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Predicting anaplastic
lymphoma kinase
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patients with non-small cell
lung cancer using a machine
learning algorithm that
combines clinical features
and CT images

Peng Hao1†, Bo-Yu Deng2†, Chan-Tao Huang1, Jun Xu1,
Fang Zhou1, Zhe-Xing Liu3, Wu Zhou2* and Yi-Kai Xu1*

1Nanfang Hospital, Southern Medical University, Guangzhou, China, 2School of Medical Information
Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China, 3School of Biomedical
Engineering, Southern Medical Uinversity, Guangzhou, China
Purpose: To develop an appropriate machine learning model for predicting

anaplastic lymphoma kinase (ALK) rearrangement status in non-small cell lung

cancer (NSCLC) patients using computed tomography (CT) images and

clinical features.

Method andmaterials: This study included 193 patients with NSCLC (154 in the

training cohort, 39 in the validation cohort), 68 of whom tested positive for ALK

rearrangements and 125 of whom tested negative. From the nonenhanced CT

scans, 157 radiomic characteristics were extracted, and 8 clinical features were

collected. Five machine learning (ML) models were assessed to find the best

classification model for predicting ALK rearrangement status. A radiomic

signature was developed using the least absolute shrinkage and selection

operator (LASSO) algorithm. The predictive performance of the models

based on radiomic features, clinical features, and their combination was

assessed by receiver operating characteristic (ROC) curves.

Results: The support vector machine (SVM) model had the highest AUC of

0.914 for classification. The clinical features model had an AUC=0.805 (95% CI

0.731–0.877) and an AUC=0.735 (95% CI 0.566–0.863) in the training and

validation cohorts, respectively. The CT image-based ML model had an

AUC=0.953 (95% CI 0.913–1.0) in the training cohort and an AUC=0.890

(95% CI 0.778–0.971) in the validation cohort. For predicting ALK

rearrangement status, the ML model based on CT images and clinical

features performed better than the model based on only clinical information
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or CT images, with an AUC of 0.965 (95% CI 0.826–0.882) in the primary

cohort and an AUC of 0.914 (95% CI 0.804–0.893) in the validation cohort.

Conclusion: Our findings revealed that ALK rearrangement status could be

accurately predicted using an ML-based classification model based on CT

images and clinical data.
KEYWORDS

tomography, X-ray computed, anaplastic lymphoma kinase, gene mutation, non-
small cell lung cancer, machine learning, texture
Introduction

Lung cancer is the leading cause of cancer-related death

worldwide. In 2013, in women aged 40 to 59 years, lung cancer

surpassed breast cancer as the main cause of cancer death (1).

Non-small cell lung cancer (NSCLC) is the most common

histological subtype, accounting for 85%-90% of lung cancers

(2). In the past decade, the emergence of novel drugs that target

signalling pathways activated by genetic changes, for example,

EGFR mutations and ALK rearrangement status, has

revolutionized the treatment of NSCLC patients (3). The

presence of an ALK rearrangement protein has been

discovered in a small percentage of NSCLC patients, mostly in

those with lung adenocarcinoma (3). Approximately 5% of lung

adenocarcinomas have ALK rearrangement status, which is

mutually exclusive with EGFR mutations. Crizotinib is a

promising ALK fusion status inhibitor (4). Thus, identifying

ALK rearrangements in NSCLC patients is crucial for

therapy planning.

Because histologic and genetic information from invasive

biopsies is often taken from only a section of a generally

heterogeneous tumour, this characterization information does

not provide a thorough depiction of functional and physiological

aspects of lesions (5). The most common method for diagnosing

and assessing treatment response of lung malignancies is

computed tomography (CT). Thus, previous research has

examined the link between some gene mutations in lung

cancer and clinical features and radiological characteristics of

lung cancer (6). Some CT imaging features, such as central

tumour location, pleural effusion, lobulated margin, large mass

and distant metastases, have been linked to ALK gene

rearrangements in these studies (7–13). However, the

evaluation of these radiological characteristics of lung cancer,

is time-consuming and greatly dependent on the radiologist’s

knowledge. Machine learning (ML) is a computer-based method

for diagnosing lung cancer, predicting survival, and forecasting

gene mutations. It can help radiologists discover more about the

phenotype of a tumour including that is not obvious on CT scans
02
(14–19). To avoid overfitting and develop robust predictive or

prognostic models, a successful radiomic prediction study

requires several phases, including accurate statistical analysis,

feature selection, and classification. To select a subset of features

that can be merged into a multiparametric model, a variety of

ML algorithms can be utilized. Although radiomic analysis has

used a variety of ML approaches for categorization, there is no

“one size fits all” solution because the effectiveness of different

ML processes has been proven to vary depending on the kind of

data or applicant (20).

