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Based on the importance of basement membrane (BM) in cancer invasion and

metastasis, we constructed a BM-associated lncRNA risk model to group bladder

cancer (BCa) patients. Transcriptional and clinical data of BCa patients were

downloaded from The Cancer Genome Atlas (TCGA), and the expressed genes

of BM-related proteins were obtained from the BM-BASE database. We download

the GSE133624 chip data from the GEO database as an external validation dataset.

We screened for statistically different BM genes between tumors and adjacent

normal tissues. Co-expression analysis of lncRNAs and differentially expressed BM

genes was performed to identify BM-related lncRNAs. Then, differentially

expressed BM-related lncRNAs (DEBMlncRNAs) between tumor and normal

tissues were identified. Univariate/multivariate Cox regression analysis was

performed to select lncRNAs for risk assessment. LASSO analysis was performed

to build a prognostic model. We constructed a model containing 8 DEBMlncRNAs

(AC004034.1, AL662797.1, NR2F1-AS1, SETBP1-DT, AC011503.2, AC093010.2,

LINC00649 and LINC02321). The prognostic risk model accurately predicted the

prognosis of BCa patients and revealed that tumor aggressiveness and distant

metastasis were associated with higher risk scores. In this model, we constructed a

nomogram to assist clinical decision-making based on clinicopathological

characteristics such as age, T, and N. The model also showed good predictive

power for the tumor microenvironment and mutational burden. We validated the

expression of eight lncRNAs using the dataset GSE133624 and two human bladder

cancer cell lines (5637, BIU-87) and examined the expression and cellular

localization of LINC00649 and AC011503.2 using a human bladder cancer tissue

chip. We found that knockdown of LINC00649 expression in 5637 cells promoted

the proliferation of 5637 cells.Our eight DEBMlncRNA risk models provide new

insights into predicting prognosis, tumor invasion, and metastasis in BCa patients.
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Introduction

Bladder cancer (BCa), a tumor that grows in the bladder

mucosa, ranks the fourth most aggressive tumor among male-

related cancers (1). In today’s clinical treatment, the cystoscopic

biopsy is regarded as the gold standard for BCa detection (2).

BCa is divided into two categories according to whether there is

tumor infiltration in the bladder muscle: non-muscle-invasive

type and muscle-invasive type. Nearly 70% of all newly

diagnosed BCa patients are non-muscle invasive bladder

cancer (NMIBC) (3). Tumor resection is the most common

treatment method for NMIBC, followed by intravesical Bacillus

Calmette-Guerin (BCG) immunotherapy or intravesical

chemotherapy (4). The 5-year survival rate of NMIBC is

approximately 90%, and the risk of postoperative recurrence is

50% to 70% (5). Nearly 25% of NMIBC patients will eventually

break through the basement membrane barrier and develop into

muscle-invasive bladder cancer (MIBC), which may be related to

drug resistance (6). Although the current combination of

surgery, radiotherapy, chemotherapy and targeted therapy has

extended the overall survival of patients to a certain extent, the

overall patient recurrence and mortality rates of BCa are still

high (4). Due to the properties of BCa, personalized medicine is

currently the most used approach to benefit patients and

treatment outcomes. However, developing better-personalized

medicine requires more validated biomarkers, such as early

diagnosis and prognostic indicators, which can help doctors

identify patients who need early aggressive treatment earlier and

predict patients who respond to the targeted drug (7). In recent

years, immunotherapy with immune checkpoint inhibitors has

been gradually used for treatment and has achieved certain

curative effects. This approach includes anti-PD-L1 therapies,

atezolizumab, avelumab, nivolumab and pembrolizumab, which

are only approved in the metastatic stage (8–10). However,

relatively few biomarkers are available to assess the efficacy of

immunotherapy against BCa. Therefore, there is an urgent need

for new and precise efficacy assessments of BCa therapy.

At present, most cancer patients die from cancer metastasis

rather than the primary tumor. Almost 90% of cancer deaths are

due to cancer metastasis (11). At the beginning of BCa, cancer

begins as noninvasive papillary carcinoma (or carcinoma in situ),

with 30 abnormal proliferation of cancer cells in the urothelium.

The tumor can be surgically removed at this stage but has a high

recurrence rate. BCa can evolve into an aggressive tumor when

passing through the basement membrane (BM). Cancer cells can

enter the connective tissue, get more space, nutrients and oxygen,

increase in large quantities, enter the muscle layer, capillaries, and

finally, cancer cells transfer (12). The BM mainly comprises a

laminin and collagen network. Under normal circumstances, cells

cannot pass through it. When the BM is dysregulated, it can

promote the invasion and migration of cancer (13). BM is a vital

tissue barrier between in situ and invasive carcinoma. The
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formation of endosomes and the degradation of extracellular

matrix are the key to tumor invasion (14). Studies have shown

that BM can be degraded mediated by MMP-2 and MMP-9,

which are matrix metalloproteinases (MMPs) with proteolytic

activity (15). lncRNAs can regulate BM degradation by affecting

BM-associated proteins. BM-associated lncRNAs can not only

serve as direct biomarkers to help differentiate cancers but also

help clinicians monitor BM status to assess the extent of cancer

progression. Therefore, developing BM-related lncRNA

biomarkers is crucial for evaluating the degree of cancer invasion.

