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Fusing hand-crafted and deep-
learning features in a
convolutional neural network
model to identify prostate
cancer in pathology images
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1Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University,
Beijing, China, 2Institute of Medical Technology, Health Science Center, Peking University,
Beijing, China, 3Department of Pathology, Guangdong Provincial People’s Hospital, Guangzhou, China
Prostate cancer can be diagnosed by prostate biopsy using transectal

ultrasound guidance. The high number of pathology images from biopsy

tissues is a burden on pathologists, and analysis is subjective and susceptible

to inter-rater variability. The use of machine learning techniques could make

prostate histopathology diagnostics more precise, consistent, and efficient

overall. This paper presents a new classification fusion network model that

was created by fusing eight advanced image features: seven hand-crafted

features and one deep-learning feature. These features are the scale-invariant

feature transform (SIFT), speeded up robust feature (SURF), oriented features

from accelerated segment test (FAST) and rotated binary robust independent

elementary features (BRIEF) (ORB) of local features, shape and texture features

of the cell nuclei, the histogram of oriented gradients (HOG) feature of the

cavities, a color feature, and a convolution deep-learning feature. Matching,

integrated, and fusion networks are the three essential components of the

proposed deep-learning network. The integrated network consists of both a

backbone and an additional network. When classifying 1100 prostate pathology

images using this fusion network with different backbones (ResNet-18/50,

VGG-11/16, and DenseNet-121/201), we discovered that the proposed model

with the ResNet-18 backbone achieved the best performance in terms of the

accuracy (95.54%), specificity (93.64%), and sensitivity (97.27%) as well as the

area under the receiver operating characteristic curve (98.34%). However, each

of the assessment criteria for these separate features had a value lower than

90%, which demonstrates that the suggested model combines differently

derived characteristics in an effective manner. Moreover, a Grad-CAM++

heatmap was used to observe the differences between the proposed model

and ResNet-18 in terms of the regions of interest. This map showed that the

proposed model was better at focusing on cancerous cells than ResNet-18.

Hence, the proposed classification fusion network, which combines hand-

crafted features and a deep-learning feature, is useful for computer-aided
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diagnoses based on pathology images of prostate cancer. Because of the

similarities in the feature engineering and deep learning for different types of

pathology images, the proposed method could be used for other pathology

images, such as those of breast, thyroid cancer.
KEYWORDS

prostate cancer, pathology image, convolutional neural network model, feature
fusion, classification
1 Introduction

Prostate cancer, the most malignant cancer that occurs in

men, follows lung cancer in males in terms of fatality rates (1).

Transrectal ultrasound guided prostate biopsy is commonly

considered the “golden standard” of available examinations

such as rectal examinations, ultrasound examinations, X-ray

imaging, and serum immunology examinations. These

examination types directly determine the benign or malignant

characteristic of the prostate and influence the patient treatment

plan (e.g., radiotherapy, chemotherapy, resection, or

conservative treatment). However, analyzing the large number

of pathology images from biopsy tissues for treatment decision-

making is a significant burden on pathologists. In recent years,

radiomics has developed rapidly with the extraction of

quantitative metrics—the so-called radiomic features—within

medical images to capture tissue and lesion characteristics such

as heterogeneity and shape and may, alone or in combination

with demographic, histologic, genomic, or proteomic data, be

used for clinical problem solving (2). For example, using

machine learning (ML) techniques, the information from

pathology images can be extracted by automatically extracting

quantitative pathological features for high-throughput judgment

(3–6), which has the potential to increase the accuracy,

consistency, and reliability of prostate cancer diagnosis using

histopathology. There are two types of features in the field of ML:

hand-crafted features based on traditional ML and learned

features based on deep learning (DL) (7–9). The most

significant difference between the features of traditional ML

and DL is that the former are manually designed, whereas the

latter are automatically extracted by a convolutional neural

network (CNN) (10). Hand-crafted features were designed

based on the expertise of pathologists with respect to clinical

pathology diagnoses. For example, Sertel et al. extracted color–

texture characteristics from a model-based intermediate

representation to propose an automated grading method for

the quantitative analysis of the histopathology images of

follicular lymphoma (11). However, in 2018, a comprehensive

review highlighted several problems associated with the

application of ML to histopathology image analysis, which
02
include large image sizes, insufficiently labeled images,

information magnification of different levels, unordered-

texture images, and color variation and artifacts (12). DL

based on a CNN can overcome several of the abovementioned

limitations and improve the ability to identify subtle differences

in histopathological characteristics, thus allowing computers to

“see” new features or identify weak signals in images. For

example, Coudray et al. trained a deep CNN (Inception v3) on

whole-slide images obtained from The Cancer Genome Atlas to

accurately and automatically classify them as lung

adenocarcinoma, lung squamous cell carcinoma, or normal

lung tissue (13). However, the lack of interpretability hinders

the clinical application of DL (14).

As described above, there are advantages and disadvantages

to the features used in traditional ML and DL; thus, the effective

fusion of these two types of features is critical to the further

performance improvement of computer-aided diagnosis (15), as

has been found in medical radiology image analysis. For

example, a classification model of benign and malignant breast

cancer extracted low- to mid-level VGG19 features as well as

hand-crafted radiology features including size, shape, texture,

and morphological features from mammography, ultrasound,

and magnetic resonance images (16). In addition, a method for

the automated classification of lung nodules on chest

computerized tomography was presented to distinguish benign

and malignant nodules by fusing texture, shape, and DL

information (17). A pathology image classification algorithm

for malignant and benign skin tumors combines the DL feature

extraction from an encoding CNN and traditional features,

including texture and color features extracted from a gray-

level co-occurrence matrix (GLCM) (18) and the color

moment (19), respectively. The core of this algorithm is a

feature fusion algorithm that can automatically adjust the

proportion of high-level DL features and traditional features

(20). Similarly, the fusion of digital histopathology and Raman

chemical imaging modalities has the potential to improve the

binary classification of prostate cancer pathology images by

integrating both morphological and biochemical information

across data sources (21). Most recently, to mine more

information from different radiomics data in multicenter
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studies and identify personalized predictive and/or prognostic

models to improve the reproducibility, an image biomarker

standardization initiative (IBSI) was introduced for the

standardization of radiomic features (22), and some radiomics

computational frameworks were developed to comply IBSI and

allow users to complete the whole radiomics workflow within the

same software, simplifying the radiomics process, such as the

matRadiomics software (23).

In this paper, we propose a classification fusion network for

prostate pathology images, which fuses eight advanced features,

namely, seven hand-crafted features and one DL feature. The

hand-crafted features are the local features of the scale-invariant

feature transform (SIFT) (24), speeded up robust feature (SURF)

(25), and oriented features from accelerated segment test (FAST)

and rotated binary robust independent elementary features

(BRIEF) (ORB) (26), cavity histogram-of-oriented-gradients

(HOG) (27) features, cell nuclei texture and shape features,

and dye color features. The DL feature is obtained from the

convolutional output layer of a ResNet-18. A model was created

to effectively combine these different features. This model

consists of three parts: a matching network to ensure that the

different dimensions of each feature are consistent, an integrated

network to ensure that features are represented in a sparse

manner, and a fusion network to output the classification result.

The results of the experiments and multiple analyses reveal

that the proposed method can effectively determine the

difference between positive and negative images.
2 Materials and methods

2.1 Data collection

The pathology images of the prostate were obtained from

hematoxylin and eosin slides at 40× magnification with

Olympus microscopes (Olympus, BX53) at the Department of

Pathology, Health Science Center, Peking University, China, and

the Department of Pathology, Guangdong Provincial People’s

Hospital, Guangzhou, China. The image size was 680 × 512

pixels and 744 × 512 pixels respectively. Based on their

histologic features, two or three expert pathologists diagnosed

any diseases that appeared in these images.