As a result, the goal of this research was to investigate

effective radiomics-based ML algorithms that predict ALK

rearrangements in patients with NSCLC.
Materials and methods

Patients inclusion

From May 2012 to February 2020, we retrospectively

reviewed all CT scans of NSCLC patients from PACS system

at Nanfang hospital. This retrospective study examined 1002

patients with pathologically proven lung cancer who underwent

surgery or received a biopsy. The clinical features of the patients

were retrieved from the hospital information system. This study

included patients over the age of 18 who met the following

criteria: (1) had tumour specimens with confirmed ALK gene

rearrangements and pathological testing; (2) had pretreatment

CT images; and (3) had complete clinical data. The

exclusion criteria were as follows: (1) patients receiving

treatment before CT scan (2) the time between CT

examination and treatment was longer than one month; (3)

multiple tumour nodules were found in the lung; (4) tumour

lesions were near the hilar and could not be separated from

neighbouring hilar architecture. According to these criteria, 716

patients were included, 648 of whom were ALK negative and

68 of whom were positive for ALK rearrangements. Twenty

percent of the ALK negative patients were randomly chosen to
frontiersin.org
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participate in our study. Finally, this study included 193 patients,

125 ALK negative patients and 68 ALK positive patients. The

flowchart of patients selection for non-small cell lung cancer

(NSCLC) was show in Figure 1. The TNM system was utilized

for staging based on the American Joint Committee on Cancer

(AJCC) manual (21). The patients were divided into two groups:

a primary cohort (n=154 patients) and an independent

validation cohort (n=39 patients), were randomly chosen in a

ratio of 8:2 from patients with and without ALK rearrangements.

This study was approved by the Ethical Committee of the

Nanfang Hospital.

The patients were examined with 256-slice iCT (Philips

Health care, Best, Netherlands) or Siemens Medical Solutions’

Sensation 64, Definition AS (Forchheim, Germany) equipment.

The scanning parameters of the two scanners were as follows:

tube rotation time 0.5 s vs. 0.5 s, pitch 0.87 vs. 1.2, detector

collimation 128 0.625 vs. 64, tube voltage 120 kV, tube current

100-300 mA, field view 350 mm, matrix 512×512, slice thickness

1-5 mm, reconstruction interval 1 mm, and voxel spacing (X and

Y directions) 0.52-1.36 mm. Two different scanners from

different manufacturers were adopted. Standardization and

normalization were applied to all matrices before analysis (22).
Analysis of ALK rearrangement status

For genetic status determination, tissue samples acquired

from biopsy or surgical excision were employed. The tissue

specimens were prepared using formalin fixation and paraffin

embedding. Immunohistochemistry with the D5F3 antibody,

which has already been widely utilized for this purpose, was
Frontiers in Oncology 03
employed to detect ALK rearrangement gene expression. Two

senior pathologists validated the findings. Wild-type ALK was

defined as a specimen that did not have the ALK fusion

gene present.
Radiomic analysis

The radiomic analysis included five steps, which was

illustrated in Figure 2.
Segmentation of tumours

For each patient, horizontal, coronal and sagittal views were

used for tumour segmentation by using ITK-SNAP software

(http://www.itksnap.org/). A chest radiologist with 8 years of

experience manually segregated the regions of interest (ROIs)

and a senior with ten years of expertise reviewed all the ROIs. To

ensure segmentation reproducibility, 30 patients were chosen at

random to validate the inter-observer agreement between two

observers’ delineations of ROIs using the dice similarity

coefficient (DSC) by using Matlab 2018b, average value:0.8349

(from 0.6680 to 0.9186).To illustrate,the level of volume

agreement the categorization scale below was used: DSC≥0.85

(High Agreement), 0.85>DSC≥0.70(Medium Agreement),

0.7>DSC≥0.5 (Low Agreement), DSC<0.5(Very Low

Agreement) (23) Some inappropriate segmentations for ROI

bounds were modified where necessary. An automatic active

contour segmentation method was used to refine the manually

segmented findings.
FIGURE 1

The flowchart of patients selection for non-small cell lung cancer (NSCLC).
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Radiomic features extraction

Radiomic characteristics were extracted from two-

dimensional region of interest (2D-ROI). Pyradiomics (http://

pyradiomics.readthedocs.io/en/latest/index.html) was utilized.