There are few studies on BM-related lncRNAs, so more

research data on lncRNAs are needed to provide new references

for clinical treatment. Several BM-related lncRNAs are closely

associated with tumor infiltration and invasion. For example,

lncRNA FOXF1-AS1 promotes the migration and invasion of

osteosarcoma cells by promoting MMP-2 and MMP-9 (16).

PSMA3-AS1 can upregulate laminin subunit gamma 1

(LAMC1) to promote the proliferation and migration of

cholangiocarcinoma (17). BBOX1-AS1 promotes the

proliferation and metastasis of oral squamous cell carcinoma

and inhibits apoptosis by upregulating laminin subunit gamma 2

(LAMC2) (18).

This study aimed to explore differentially expressed BM-

related lncRNAs (DEBMlncRNAs) in BCa and evaluate their

prognostic significance. RNAseq, clinical, and somatic mutation

data of BCa patients were downloaded through The Cancer

Genome Atlas (TCGA) database. BM-related protein expression

genes were obtained through the BM-BASE database. In the

research, we identified eight BM-related lncRNAs to construct

prognostic risk models, which could enhance prognostic

prediction in BCa patients with various clinical conditions. We

further analyzed differences in clinical characteristics and

associated prognosis by risk-prognosis grouping, nomogram,

functional enrichment analysis, tumor mutational burden

analysis, immune function analysis, and immune infiltration

assessment. We validated the expression of eight risk model

DEBMlncRNAs in BCa cells. This model lays the foundation for

studying immune mechanisms, new therapeutic targets, and

clinical drugs.
Materials and methods

Cell culture

Two human BCa cell lines (5637 and BIU-87) and the

normal human bladder epithelial cell line SV-HUC-1 were

used in this study. All three cells were obtained from

IMMOCELL (Xiamen, Fujian, China). Human bladder cancer

Cell line 5637 and BIU-87 were cultured in RPMI-1640 medium,

and SV-HUC-1 was cultured in F-12K medium, both of which

were supplemented with 10% fetal bovine serum (FBS) and 1%
frontiersin.org
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Penicillin-Streptomycin solution. The cells were then cultured in

a humidified incubator at 37°C with 5% CO2.
Identification of differentially expressed
BM-related lncRNAs

In total, we collected 222 BM genes from the BM-BASE

database, and 79 differentially expressed BM genes were

identified using the Limma package in the R project (log2|fold

change (FC)| ≥ 1.0, and p < 0.05) (19). A total of 14,056 lncRNAs

were extracted from the transcriptome data of BCa patients in

the TCGA database. Furthermore, correlation analysis between

79 differentially expressed BM genes and 14056 lncRNAs was

identified by Pearson correlation analysis. A total of 435 BM-

related lncRNAs (BMlncRNAs) were identified in BCa (|cor| >

0.4, p < 0.001). Finally, 304 DEBMlncRNAs were obtained by

using the Limma package (log2|FC| ≥ 1.0 and p < 0.05) (19).
Construction of the prognostic signature

396 BCa samples acquired from TCGA were randomly

separated into a training cohort and a test cohort in a 1:1 ratio

to create a lncRNA-based signature. By univariate Cox analysis,

we identified potential DEBMlncRNAs that showed great

prognostic value for BCa in the training cohort (p < 0.05).

Then, we conducted a LASSO regression analysis to remove the

overfitting variables. Subsequently, a DEBMlncRNA signature

was further generated using multivariate Cox regression to

analyze the hazard ratios of potential lncRNAs. The risk of

DEBMlncRNA signature = Sexp (DEBMlncRNAs) × b, where b
is the coefficient of each candidate DEBMlncRNA from the

multivariate Cox analysis.
Evaluation and validation of the
risk model

Risk scores were analyzed for each BCa patient. All patients

were divided into high-risk groups (high-risk score) and low-risk

groups (low-risk score) according to the median risk score. The

KM survival curves were compared between the two risk groups’

overall survival, disease-specific, and progression-free survival.

Time-dependent receiver operating characteristic (ROC) curve

analysis of 1-year, 3-year, and 5-year survival rates and risk

scores and various clinical features were performed using the

“survival”, “survminer” and “timeROC” R packages (20). The

expression of 8 lncRNAs in high-risk and low-risk groups was

visualized with a heatmap, and the distribution of risk score and

survival time for each patient was described using a scatterplot.
Frontiers in Oncology 03
Construction of the predictive
nomogram

For the univariate and multivariate Cox regression analysis, a

total of 396 cases with accompanying clinical data were employed.

