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Unique role of DDX41,
a DEAD-box type RNA
helicase, in hematopoiesis
and leukemogenesis

Satoru Shinriki and Hirotaka Matsui*

Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University,
Kumamoto, Japan
In myeloid malignancies including acute myeloid leukemia (AML) and

myelodysplastic syndromes (MDS), patient selection and therapeutic

strategies are increasingly based on tumor-specific genetic mutations.

Among these, mutations in DDX41, which encodes a DEAD-box type RNA

helicase, are present in approximately 2–5% of AML and MDS patients; this

disease subtype exhibits a distinctive disease phenotype characterized by late

age of onset, tendency toward cytopenia in the peripheral blood and bone

marrow, a relatively favorable prognosis, and a high frequency of normal

karyotypes. Typically, individuals with a loss-of-function germline DDX41

variant in one allele later acquire the p.R525H mutation in the other allele

before overt disease manifestation, suggesting that the progressive decrease in

DDX41 expression and/or function is involved in myeloid leukemogenesis.RNA

helicases play roles in many processes involving RNA metabolism by altering

RNA structure and RNA-protein interactions through ATP-dependent helicase

activity. A single RNA helicase can play multiple cellular roles, making it difficult

to elucidate the mechanisms by which mutations in DDX41 are involved in

leukemogenesis. Nevertheless, multiple DDX41 functions have been associated

with disease development. The enzyme has been implicated in the regulation

of RNA splicing, nucleic acid sensing in the cytoplasm, R-loop resolution, and

snoRNA processing.Most of the mutated RNA splicing-related factors in MDS

are involved in the recognition and determination of 3’ splice sites (SS),

although their individual roles are distinct. On the other hand, DDX41 is likely

incorporated into the C complex of the spliceosome, which may define a

distinctive disease phenotype. This review summarizes the current

understanding of how DDX41 is involved in this unique myeloid malignancy.
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Introduction

Recent advances in comprehensive genomic analysis for

malignancies including hematopoietic tumors has elucidated

most of the driver gene mutations involved in the disease

development or progression (1, 2). Analysis of a large number

of samples has also led to the identification of low-frequency

mutations that had previously been overlooked. With regard

to hematopoietic malignancies, it is now clear that low-

frequency germline mutations may drive pathology in

tumors that were previously thought to arise via unknown

mechanisms (3, 4). Based on these findings, the WHO

classification of myeloid malignancies was updated in 2016

to introduce the concept of disease classification based on

somatic and germline gene mutations (5). The discovery in

2015 that DDX41 mutations are found in acute myeloid

leukemia (AML) and myelodysplastic syndromes (MDS) is

relevant to this revision. In brief, Polprasert et al. performed a

comprehensive genetic analysis of families with suspected

inherited myeloid malignancies without known mutations

such as RUNX1, CEBPA, and GATA2 and isolated DDX41

as a new disease-associated gene (4). This was the first

example of mutation of an RNA helicase-encoding gene in

hematopoietic malignancies; the DDX41 mutations are found

in both MDS and de novo AML cases that does not exhibit

non-hematopoie t i c phenotypes , and are genera l ly
Frontiers in Oncology 02
characterized by the absence of marked thrombocytopenia

before overt disease manifestation.

As will be discussed later, DDX41 encodes a DEAD-box type

RNA helicase, which plays important roles in biological

processes related to RNA metabolism. DDX41 performs these

roles by converting RNA structure and changing interactions

between RNA and proteins in an ATP-dependent manner (6–8).

Several recent large clinical studies, including a prospective

investigation, have established the clinical characteristics of

myeloid malignancies with DDX41 mutations (9–18). Of note,

heterozygous germline DDX41 variants cause mild defects in

hematopoiesis; subsequent acquisition of a somatic mutation in

the remaining wild-type allele at a different location from that of

germline variants results in biallelic alteration, which is a

requirement for a disease-developing driver mutation

(Figure 1) (9, 10).

Although RNA helicase mutations have been reported

sporadically in a number of malignancies, examples of driver

mutations are quite limited. Two examples are mutation of

DHX15 in core binding factor leukemia (19, 20) and mutation

or splice variants ofDHX34 in AML (3, 21). Largely however, the

significance of DDX41 mutations in disease pathogenesis

remains poorly understood. In this review, we will present the

clinical features of hematopoietic malignancies associated with

DDX41 mutations and discuss the molecular functions

of DDX41.
FIGURE 1

Development of myeloid malignancies by acquisition of DDX41 mutations in a stepwise manner.Hematopoietic stem cells (HSCs) with a
heterozygous germline (GL) DDX41 variant have mildly impaired hematopoiesis, including cytopenia and macrocytosis. Somatic DDX41 mutation
in the remaining wildtype allele later emerges within HSCs with a GL DDX41 variant, which will lead to overt disease development.
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Clinical features of myeloid
malignancies with DDX41 mutations

DDX41 mutations occur at a rate of 2 to 5% in AML (9, 10).