To be potentially clinically beneficial, we constructed classifiers

based on radiomic features acquired from each ROI. Grey level

co-occurrence matrix (GLCM), grey level run length matrix

(GLRLM), local binary pattern (LBP), histogram, and clinical

parameters were acquired from each ROI. The texture and

clinical features were then normalized.
Feature selection and classification
algorithms

The LASSO technique and 10-fold cross-validation were used

to obtain the best subset of radiomic characteristics. A variety of

classifiers, including support vector machine (SVM), eXtreme

gradient boosting (XGboost), tree-based ensemble classification

algorithm (Adaboost), decision tree (DT) and logistic regression
Frontiers in Oncology 04
(LR), were assessed. Themodel’s performance was evaluated using

receiver operating characteristic (ROC) curves and the area under

the ROC curve (AUC) by 100 repeated tests. Accuracy, sensitivity,

F1, recall and mean absolute error were all calculated as well.
Statistics analysis

Data was analysed with IBM SPSS 25.0 (http://www.ibm.

com). For continuous variables, the two independent samples t-

test or the Mann–Whitney U test were used, and the significant

differences in the MLmodel between the ALK+ and ALK- groups

were investigated using the same statistical methodologies. For

categorical variables, such as gender, history of smoking,

smoking index, clinical stage, distant metastasis, and tumour’s

degree of pathological invasiveness and EGFR mutation of

tumour, the chi-square test or Fisher’s exact test was used. The

difference in AUCs between the two models was calculated

statistically using DeLong’s test. The ML model was

implemented using the Keras toolkit and Python (version

3.6.8, https://www.python.org/).
FIGURE 2

The radiogenomics framework of this study.
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Results

Patient Cohort

The clinical characteristics of the patients were described in

Table 1. The ALK rearrangement-positive patients were

significantly younger than the ALK rearrangement-negative

individuals (P < 0.001). In addition, more patients with stage III-

IV cancer were found in the ALK mutation group (P < 0.001).
Performance of the radiomic machine
learning algorithm

The best subset of radiomic characteristics was selected using

the LASSO technique and 10-fold cross-validation. The

radiomic features were retrieved from the 193 patients in the

training set to create the radiomic signature. (Figures 3–5). The

chosen radiomic properties were as follows: 37hist, 94hist,

99hist, 116hist, 117hist, 123hist, calcutes, homogeneity, Lbp1,

Lbp2, Lbp5, PR, SRE, SALGLE (Table 2). Age and phase are

proved significant clinical features.
Frontiers in Oncology 05
Supervised learning classification

After applying SVM, XGboost, Adaboost, LBP, DT, and LR

to determine the optimal features, we identified the most

appropriate approach for generating the final classification

model based on their performances. We also used grid-search

cross-validation to find the best parameters for all of the ML

techniques discussed above. In terms of detecting ALK

mutations, SVM exceeded the other traditional ML methods as

shown in Tables 3, 4 and Figure 6.
Predictive performance of the machine
learning model

The SVM classifier had the highest AUC for classification

(Table 5). In the primary cohort, the ML model trained on both

CT scans and clinical features performed well AUC=0.965 (95%

CI 0.8257–0.8823), which was verified in the validation cohort

AUC=0.914 (95% CI 0.804–0.891; P<0.001). For the CT image-

based model, the AUC was 0.953 (95% CI 0.913–1.0) and 0.890

(95% CI 0.778–0.971) for the primary and validation cohorts,

respectively. The performance of the ML models trained on both
TABLE 1 Clinical characteristics of the ALK (+) and ALK (-) patients.