To improve the predictive potential of DEBMlncRNAs, we

constructed a nomogram derived from DEBMlncRNAs and other

clinicopathological characteristics for outcome forecasting in BCa

patients. To validate the nomogram, calibration curves

were created.
Risk score and clinical characteristics

Prediction of prognosis by age, gender, and T stage in high-

risk and low-risk groups using KM survival curves. A heatmap

showed the relationship between 8 lncRNAs and clinical features

in the risk model. Boxplots showed differences in clinical

characteristics in risk scores.
Functional and pathway enrichment
analysis

We screened for differentially expressed genes (DEGs)

between high-risk and low-risk groups of BCa patients in

TCGA by using the R package Limma (19). The screening

criteria were |log2FC| ≥ 1 and P < 0.05. Gene ontology (GO)

analysis to explore DEGs related to gene functions. Gene Set

Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) were used to find signaling pathways

associated with DEGs.
Analysis of tumor-infiltrating
immunocyte and immune checkpoints

CIBERSORT is an immune correlation algorithm that

analyzes the abundance of 22 immune cells in a sample to

show the immune status of BCa samples. We used the R

packages ggplot2 and ggpubr to visualize risk scores and

immune checkpoint activation between patients in the low-risk

group and patients in the high-risk group (20, 21).
Estimation of tumor mutational burden

Tumor mutational burden (TMB) is a new therapeutic

metric used to determine sensitivity to immunotherapy. The

somatic mutation data were analyzed using the R package

maftools (22). The median TMB value was used as a
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demarcation criterion to classify BCa patients into high TMB

and low TMB groups.
Exploration of the model in
clinical treatment

After downloading data from the Genomics of Cancer Drug

Sensitivity (GDSC) database, the R package pRRophetic was

used to analyze the half-maximal inhibitory concentration

(IC50) of each BCa patient and the drug to predict treatment

response (23).
Validation of risk model LncRNA
expression with external datasets

Gene expression data of BCa and paracancerous tissues in

GSE133624 were downloaded from the GEO database, and a

total of 36 BCa tissues and 29 paracancerous tissues were

obtained. We used the R package Limma to examine the

differential expression of risk model lncRNAs in BCa and

paracancerous tissues. The test criteria were |log2FC| ≥ 1 and

P < 0.05 (19).
RNA isolation and quantitative real-time
polymerase chain reaction

mRNA was extracted using Trizol reagent (Invitrogen,

Carlsbad, CA, USA) and was reversed to cDNA by using

ReverTra Ace® kit (Toyobo, Japan) according to the

manufacturer’s protocol. qRT-PCR was used to detect related

genes by using SYBR green PCRmaster mix (Servicebio, Wuhan,

China). The primer sequences were listed as follow: AC004034.1,

forward, 5’-CCTGTGAGACCCTGAGCAGAGG-3’ and reverse,

5’-ATGGTAGGCTAAGTCCTGTGAGTCC-3’; AL662797.1,

forward, 5’-CGGATCTTGCTGATAAGGAGAGTGC-3’ and

reverse, 5’-ATGTGGTACGGAAGGAGGCAGAG-3’; NR2F1-

AS1, forward, 5’- CGGCACAGCAGACCTCTTAGTAATG-3’

and reverse, 5’- CAACAGATTGGCTGGAGGATGGTAG-3’;

SETBP1-DT, forward, 5’- TGGCTGCTGGTTTGAGTTCC

TTC-3’ and reverse, 5’- CCCAGTCTCTTTCACTCCACTTCA

C-3’; AC011503.2, forward, 5’- CTTCGCCTCATACTTGCTCT

GTCTC-3’ and reverse, 5’- GCATCTGCTTCTGGTGAGAG

TGTC-3’; AC093010.2, forward, 5’- CCATAAGTCTCGGCAC

TGCTCATC-3’ and reverse, 5’- GACTTCCCAGTATGGC

GTTTCTCC-3’; LINC00649, forward, 5’- AGACACTTGCG

GTTCTTCCATTGAG-3’ and reverse, 5’- GGTGCCTCAGAT

GCTACTGGTTATG-3 ’ ; L INC02321 , f o rward , 5 ’ -

TGGTGAGGGTTGGTGAGCAGAC-3’ and reverse, 5’-

CCCAGAGGAACGCCAGGAATTAAC-3’.
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Cell transfection and CCK-8 assay

5637 cells were grown in 1640 medium (Servivebio)

containing 10% fetal bovine serum (EVERY GREEN) in an

incubator (37°C and 5% CO2). Small interfering RNA targeting

LINC00649 (si-LINC00649), as well as negative control RNA

(si-NC), were transfected into 5637 cells by Lipo 2000

(Invitrogen). The viability of 5637 cells was detected using the

CCK-8 assay kit (Krbio) according to the manufacturer’s

instructions. Optical density was measured by a microplate

reader (BIOTEK).
RNA FISH

BCa tissue chips (Biotechwell) were fixed with 4%

formaldehyde/10% acetic acid and stored in 70% ethanol

overnight. A fluorescently labelled single-stranded probe

(lncRNA LINC00649: AGTTGGAAAGGTCCCGCTAGT

TGA-Cy3; lncRNA AC011503.2: AGAGACAGAGCAAGT

ATGAGGCGAA-Cy3) was synthesized, fol lowed by

hybridization. 18S and U6 oligonucleotides were purchased

from Ribo Bio (Shanghai). To increase the stability of RNA

foci, RNA signal was detected with the tyramideAlexa Fluor 546

Signal Amplification Kit (Invitrogen). After labelling,

fluorescence signals were detected using a microscope

(BX41; Olympus).
Statistical analysis

R version 4.1.2 was used to examine all statistical data.