Most affected patients are in their 60s and are therefore not

markedly different to non-DDX41 mutant sporadic AML cases

with regard to peak age of disease diagnosis. The male-to-female

ratio is around 3:1, suggesting a male predominance of the disease

(22), but the reason for this is unclear. There does not appear to be a

bias toward a specific AML subtype, but the disease is often

characterized by low peripheral WBC counts and bone marrow

hypoplasia, and a less differentiated tumor cell phenotype. However,

there have been no reports of specific mutations in other genes that

could contribute to these features of DDX41 mutant AML (9).

DDX41 mutations are also observed in acute erythroid leukemia

and lymphoid malignancies (23–25). Although solid tumors are

sometimes found in patients with hematological malignancies and

germline DDX41 variants (26), an association between DDX41

variants and onset of non-hematological maligancies has not been

definitively shown.

As mentioned in the introduction, individuals with a germline

DDX41 variant acquire a somatic mutation before overt disease

manifestation. The exact rate at which individuals with germline

variants develop hematopoietic malignancies is still uncertain.

However, 50–88% of MDS/AML patients with germline DDX41

variants develop disease with somatic mutation (18). The fact that

somatic DDX41 mutations are the most frequent concomitant

mutation with germline DDX41 variants demonstrates that

DDX41 alterations are clearly linked to the disease etiology. The

most frequent germline variant in the gene is p.D140fs, followed by

p.M1I (27). Although the genomic positions at which germline

variants occur may vary by race (28–31), the wide range of

nonsense and frameshift mutations, especially in the N-terminal

portion of the gene, strongly suggests that germlineDDX41 variants

are loss-of-function type mutations. On the other hand, somatic

mutations are highly concentrated in p.R525H, and less prevalently

in p.G530D (14, 15). These somatic mutations are located within

the helicase domain where ATP interacts with DDX41 (32),

suggesting that somatic mutations interfere with the ATP-

dependent helicase activity of the enzyme. Indeed, our previous

study showed lower ATPase activity of the helicase domain with the

p.R525H mutation (33). The reasons underlying the differential

position of germline variants versus somatic mutations are not clear.

However, the p.R525H mutation likely generates a hypomorphic

protein that retains RNA-binding activity but has low helicase

activity, which inhibits RNA and RNA/protein conformational

conversion. Individuals with a germline variant sometimes

manifest cytopenia and macrocytosis in the peripheral blood, and

are thus likely to be diagnosed with idiopathic cytopenia of

undetermined significance (ICUS) (34). This suggests that a 50%

reduction of DDX41 expression or function affects hematopoiesis to
Frontiers in Oncology 03
some degree, but that this level does not impair the enzyme

sufficiently to cause myeloid malignancies.

Recently, a large prospective study for AML with germline

DDX41 variants revealed that the response to conventional

chemotherapy for the patients is relatively good, although

relapse at 3 years post-treatment is comparable to that of

patients with wild-type DDX41 (18). In addition, germline

testing for DDX41 before conducting allogeneic hematopoietic

stem cell transplantation (27) should be conducted to reduce the

potential risk of donor-derived leukemia (35–38).

