendation (3, 6 months, or

even one year) can be given to avoid biopsy or surgery.
Conclusion

In this study, we demonstrated that for the diagnosis of

architectural distortion detected on DBT, the radiomics model

can achieve satisfactory diagnostic accuracy. Although the

accuracy of deep learning was low, the trained model could

enable the Grad-CAM to localize the suspicious areas showing

architectural distortion, which could be used for automatic ROI

delineation. Our study may provide a helpful computer-aided

diagnostic tool for first detecting subtle pathological textures on

DBT images, and then for further characterization to make a

diagnosis. The radiomics analysis is a commonly applied,

mature, method for computer-aided diagnosis. As shown in

our study, it has the potential to improve the specificity of the

DBT-detected architectural distortion and reduce unnecessary

biopsies and surgeries, while maintaining a high sensitivity for

the diagnosis of breast cancer.
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