Kaplan-Meier survival analysis was performed to detect

survival distinctions between the two risk groups. Statistical

analysis was performed using flexible statistical methods and

was statistically significant when the p-value was less than 0.05.
Results

Acquisition of differentially expressed
BMlncRNAs

From the BCa transcriptome data of TCGA, a total of 14,056

lncRNAs were extracted. From the BM-BASE database, 222 BM

genes were obtained, and 79 differentially expressed BM genes

were identified, comprising 27 up-regulated genes and 52 down-

regulated genes (Figure 1A). Then, the co-expression

relationship between 14,056 lncRNAs and 79 differentially

expressed BM genes was analyzed. A total of 435 lncRNAs

were identified as BM lncRNAs. Finally, 304 DEBMlncRNAs

were identified (Figure 1B).
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Development of a prognostic risk model

We integrated clinical characteristics from the BCa cohort in

TCGA and excluded individuals with a survival duration of

fewer than 30 days. A total of 396 patients were randomly

allocated to the train and test groups. We identified 22

prognosis-associated DEBMlncRNAs in the train set through

univariable Cox analysis. We then performed LASSO Cox

regression and multivariate analysis. Ultimately, eight

DEBMlncRNAs (AC004034.1, AL662797.1, NR2F1-AS1,

SETBP1-DT, AC011503.2, AC093010.2, LINC00649 and

LINC02321) were identified to develop a risk model

(Figures 2A, B). The expression levels of eight DEBMlncRNAs

differed statistically substantially between the normal and tumor

groups from the BCa dataset in TCGA (Figure 2C–J). We list the

detailed coefficient of the eight lncRNA signatures (Table 1). We

summarized eight lncRNA-related differential BM genes

(cor>0.4) (Table S1). The low-risk group had a better

prognosis than the high-risk group based on the disease-

specific survival and progression-free survival curve (Figure 3).
Prognostic features of risk models

The predictive value of prognostic features was evaluated in

the entire set (n=396), train set (n=200), and test set (n=196).

The distribution of risk scores, survival status, survival time, and

associated expression criteria for these lncRNAs between low-

and high-risk groups was assessed using risk scoring formulas

across the entire set, training, and test sets. Based on these

findings, The high-risk group had a worse prognosis than the

low-risk group (Figure 4). The hazard ratio and 95% confidence

interval (CI) of the risk score in univariate Cox regression were

1.438 and 1.308-1.580, respectively (p < 0.001). The hazard ratio

and 95% CI of risk were 1.381 and 1.252-1.524 (p < 0.001),
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respectively, according to multivariate Cox regression

(Figures 5A, B). Furthermore, age (1.029 and 1.012–1.047; p <

0.001), T (1.383 and 1.013–1.38; p < 0.001) and M (1.372 and

1.015–1.855; p < 0.001) were also independent prognostic

parameters (Figure 5B).

The ROC curve was used to assess the sensitivity and

specificity of the model to predict prognosis. We further

examined the ROC curve results by calculating the area under

the ROC curve (AUC). The 1-, 3-, and 5-year AUCs were 0.707,

0.655, and 0.704, respectively, in the entire set; 0.728, 0.735, and

0.782, respectively, in the training set; and 0.662, 0.565, and

0.635, respectively, in the test set (Figures 5C–E). The clinical

variables and risk score had the strongest predictive capacity

according to the risk model’s 1-year ROC curve (Figures 5F–H).
Clinical features and risk scores

We per formed c l in ica l ana lyses based on the

clinicopathological characteristics of BCa patients in the

TCGA database (Table 2). Heatmap revealed the expression of

8 specific DEBMlncRNAs in high- and low-risk groups. In the

BCa data from the TCGA database, there is a statistically

significant difference in M, T, stage, gender between the two

risk subgroups (Supplementary Figure 1A). Through further

analysis, we found a significant relationship between risk score

and clinical characteristics, age, gender, grade, M, N, and T

stages, and the findings showed that women and men had higher

risk scores in BCa patients. Patients with the M1 stage have

higher risk scores than the M0 stage. Stage II and stage III, stage

III and stage IV, T2 and T3, etc., had significant statistical

differences in risk scores compared to Stage I and T1,

respectively. At the same time, there was no statistically

significant relationship between risk score and age, grade, or N

stage (Supplementary Figures 1B–H).
BA

FIGURE 1

Screening for basement membrane-associated differential genes and differential LncRNAs. (A) Volcano plot of 79 basement membrane-
associated differential genes. (B) Volcano plot of 304 basement membrane-associated differential LncRNAs.
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C D E

F G H

I J

A

FIGURE 2

Construction of a basement membrane-associated lncRNA risk model. (A) The LASSO coefficient profile of 8 differential basement membrane-
associated lncRNAs. (B) Variable cross-validation in LASSO regression. Expression of 8 lncRNAs (C) AC004034.1 (D) AL662797.1 (E) NR2F1-AS1
(F) SETBP1-DT (G) AC011503.2 (H) AC093010.2 (I) LINC00649 (J) LINC02321 in bladder cancer and adjacent paracancerous tissues from the
TCGA database.
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Nomogram and clinical indicators