As will be discussed later, AML cells with DDX41 mutations

tend to display an excessive DNA damage response, which may be

due to the accumulation of DNA replication stress. On this basis,

treatment of the disease with ATR inhibitors has been suggested

(39), but to our knowledge, no clinical trials have yet been

conducted. A few case reports suggested that lenalidomide may

be efficacious in MDS with DDX41 mutations, which could be

related to the localization of DDX41 in chr.5q35, which is likely to

be deleted in the 5q- subset of patients (40, 41). However, no clinical

trials have been conducted to test this hypothesis, possibly due to

the relatively small number of patients available.
Molecular function of DDX41

‘Helicase’ is the general term for enzymes that alter the tertiary

structure of nucleic acids (both DNA and RNA) and proteins in this

class are categorized into the SF1 to SF6 superfamilies (42). The SF2

superfamily is the largest, and contains the DEAD-box type RNA

helicases, of which DDX41 is a member. There are 41 and 25

DEAD-box type RNA helicases in humans and budding yeast

(Saccharomyces cerevisiae), respectively. They play multiple celluar

roles including those involved with transcription, RNA splicing,

ribosome biogenesis, and translation (32, 43, 44). RNA helicases are

also regulators of genome stability (45). Single RNA helicases often

play multiple roles, posing a challenge with regard to elucidation of

the disease-relevant activities of the enzymes. DEAD-box type RNA

helicases are named after a motif consisting of Asp-Glu-Ala-Asp

(D-E-A-D) amino acids within RecA-like domain 1; they are often

comparatively discussed with DEAH-box type RNA helicases (46).

Although these RNA helicases both unwind RNA duplex or alter

RNA-protein interactions via their ATPase activities, the molecular

mechanisms employed to carry out this function are not shared by

the two groups (47). Specifically, DEAD-box type RNA helicases

recognize and unwind short RNA duplexes in an ATP-dependent

manner, while DEAH-box type helicases form a tunnel through the

RecA, Winged-helix (WH), Helix-bundle (HB) and

Oligosaccharide-binding (OB) domains at their C-termini, where

they translocate on the RNA by gripping the RNA in the tunnel.

DEAH-box helicases may also alter the structure of RNA or the

spliceosome by winding up RNA in a ‘winch-like’ manner (46). In
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the following sections, we discuss the roles of DDX41 that have been

proposed in the literature to date.
RNA splicing

Comprehensive analysis for factors that constitute the

spliceosome at each phase of RNA splicing have suggested that

DDX41 is a component of splicing C complex (48, 49). RNA

splicing occurs through two consecutive trans-esterification
Frontiers in Oncology 04
reactions (Figure 2A) (50); in the first process, the 2’-OH of

adenine at the branch site attacks the 5’ splice site (SS) and

cleaves the RNA, forming a 2’,5’-phosphodiester bond to create

an intron lariat. This structure is called the C complex. In the

second process, the 3’-OH at the 3’ end of the free 5’ exon attacks

the 3’SS and cleaves the RNA, forming a phosphodiester bond

between the 3’-OH terminus of the 5’-exon and the 5’-P

terminus of the 3’-exon, leaving the intron lariat in the vicinity

of the ligated exons. This structure is the P complex. RNA

splicing involves five types of small nucleolar RNPs (snRNPs)
B

A

FIGURE 2

RNA splicing process and factors involved in the process. (A) Simplified RNA splicing process. The 5’ splice site (SS) and branch site of
transcribed pre-mRNA are first recognized by U1 snRNP and U2 snRNP, respectively. U4/U6.U5 tri-snRNP is then recruited while U1 snRNP and
U4 snRNP are released in a stepwise manner. The NineTeen Complex (NTC), consisting of 7 core NTC proteins and 14 NTC-associated proteins,
is recruited to (and regulates the conformaiotn of) the spliceosome. In the catalytic Step 1 reaction, the 2’-OH of adenine in the branch site
attacks the 5’SS and cleaves the RNA to form an intron lariat, and in the Step 2 reaction, the 3’-OH at the 3’ end of the free 5’ exon attacks the
3’SS and cleaves the RNA. DDX41 is likely recruited to the spliceosome at the C complex phase. (B) MDS-related RNA splicing factors. SF3B1 is
involved in branch site recognition, U2AF1 in 3’ SS recognition and SRSF2 in exonic splicing enhancer (ESE) recognition, respectively. Therefore,
most of the mutations in MDS-related RNA splicing factors are concentrated in factors involved in 3’SS recognition.
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(U1, U2, U4, U5 and U6 snRNP) and more than 100 proteins,

which are required to carry out the structural transformation of

pre-mRNA and spliceosome in a co-ordinated manner (50, 51).

Beyond DDX41, mutations in genes that encode RNA

splicing-related factors implicated in myeloid malignancies

are observed in about 40–60% of MDS patients (52, 53); of

note, frequently mutated genes (namely, SF3B1, SRSF2 and

U2AF1) all encode factors involved in the recognition of the

3’SS (Figure 2B) (54). However, the nature of the RNA

splicing aberrations are specific to each mutated splicing

factor, rather than being shared between them all (55).

DDX41 is incorporated into the spliceosome at the C

complex when the SS has already been determined (49).