Characteristics ALK (+) ALK (-) P-valueb

(n = 68) (n = 125)

Age (yearsa) 50.94 ± 12 57.57 ± 10.3 <0.001*

Gender 0.748

Males 31 (46) 60 (48)

Females 37 (54) 65 (52)

Smoking status
Never
Former
Current

52 (76)
10 (15)
6 (9)

92 (74)
24 (19)
9 (7)

0.704

SI (pack-years)
SI ≤ 10
10 < SI < 20
SI ≥ 20

52 (76)
6 (9)
10 (15)

85 (68)
22 (18)
18 (14)

0.248

EGFR mutation
Positive
Negative

0 (0)
68 (100)

74 (59)
51 (41)

<0.001*

Pathology features
AIS
IVC

1 (1)
67 (99)

9 (7)
116 (93)

0.169

TNM stage
I-II
III-IV

7 (10)
61 (90)

57 (46)
68 (54)

<0.001*

DM
Positive
Negative

55 (81)
13 (19)

62 (49.6)
63 (50.4)

<0.001*
fron
aMean ± standard deviation (range).
bALK– group vs. ALK+ group.
*P < 0.05.
ALK, anaplastic lymphoma kinase; AIS, adenocarcinoma in situ; IAC, invasive adenocarcinoma; SI, smoking index; DM, distant metastasis.
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CT images and clinical characteristics was significantly higher

than that of the clinical model. The result for the primary cohort

trained on the clinical model was an AUC=0.805 (95% CI 0.731–

0.877; P<0.0001), and that for the validation cohort was an

AUC=0.735 (95% CI 0.566–0.863; P<0.005). The decision curves

are shown in Figure 7. The results indicated that ML models

trained on both CT images and clinical data performed better

than ML models trained by only CT images or the

clinical characteristics.
Discussion

Our findings demonstrated that using the SVM classifier to

predict ALK gene rearrangements based on both CT scans and
Frontiers in Oncology 06
clinical characteristics was the most effective strategy. In our

study, the integrated model exhibited the highest AUC, which

exceeds the clinical models based on previously identified CT

characteristics (also known as morphological or semantic CT

features) (12, 24) and combined with clinical features, semantic

CT features, and radiomic features (25).

Among clinical features, we found ALK+ patients are often

younger than ALK- patients, which is consistent with prior

studies (7). Female sex and smoking history, on the other

hand, do not differ much between the two groups of patients.

The bulk of the patients in our ALK+ study was in advanced

stages of cancer (III-IV). ALK gene rearrangements were more

common in lung cancer at advanced stages, in accordance with a

prior study (10). Clinical information is useful in improving the

integrated model for ALK rearrangement status detection, as it
FIGURE 4

The tuning parameter in the LASSO model was chosen using a 10-fold cross-validation method based on minimum criterion. The LASSO
regression cross-validation model’s binomial deviances as a function of logs(l) were plotted.
A B

FIGURE 3

(A) Heatmap of the 157 radiomic features. (B) Heatmap of the 30 most important radiomic characteristics.
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increases the integrated model’s performance by incorporating

clinical characteristics for lesions in the primary and validation

cohorts. A previous study had proposed a predictive model for

detecting ALK rearrangements, using age as the only clinical

component selected and many semantic CT features

(AUC=0.846) (9).

Our findings imply that radiomics can be used to predict

ALK rearrangement status on CT images in patients with

NSCLC. The histogram and texture categories served as the

foundation for the radiomic model, which implies that the

intensity change of tumours was a potent predictor of the ALK
Frontiers in Oncology 07
genetic mutation. In this study, we found that Rp, 37hist, and

calutes, that linked with ALK mutations. The AUC for

postcontrast CT radiomic characteristics detecting ALK

rearrangements was 0.829, according to Ma et al. (26).

However, their research was based on enhanced CT scans. The

radiomic model in our study demonstrates that radiomic

features extracted from nonenhanced CT images are sufficient

for developing a reliable ALK rearrangements prediction model

in NSCLC patients.

Radiomics is an emerging discipline attempting to bridge the

gap between medical imaging and personalized medicine (27,
TABLE 2 Selected features with descriptions.

Feature Name Description

Gray-level co-occurrence matrix (GLCM) Homogeneitycalutes Localization of regions with significant intensity changes; gradients detect edges and
quantify region boundaries

Gray-level run length matrix (GLRLM) Short-run emphasis (SRE)Short-Run
Low Gray-Level Emphasis (SRLGLE) Run percentage (RP)

Measure of the gray scale texture repeatability

Local binary pattern (LBP)
Lbp1
Lbp2
Lbp5

The lbp (local binary pattern) is an operator used to describe the local texture features of
an image.Reflects the content of each pixel to the surrounding pixels.