Based on independent prognostic factors, namely risk score,

age, T, N, stage, gender, and grade, we used nomograms to

predict 1-, 3-, and 5-year overall survival in BCa patients

(Figure 6A). We found that risk scores had the highest

concordance index, suggesting that risk scores were more

accurate than other clinical information in predicting

prognostic outcomes (Figure 6B). We also used 1-, 3-, and 5-

year calibration plots to verify the nomogram’s agreement with

the overall survival prediction (Figure 6C). Survival curves
Frontiers in Oncology 07
indicated that patients in the high-risk group with age, gender,

T0-2 and T3-4 disease had a poorer prognosis (Figures 7A–F).
Functional and pathway enrichment
analysis in risk model

We used GO, KEGG and GSEA to analyze DEGs in low-risk

and high-risk groups to better understand the underlying

biological processes. In the GO analysis, DEGs were mainly

enriched in BCa-related biological processes, including
TABLE 1 Eight DEBMlncRNAs with BCa in the TCGA dataset were identified by LASSO analysis.

Gene HR Lower 95% CI Upper 95% CI Coefficient P-value

AC004034.1 1.572714 1.058455 2.336831 0.633536 0.025017

AL662797.1 0.376602 0.180607 0.785289 0.770694 0.009198

NR2F1-AS1 1.931818 1.217866 3.064313 0.669855 0.005153

SETBP1-DT 2.151293 1.304341 3.548201 0.645962 0.002694

AC011503.2 0.591378 0.413111 0.846571 0.361024 0.004105

AC093010.2 0.733876 0.550232 0.978812 0.477727 0.035230

LINC00649 0.547561 0.343932 0.871752 60.527114 0.011135

LINC02321 1.560638 1.140471 2.135601 0.307869 0.005414
front
HR, hazard ratio; CI, confidence interval.
B C

D E F

A

FIGURE 3

The lower risk group had a better prognosis in the risk model. (A–C) Kaplan-Meier curves of disease-specific survival in the entire, train and test
sets, respectively, in the high-risk group compared with the low-risk group. (D–F) Kaplan–Meier curves of progression-free survival in the entire,
train and test sets, respectively, in the high-risk group compared with the low-risk group.
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“Epidermis development”, “Humoral immune response”,

“Extracellular matrix disassembly”, and “Keratinization”

(Figure 8A). According to the KEGG analysis, these DEGs

were mainly enriched in the “IL−17 signaling pathway”,

“Proteoglycans in cancer” (Figure 8B). In the GSEA analysis,

“Ecm receptor interaction” and “Regulation of actin

cytoskeleton” were mainly enriched in the high-risk group.

The low-risk group was enriched in “arachidonic acid

metabolism” , “fatty acid metabolism” , and “retinol

metabolism” (Supplementary Figure 2).
Tumor mutational burden analysis in
risk model

After classifying BCa patients into high TMB (n = 185) and

low TMB (n = 186) groups based on the median TMB, the

waterfall plot showed that the highest mutated genes between
Frontiers in Oncology 08
the two risk groups were TP53 and TTN scores (Figures 9A, B).

The mutation frequency of KDM6A was 27% in the low-risk

group and 18% in the high-risk group. Further analysis found

that patients in the low-risk group had higher TMB scores than

those in the high-risk group (Figure 9C). In the Kaplan–Meier

results, a high TMB increased patient survival compared to a low

TMB (Figure 9D). Interestingly, various groups of patients with

varying TMB scores showed diverse prognoses in this research.

In the Kaplan–Meier analysis, patients in the low-risk category

with high TMB had a significantly better prognosis than patients

in other categories. (Figure 9E).
Immune cell infiltration, immune
function analysis and immunotherapy

We assessed differences in immune function between the

two groups by calculating the ESTIMATE score, immune score,
B

C
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I

J
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FIGURE 4

Association between basement membrane-associated lncRNA signatures and prognosis in a risk model. The Kaplan–Meier curves of overall
survival, heatmap, risk score, survival time for BCa patients in the (A–D) entire set. (E–H) train set. (I–L) test set.
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and stromal score of BCa samples. The results of the study found

that patients in the high-risk group had higher scores in all three

categories (Supplementary Figures 3A–C). By further exploring

the distribution of immune cells in BCa patients, we found that

the low-risk group was enriched with a high number of B cells

naive, plasma cells, T cells follicular helper, T cells regulatory

and dendritic cells activated, whereas the high-risk group

contains a higher proport ion of NK cel ls rest ing

(Supplementary Figure 3D). By analyzing the correlation of

immune cell infiltration with risk score, we found that risk

score was significantly negatively associated with the function of

B cells naive, plasma cells, T cells follicular helper, T cells
Frontiers in Oncology 09
regulatory and dendritic cells activated and were significantly

positively correlated with NK cells resting (Supplementary

Figures 3E–I).