Therefore, the role of DDX41 in RNA splicing will be

largely different to that of typical MDS-related splicing

factors. In fact, Li et al. showed that 21 of 176 cases with

germline DDX41 variants (with or without somatic DDX41

mutations), and 2 of 19 cases with somatic DDX41 mutations

alone had mutations in at least one of the genes encoding

typical MDS-related RNA splicing factors (SF3B1, SRSF2,

U2AF1, U2AF2 and ZRSR2) with a variant allele frequency

of 3% or more (9). Although clonal heterogeneity must be

considered when discussing the co-existing mutations, these

observations indicate that germline DDX41 mutations are not

necessarily mutually exclusive with mutations in these RNA

splicing factors. Thus, the RNA splicing processes regulated

by DDX41 may be distinct from those that are modulated by

the other splicing factors.

Deletion of the Caenorhabditis elegans gene sacy-1 (an

ortholog of DDX41) has been reported to alter 3’SS selectivity

(56). In contrast, little is known about the precise role of DDX41

in RNA splicing, although exon skipping was a major change

feature of cells derived from AML patients with DDX41

mutations (4), and splicing changes were also observed in

hematopoietic progenitor cells from Ddx41-deficient mice,

with exon skipping and retained introns being the major

alterations (57).
Recognition of nucleic acids from
intracellular pathogens and
induction of innate immune
response by DDX41

In 2011, DDX41 was reported as a sensor that recognizes

nucleic acids released from pathogens that invade the cytosol

(58); the authors of this study found that knockdown of

DDX41 diminished the induction of IFN-b following poly

(dA:dT) stimulation. A subsequent study suggested that
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DDX41 recognizes cyclic di-guanosine monophosphate

(c-di-GMP) (59), which is a cyclic di-nucleotide produced

from two molecules of GTP by diguanylate cyclase that is

widely used in bacteria as a second messenger for signal

transduction (60). Upon recognition of these nucleic acids,

DDX41 interacts with the adaptor molecule STING, which in

turn triggers a STING-dependent innate immune response.

DDX41 function is regulated by phosphorylation by Bruton’s

tyrosine kinase (BTK), which mediates the interaction of

DDX41 with STING by phosphorylating Y414 of DDX41

(61). The degradation of DDX41 is regulated by poly-

ubiquitination (62); DDX41 interacts with the SPRY-PRY

domain of TRIM21, an E3 ubiquitin ligase, via the DEADc

domain, and TRIM21 appears to promote degradation of

DDX41 via K48-linked polyubiquitination of K9 and K115.

These reports suggest a role for DDX41 in promoting the

innate immune response (Figure 3) (63). However, it remains

unclear whether this function contributes to hematopoietic

malignancies. Since germline variants of DDX41 are likely

loss-of-function, an assumption is that the immune response

will be attenuated in cells expressing these variants. However, the

opposite has also been reported, as the loss of DDX41 can induce

R-loop formation (64, 65), which in turn leads to an

inflammatory state in the cells. This is discussed in the

next section.

DDX41 has a nuclear localization signal (NLS) at its N-

terminus, and recent studies revealed that it is predominantly

detected in the nucleus (66). However, there are at least two

forms of DDX41 (33); one is a full length 70 kDa protein

translated from the first methionine, and the other is a shorter

50 kDa form translated from the second methionine that lacks

the NLS and is localized in the cytoplasm. It is possible that the

shorter form is involved in nucleic acid sensing in the cytoplasm.

On the other hand, there are two reports of DDX41 shuttling

between the cytoplasm and nucleus (66, 67). In this context, our

collaborators recently found that K9 acetylation of the NLS

within DDX41 promotes its transport to the cytoplasm (68).

They also suggested a possible mechanism by which the

p.R525H mutant of DDX41 activates the innate immune

response despite its attenuated helicase activity, as follows.

RNA helicases generally have ATP-independent strand

annealing activity, in addition to ATP-dependent strand

unwinding activity. Since the p.R525H mutant exhibits less

unwinding activity but retains annealing activity, it would

effectively increase the amount of double-stranded cytosolic

DNA available for activation of the STING-TBK1 pathway.