Histogram
37hist
99hist
94hist
116hist
117hist
123hist

Refect the distribution of voxel gray intensity
FIGURE 5

The final elements that were chosen to be maintained. The preserved characteristics were on the y axis, and the matching LASSO regression
coefficients were on the x axis. The log(l) coefficients of the features that have been fitted.
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28) by investigating the value of medical images in the diagnosis,

grading, and prognostication of diseases using medical image

analysis technologies and ML algorithms. However, the best way

to use certain medical images or objectives is unclear due to the

various feature selection approaches and ML algorithms (29).
Frontiers in Oncology 08
In recent years, researchers have investigated the efficacy of

various feature selection and ML algorithms in medical image

classification to determine whether they are appropriate for the

given medical image data. For example, Shiri I et al. (20)

examined radiomic characteristics from low-dose CT,
TABLE 4 Assessment of different classifier feature selection-based machine learning models for predicting ALK fusion type in the training cohort.

Accuracy Precision AUC F1 Mean absolute error Recall

LR 0.928 0.955 0.958 0.889 0.072 0.835

Adaboost 1 1 1 1 0 1

Decision Tree 0.894 0.913 0.906 0.836 0.106 0.778

XGBoost 0.989 0.990 0.996 0.983 0.011 0.977

SVM 0.943 0.985 0.953 0.911 0.057 0.851
frontie
TABLE 3 Assessment of different classifier feature selection-based machine learning models for predicting ALK fusion type in the validation cohort.

Accuracy Precision AUC F1 Mean absolute error Recall

LR 0.869 0.871 0.887 0.803 0.131 0.762

Adaboost 0.808 0.714 0.806 0.722 0.192 0.747

Decision Tree 0.812 0.790 0.806 0.708 0.188 0.665

XGBoost 0.842 0.822 0.875 0.759 0.158 0.720

SVM 0.849 0.932 0.890 0.747 0.151 0.63
FIGURE 6

The ROC curves of the top four models selected from the training phase on the testing dataset.
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diagnostic quality CT, and PET-CT as well as ML techniques

in NSCLC patients. Their results predicted mutation status of

EGFR and KRAS. Then, six feature selection procedures and 12

classifiers were used, and multivariate ML-based AUC

performances for EGFR and KRAS were improved to 0.82 and

0.83, respectively. Lan Song et al. compared the performance of

three feature selection approaches and two classification

methods for predicting ALK fusion in lung cancer patients

using clinical characteristics combined with conventional CT

and radiomic data (25). They extracted 1218 radiomic

characteristics from CT scans and discovered that the LR and

DT classifiers had the best prediction performance

(AUC=0.890). The optimal ML classifier and feature selection
Frontiers in Oncology 09
method varied between studies, which could be related to a

variety of factors, such as visual modalities, feature extraction

algorithms, the number of features chosen, the goal task, and

cohort size. According to Han’s study, radiomics-based ML was

used to determine the best model for NSCLC histologic subtypes

(29), and SVM paired with LASSO produced the highest

prediction efficacy, similar to our study.

Even though our model’s performance was quite promising,

there are a few limitations in this study that need to be addressed.

First, although the results were favourable, the model’s ability to

handle imbalanced data must be improved to generalize the

prediction outcome to more datasets. Second, we may need to

employ a cutting-edge deep learning method to perform the
TABLE 5 Predictive performance of SVM in the primary and validation cohorts.

Model Cohorts Accuracy Precision AUC F1 Mean absolute error Recall

Clinacal features Primary 0.758 0.826 0.805 0.612 0.242 0.569

Validation 0.689 0.5 0.735 0.483 0.311 0.455

CT image Primary 0.923 0.946 0.953 0.877 0.077 0.792

Validation 0.858 0.938 0.890 0.769 0.142 0.675

CT image and clinigal features Primary 0.943 0.985 0.965 0.911 0.057 0.851

Validation 0.849 0.932 0.914 0.747 0.151 0.63
frontie
FIGURE 7

The ROC curve analysis of the CT radiomics models, clinical features, and combinations of CT radiomics and clinical features in the training
group and testing group.
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classification task is warranted. Several studies have successfully

constructed models to address this issue with positive results (30).

These findings have encouraged us to use neural networks to

construct the baseline model in future studies.

In conclusion, the ML model that combined CT scans and

clinical features are able to accurately identify the status of the

ALK gene. This study provides a noninvasive solution, which is a

quick and simple way to guide clinical genetic diagnosis.
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