Our study found 33 immune checkpoints (LAIR1, TNFSF18,

TNFSF9, TNFRSF25, TNFRSF9, TNFRSF18, ICOS, CD70,

PDCD1, HAVCR2, CD44, BTLA, PDCD1LG2, CTLA4,

CD274, LAG3, TNFRSF14, TNFRSF8, CD80, CD48, LGALS9,

IDO1, TNFSF4, TNFRSF4, CD27, CD28, NRP1, CD86, CD276,

TIGIT, TNFSF14, TNFSF15, and CD160) that were statistically

different in the high-risk and low-risk groups (Supplementary

Figure 4A). Through the analysis of immune function, 12

immune function scores in the high-risk group were higher
B

C D E

F G H

A

FIGURE 5

Independent prognostic value of clinical features in risk models. (A, B) Univariate Cox regression analysis and multivariate Cox regression
analysis of clinical factors and risk scores. (C–E) Time-dependent ROC curves predict 1-year, 3-year, and 5-year overall survival for BCa patients
in the entire; train; and test sets. (F–H) Multivariate time‐dependent ROC curve predicted the AUC for age, gender, grade, stage, T, N, and risk
score of the total survival for 1‐year in the entire; train; and test sets.
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than those in the low-risk group (Supplementary Figure 4B). In

addition, tumor immune dysfunction and exclusion (TIDE)

scores were significantly higher in the high-risk group

(Supplementary Figure 4C). We classified BCa patients into

four immune subtypes (C1, C2, C3, and C4), with C2 having

the highest risk score, followed by C1, and finally C3 and C4,

with no stat is t ica l di fference between C3 and C4

(Supplementary Figure 4D).

With the popularity of personalized medicine in recent

years, immunosuppressive treatment, such as immune

checkpoint inhibitor (ICI) therapy, has also gained much

attention. When considering clinical value, the high-risk group

was more sensitive to A.443654, A.770041, AICAR, AMG.706,

AUY922, AZ628, and AZD.0530 than the low-risk group. The

low-risk group was more sensitive to ABT.888, AKT. Inhibitor

VIII, ATRA and Axitinib (Supplementary Figure 5).
Identification of eight BM-associated
LncRNAs

We analyzed the expression levels of eight lncRNAs in BCa

and paracancerous tissues in the GSE133624 chip. AC011503.2,

LINC00649, and LINC02321 were highly expressed in BCa,

NR2F1-AS1, SETBP1-DT, and AC093010.2 were under

expressed in BCa. This is consistent with the expression trend

of six lncRNAs in BCa and paracancerous tissues in the TCGA

database (Supplementary Figure 6). We analyzed the expression

of eight BM-associated lncRNAs and validated them in normal

human bladder epithelial cells and human bladder cancer cells.

The study showed that AC004034.1, AC011503.2, LINC00649

and LINC02321 (Figures 10A–D) were significantly elevated in

human BCa cells, NR2F1-AS1, SETBP1-DT and AC093010.2
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(Figures 10E–G) were significantly reduced in human bladder

cancer cells. The expression of AL662797.1 (Figure 10H) was

significantly increased in 5637 cells and significantly decreased

in BIU-87 cells.
RNA FISH and CCK8

We verified and localized the expression of LINC00649 and

AC011503.2 in BCa tissue microarray by RNA FISH technology.

We found that both LINC00649 and AC011503.2 were highly

expressed in BCa tissues, LINC00649 was mainly distributed in

the cytoplasm, and AC011503.2 was distributed primarily in the

nucleus (Figures 11A, B). We used si-LINC00649 to knock down

the expression of LINC00649 in 5637 cells, and si-LINC00649-1

had the best knockdown effect (Figure 11C). Through CCK8

detection, we found that knockdown of LINC00649 could

promote the proliferation of 5637 cells (Figure 11D).
Discussion

BCa is one of the most common invasive tumors in urology.

At present, the main clinical treatment methods are surgical

resection and chemotherapy. However, in recent years, the

prognosis of BCa patients has not been effectively improved

due to tumor metastasis and recurrence (24). As the main barrier

of carcinoma in situ and invasive tumors, the BM ensures the

integrity of its structure and function, can control the metastasis

of cancer cells, delay the progression of cancer, and improve the

prognosis of patients. The BM is mainly composed of a fibrin

network consisting of collagen IV and laminin. There is

substantial evidence that tumor invasion is associated with
TABLE 2 Clinicopathological parameters of BLCA patients in this research.

Covariates Type Total Test Train

Age (years) ≤65 159 (40.15%) 84 (42.86%) 75 (37.5%)

>65 237 (59.85%) 112 (57.14%) 125 (62.5%)

Gender FEMALE 104 (26.26%) 57 (29.08%) 47 (23.5%)

MALE 292 (73.74%) 139 (70.92%) 153 (76.5%)

Grade High Grade 375 (95.42%) 184 (95.34%) 191 (95.5%)

Low Grade 18 (4.58%) 9 (4.66%) 9 (4.5%)

Stage Stage I-II 126 (31.98%) 69 (35.57%) 57 (28.5%)

Stage III-IV 268 (68.02%) 125 (64.43%) 143 (71.5%)

T-stage T0-T2 117 (32.14%) 68 (37.57%) 49 (26.77%)

T3-T4 247 (67.82%) 113 (62.43%) 134 (73.22%)

M-stage M0 189 (94.97%) 89 (95.7%) 100 (94.34%)

M1 10 (5.03%) 4 (4.3%) 6 (5.66%)