The extent to which this influences hematopoietic

malignancies remains unclear, as germline DDX41 variants

would not be expected to exhibit this selective retention

of function.
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R-loop regulation by DDX41 limits
DNA damage response signaling

An increase in R-loop formation occurs in MDS

regardless of the mutation spectrum present in tumor cells

(69, 70). R-loops are structures on genomic DNA consisting

of DNA : RNA hybrids and single stranded DNA displaced

from the paired strand (71) (Figure 4); they are involved in

physiological processes such as transcription termination,

immune globulin class-switching, mitochondrial DNA

replication, and the DNA repair response (72). However,

excessive accumulation of R-loops is associated with various

pathological conditions, causing impaired transcriptional

elongation and genomic instability. The first paper to report

the involvement of R-loops in MDS showed that RNA

splicing changes were exclusive to cells expressing different

splicing factor mutants, while an increased DNA damage

response and DNA replication stress were commonly

observed (69). Although little is known about the process

by which mutations in genes encoding RNA splicing factors

lead to R-loop formation, SRSF2 can promote initiation of

transcriptional elongation by releasing P-TEFb, a complex

that activates RNA polymerase II (Pol II), by liberating it
Frontiers in Oncology 06
from an inhibitory factor (73). The presence of SRSF2

mutations in MDS cells may inhibit this effect and impair

the pause-release of Pol II, which would render cells prone to

R-loop formation (69). However, no mechanistic links

between R-loop accumulation and mutations in genes

encoding other MDS-related RNA splicing factors have

been proposed. Further studies that will provide clearer

insight are thus clearly warranted.

Two independent papers suggested that DDX41 regulates R-

loop formation (39, 64). Expression of a Ddx41 loss-of-function

mutant in zebrafish induces R-loop formation, along with the

upregulation of inflammatory signals via the STING-TBK1 axis

(65). The induction of inflammation upon DDX41 loss is

somewhat contradictory to the aforementioned theory that

DDX41 positively regulates inflammatory signals (63), but

consistent with the fact that MDS and AML cells are often in

an inflammatory state due to intrinsic production of

inflammatory cytokines (74). As for the role of DDX41 in the

regulation of R-loops, it is proposed that DDX41 directly

resolves DNA : RNA hybrids (39). A comprehensive RNA-

DNA proximity proteomics approach in the vicinity of R-loops

identified several helicases, and showed that DDX41 knockdown

induces DNA damage signaling. Since DDX41 can unwind DNA
FIGURE 3

Possible cytosolic function of DDX41 as a nucleic acid sensor. DDX41 is exported to the cytoplasm in a nuclear localizing signal (NLS)-
acetylation dependent manner and is activated by BTK-mediated phosphorylation. It senses double-strand DNA or c-di-GMP released from
pathogens that invade the cytoplasm, and activates innate immune reactions through the STING-TBK1 axis. DDX41 is also reportedly degraded
by TRIM21 mediated poly-ubiquitination (poly-Ub).
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: RNA hybrids in vitro (68), it is plausible that DDX41 may

indeed play a direct role in R-loop resolution. However, the

mechanism by which DDX41 specifically resolves R-loops

formed close to the transcription initiation site is largely

unknown. While other molecules such as SENATAXIN, BLM,

FANCM and WRN can unwind DNA : RNA hybrids (75), we

await the outcome of future studies to delineate the specific role

of DDX41 in the suppression of R-loop formation.

Increased R-loop formation is associated with activation of

the DNA damage response (76). This includes activation of both

Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia

and Rad3-related (ATR) pathways, which respond to double-

and single-strand breaks, respectively (76). In particular, the

ATR pathway has been implicated in the response to and

resolution of replication stress caused by R-loop-induced

collisions between transcription and replication. R-loops are

also likely to induce double-strand breaks, which would be

consistent with ATM activation. However, the mechanism by

which this occurs is unclear, as the ATM pathway is activated by

R-loops even in non-replicating cells (77). In any case, the ATM

and ATR pathways could be potential therapeutic targets for

tumor cells with accumulated R-loops. Indeed, the efficacy of

Chk1 inhibitors for MDS with SF3B1 mutations, as well as ATR

inhibitors for those with U2AF1 variants have been

demonstrated (70, 78). Since hematopoietic malignancies with

DDX41 mutations also likely have increased levels of R-loops,

inhibition of ATR/ATM may be a therapeutic option also for

this disease.
Frontiers in Oncology 07
Involvement of DDX41 in ribosome
biogenesis and translation