N-stage N0-N1 273 (76.9%) 130 (75.14%) 143 (78.57%)

N2-N3 82 (23.1%) 43 (22.86%) 39 (21.43%)
fro
BLCA, bladder cancer; T, tumor; N, node; M, metastasis.
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collagen IV and laminin (25). As in invasive BCa, the expression

level of serum laminin P1 is proportional to disease progression

(26). Loss of laminin 5 expression in immunohistochemistry is

strongly associated with increased BCa mortality (27). Highly

aggressive tumors secrete laminin and collagen IV, and

overexpression of these two proteins promotes tumor growth

and angiogenesis (28). The usefulness of BM detection for the

classified staging of BCa has also reached widespread recognition

(25). These all reflect the importance of the BM for the clinical

progression of BCa. However, the BM’s specific components and

regulatory mechanisms are still unclear. The latest research

screened BM-related proteins through bioinformatics
Frontiers in Oncology 11
technology and a large amount of disease genome information

and finally found 222 protein expression genes closely related to

BM (29). Although many types of lncRNAs are related to tumor

prognosis in previous studies, such as immune-related lncRNAs,

epithelial-mesenchymal transition-related lncRNA, redox-

related lncRNA, etc (30–32). However, there are currently few

approaches for predicting BM-related lncRNAs in BCa patients.

In this study, we developed a BM-related lncRNA prognostic

model based on the genetic information of the BM-BASE

database. In our study, 8 BM-related lncRNAs, including

AC004034.1, AL662797.1, NR2F1-AS1, SETBP1-DT,

AC011503.2, AC093010.2, LINC00649and LINC02321, were
B C

A

FIGURE 6

Construction and evaluation of the nomogram of the risk model. (A) Nomogram combines risk scores and clinical features to predict 1-, 3-, and
5-year overall survival. (B) Concordance index of risk score and clinical characteristics. (C) The calibration curves for 1-, 3-, and 5-year overall
survival. *P < 0.05, **P < 0.01, ***P < 0.001.
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selected by LASSO regression to construct a risk model based on

DEBMlncRNAs. We used the dataset GSE133624 for external

validation of 8 lncRNAs, of which the expression results of 6

lncRNAs(AC011503.2, LINC00649, LINC02321, NR2F1-AS1,

SETBP1-DT, and AC093010.2) were consistent with the

results in the TCGA database. Currently, we have verified the

expression of eight lncRNAs in SV-HUC-1, 5637, and BIU-87.

SV-HUC-1 cells served as controls; AC004034.1, AC011503.2,

LINC00649, and LINC02321 were highly expressed in 5637,

BIU-87 cells, NR2F1-AS1, SETBP1-DT, and AC093010.2 in

5637, BIU-87 cells Moderate to low expression. These are

consistent with the expected results. However, AL662797.1 is

highly expressed in 5637 cells and low in BIU-87 cells, and the

mechanism needs further exploration. In a human bladder

cancer chip, we examined the expression and cellular

localization of LINC00649 and AC011503.2. We found that

LINC00649 and AC011503.2 were highly expressed in bladder

cancer tissues, LINC00649 was mainly distributed in the

cytoplasm, and AC011503.2 was distributed primarily in the

nucleus. Furthermore, we knocked down the expression of

LINC00649 in 5637 cells and found that it promoted the

proliferation of 5637 cells. However, the specific mechanism

needs further research and verification. Previous studies found

that NR2F1-AS1 upregulates the expression level of ST8SIA1 by

recruiting SPI1, thereby promoting proliferation and metastasis

of BCa cells (33). LINC00649 has verified its tumor-promoting

effect in gastric cancer, colorectal cancer, BCa, etc (34–36).

LINC02321 is upregulated in BCa tissues and UMUC3 cells

(37). AC004034.1, AL662797.1, SETBP1-DT, AC011503.2 and
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AC093010.2 have been less studied and will be explored further.

We focused on DMlncRNAs and pathways by investigating the

correlation between gene expression and gene mutation using

clinical data from normal and BCa samples reported by TCGA

to determine whether DMlncRNAs are potential targets for BCa

therapy. Patients with higher risk scores were more likely to have

adverse outcomes than patients with lower risk scores. TMB

analysis showed significant differences in the mutated genes

KDM6A, ARID1A and TTN and prognosis among different

groups, and their gene functions need to be further studied.

From the immune microenvironment, we can see that patients

in the high-risk group have more resting NK cell infiltration. In

addition, patients in the low-risk group had higher proportions

of naive B cells, plasma cells, T cell follicular helper cells,

regulatory T cells, and activated dendritic cells. This may be

the reason for the poorer prognosis in the high-risk group, and

further studies are needed to prove our results. Interestingly,

low-risk and high-risk group patients were sensitive to multiple

chemotherapeutic agents. Immune checkpoint analysis revealed

that 33 genes based on this risk score were significantly different.

Several immune checkpoint inhibitors (ICIs) are

currently approved as first-line therapy in patients who are not

suitable for cisplatin or second-line therapy in metastatic

urothelial carcinoma (MUC) of the bladder. About 30%

of MUC patients will respond to ICIs immunotherapy.

Immunosuppressants currently developed for PD-1 and PD-L1

show better prognostic effects than chemotherapy in the second-

line treatment of MUC (38). ICIs targeting CTLA4, such as

ipilimumab and tremelimumab, have also proven therapeutic
B C

D E F

A

FIGURE 7

The clinical utility of the risk score. (A, B) Age. (C, D) Gender. (E, F) T.
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effects in treating advanced BCa (39). Extracellular matrix

disassembly and remodeling can affect tumor invasion by

altering the tumor microenvironment (40). Keratinization is

also associated with tumor metastasis, with transformed

keratinocytes invading the dermis through the BM leading to

aggressive cutaneous squamous cell carcinomas with substantial

metastatic potential (41). IL-17 signaling pathway is also a classic

cancer-related signaling pathway, which has been extensively
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studied in breast cancer, colorectal cancer, and squamous cell

carcinoma (42–44).

Proteoglycans in BM are aberrantly expressed or

dysfunctional upon stimulation by cancer cells and affect

cancer and angiogenesis, and are critical to the evolution of

the tumor microenvironment (45). Tumor mutational burden is

an important biological marker indicating tumor mutation

status and is considered as an effective method to discover
B

A

FIGURE 8

GO and KEGG enrichment analysis. (A) GO enrichment analysis in the differentially expressed genes between the low-risk and high-risk groups.
(B) KEGG pathway analysis in the differentially expressed genes between the low-risk and high-risk groups.
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potential tumor immune regulatory pathways (46, 47). In this

study the prognostic survival rate of H-TMB is higher than that

of L-TMB, indicating that the prognosis of L-TMB patients in

the high-risk group is the worst and requires earlier combined

treatment and targeted therapy. In the early stages of tumors,

immune cells can interact with cancer cells through the BM

barrier to control cancer progression (48). In our study, patients

in the high-risk group tend to have higher tumor stages, which

may be related to changes in the structure and function of the

basement membrane. Still, more researches are needed to prove

our results further.

In recent years, with the maturity of sequencing technology, big

data mining has gradually emerged and promoted the process of

personalized medicine. Although some BM-related proteins have

been studied in BCa in the past, the core BM-related proteins have

not been summarized and modeled. The BM-related protein

expression genes were downloaded from the BASE database, and

these genes were used for further research and modeling in BCa.

Currently, risk scoring models are mostly constructed using the

LASSO regression method. The ROC curve can also indicate that
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the risk model has higher sensitivity and specificity in predicting

prognosis than other clinical indicators. At the same time, the

correlation analysis between risk scores and clinical index showed

statistical differences in immune scores in terms of T stage, M stage

and gender. This result implies that high-risk scores are associated

with aggressive BCa as well as metastatic BCa, and are consistent

with prognostic outcomes in prior-risk subgroups. Immune

checkpoint inhibitors are a promising cancer therapy that blocks

key molecules in the development of cancer to demonstrate

anticancer efficacy, especially in patients with advanced cancer

and those who cannot afford chemotherapy (49, 50).

In conclusion, our study provides a basis for the study of

basement membranes in BCa. First, we developed prognostic risk

models for 8 DEBMlncRNAs through public databases, found

that the risk models could accurately predict the prognosis of

patients, and the risk score was also closely related to tumor

invasion and metastasis and verified the expression of 8

DEBMlncRNAs in BCa cells. Second, we confirmed the

expression of LINC00649 and AC011503.2 in human bladder

cancer tissue microarray by RNA-FISH. Third, we knocked down
B

C D E

A

FIGURE 9

Differences and prognosis in tumor mutational burden (TMB). (A) The waterfall plot and heatmap of mutation genes in the high-risk group.
(B) The waterfall plot and heatmap of mutation genes in the low-risk group. (C) Differences in TMB scores across risk groups. (D) Kaplan-Meier
curves of H-TMB group and L-TMB group. (E) Kaplan-Meier curve of H-TMB and L-TMB scores in the different risk groups.
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FIGURE 10

qRT-PCR for detection of lncRNA expression levels in a risk model in BCa cells. (A) AC004034.1 (B) AC011503.2 (C) LINC00649 (D) LINC02321
(E) NR2F1-AS1 (F) SETBP1-DT (G) AC093010.2 (H) AL662797.1 *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 11

Validate the expression of model lncRNAs in tissues and explore the effect on 5637 cell proliferation. (A) RNA-FISH showed that LINC00649 was
mainly distributed in the cytoplasm. (B) RNA-FISH showed that AC011503.2 was mainly distributed in the nucleus. (C) The effects of si-
LINC00649 on LINC00649 expression in 5637 cells. (D) The effects of knockdown of LINC00649 on the proliferation viability of 5637 cells.
**P > 0.01, ***P >0.001, ns, not significant.
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the expression of LINC00649 in 5637 cells with si-LINC00649 and

demonstrated that the knockdown of LINC00649 could promote

the proliferation of 5637 cells.
Conclusions

In conclusion, we identified eight BM-associated lncRNAs for

predictive signature and risk modeling. This risk model can predict

the prognosis and immune status of BCa patients, classify the

degree of tumor infiltration and metastasis, and thus provide a

favorable early personalized treatment option for BCa patients.
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