Our group has previously shown that DDX41 is involved in

pre-ribosomal RNA (rRNA) processing (33). The study was

inspired by findings from another group that (like many other

nucleolar proteins) showed knockdown of DDX41 affected pre-

rRNA processing (79). In ribosomal RNA synthesis in mammals,

the 28S, 5.8S, and 18S rRNAs are transcribed together by RNA

polymerase I to form 47S pre-rRNA, and 5S rRNA is transcribed

by polymerase III; these pre-rRNAs undergo stepwise cleavage

and trimming to produce mature rRNAs. In addition, small

nucleolar ribonucleoproteins (snoRNPs) composed of small

nucleolar RNAs (snoRNAs) and proteins undergo 2’-O-

methylation and uridine isomerization (pseudouridylation) of

rRNA (80). Finally, numerous ribosomal proteins that are

bound to pre-rRNA promote the assembly of 60S and 40S

ribosomal subunits. In our previous study, we revealed that the

expression of p.R525H increased unprocessed 47S pre-rRNA and

impaired ribosome biogenesis as a result. Although we have not

yet identified the exact role that DDX41 plays in pre-rRNA

processing process, we have found that the loss of DDX41

function causes a defect in pre-rRNA biogenesis and disrupts

the balance of ribosome synthesis, thus leading to cell cycle arrest

and apoptosis (33). Additionally, Chlon et al. reported that

introduction of DDX41 mutation disrupted snoRNA processing,

thereby leading to impaired ribosome function (81). snoRNAs are

short RNAs of 60–300 nucleotides that localize in the nucleolus
FIGURE 4

Involvement of DDX41 in R-loop resolution. Abnormal accumulation of R-loops impairs transcriptional elongation by RNA polymerase II (Pol II),
which leads to increased replication stress and DNA damage; DDX41 has been proposed to directly unwind DNA : RNA hybrids to resolve R-loops.
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and are classified into two major groups (82). The first group

contains Box C/D snoRNAs, which determine the position of 2’-

O-methylation; the second is comprised of Box H/ACA snoRNAs,

which are responsible for pseudouridylation. Each snoRNA

interacts with proteins to form a small nucleolar

ribonucleoprotein (snoRNP). For Box H/ACA snoRNA that are

localized to the intronic regions of pre-mRNA, snoRNP-

associated proteins first interact with the snoRNA region in the

pre-mRNA, then intron lariats excised from the mRNA are

processed into snoRNP (83). Cells deficient for DDX41 have

impaired snoRNA processing (i.e., impaired isolation of snoRNA

regions from introns), and this reduces ribosome biogenesis (81).

Since RNA splicing is closely associated with snoRNA production,

this study is noteworthy because it demonstrates a novel role for

DDX41 in linking RNA splicing and ribosome biosynthesis.

Abnormal expression of snoRNAs is implicated in disease

phenotypes and drug resistance in hematopoietic malignancies

and solid tumors (84–86), suggesting that snoRNAs play a

significant role in the development of malignancies.

However, this discovery simultaneously raises another

question regarding the role that DDX41 plays in snoRNA

processing. Although reduced expression of DDX41 impairs

intron removal in certain host genes, it is still unclear how it

confers such splicing selectivity. Considering that RNA splicing

factors play a role in snoRNA processing, as shown for IBP160

(87), it is possible that DDX41 in the splicing C complex is

directly involved in snoRNA processing. Alternatively, snoRNPs

and the spliceosome may interact via DDX41.
Conclusion

Due to the limited variety and frequency of hematopoietic

malignancies with gene mutations encoding RNA helicases, the

link between these enzymes and oncogenesis has historically

been unclear. However, this link has been partially elucidated by

recent studies. Cells with DDX41 mutations are more likely to

exhibit a DNA damage phenotype that renders themmore prone

to apoptosis than to proliferation, at least prior to overt disease

development. DDX41 may play a role in late process of RNA

splicing, and mutant-related defects would affect the

transcription and DNA replication that normally progress in

concert with RNA splicing. This hypothesis may explain the

unique phenotypes of this disease. Minor clones with biallelic

DDX41 mutations emerged from those with a germline variant

and define the disease phenotype (81). However, no explanation

has been provided for how such minor clones could contribute

to the disease; it might be possible that cells with biallelic

mutations create an inflammatory state through R-loop

accumulation, or via other yet-unidentified mechanisms.
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relatively well to standard therapies using anthracycline and

cytarabine with or without gemtuzumab ozogamicin for

induction and consolidation treatments, or to hypomethylating

agents for patients not eligible for intensive therapy. However,

the disease is more likely to occur in the elderly and it is often

difficult to administer cytotoxic chemotherapy to these patients.

Therefore, treatments based on the concept of synthetic lethality

with molecular targeted agents that inhibit DNA damage

response pathways or RNA splicing processes could be a

reasonable and promising approach.
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