Finally, 1100 high-quality prostate pathology images with

typical features were used in the study, 546 of which showed

signs of prostate cancer.
2.2 Hand-crafted features

2.2.1 Qualitative diagnosis
In general, the pathologists qualitatively diagnosed the

prostate pathology images based on the following features (28, 29).
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The normal prostate tissue contains glands (including a gland

cavity and bilayer columnar epithelial cells), stroma, nuclei,

stones, and other anatomical structures. This tissue can be

divided into four characteristic structures: 1) the large gland

cavity structure, where the gland cavity is large and the papillary

protrusion causes the gland cavity to exhibit a plum-like structure;

2) the leaf structure, where the gland cavity and the gland lobe are

divided into lobes; 3) the amyloid bodies in the gland cavity; and

4) a bilayer structure consisting of the inner and outer epithelial

cells around the gland cavity. Malignant prostate tissue does not

generally exhibit these structural characteristics.

There are three important indicators for the diagnosis of

prostate cancer: 1) Cell heterogeneity: In general, the nucleus

area of cancerous cells is larger than that of normal cells, and the

variance in the nucleus sizes in the images is substantial.

Moreover, chromatin in cancer cells is clumped on the side,

and its nuclear membrane is clear. A large nucleolus with a

diameter greater than 1.2 mm is a significant diagnostic indicator

of prostate cancer. 2) Invasion phenomenon: Multiple small

gland cavities are present in prostate cancer tissue, which

directly leads to changes in the average size and variance of

the gland cavity area. The boundary of the gland cavity in

prostate cancer tissue is smooth without the papillary

protrusions found in normal prostate tissue. 3) Disordered

tissue structure: The normal prostate gland is centered on the

urethra, radially distributed around it, and the inner edges of the

acini are undulating and serrated. In prostate cancer, the regular

growth shape of the gland disappears and the acini grow

irregularly in all directions, which directly changes the

texture characteristics.

2.2.2 Quantitative parameters
Feature engineering is a key phase in the design of pathology

image classification methods that impacts the final classification

outcome (30). Based on the qualitative diagnosis characteristics

described by the pathologists, seven hand-crafted features were

extracted from the prostate pathology images: the texture and

shape features of the cell nuclei; the gradient features of the

cavity; the local image features; and the color features of the dye.

Specifically, the GLCMwas calculated to describe the texture; the

Fourier descriptor (31) was selected to describe the shape; HOG

was used to determine the gradient characteristic of the cavity;

and the SIFT, SURF, and ORB were used to describe the local

image features. Moreover, the color correlogram (32), which

eliminates the influence of different stains, was selected to

describe the color.

2.2.2.1 Texture and shape features of the cell nucleus

To describe the texture of a cell nucleus, the GLCM was

calculated. The GLCM describes the texture information of the

image according to the probability of the repeated occurrence of

the gray-scale structure. In particular, it describes the number of
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times that pixel pairs with distance d and direction q (0°, 45°,

90°, and 135°) occur. Several statistical properties of texture

features calculated from the GLCM indirectly reflect the image

texture characteristics, which include the energy, dissimilarity,

contrast, homogeneity, and correlation. Finally, we employed a

six-dimensional feature vector to represent the image

texture features.

To describe the shape features of a cell nucleus, the Fourier

descriptor was used to describe the contour of the object. The

Fourier descriptor converts the contour feature from the spatial

domain to the frequency domain using the Fourier transform of

the object boundaries in an image. In this study, we extracted the

first 60 dimensions of the frequency domain as the feature

vectors of the image. For vectors with fewer than 60

dimensions, we padded the ends of the 60-dimensional vector

with the high-frequency information after shifting the zero-

frequency component to the center of the spectrum.

2.2.2.2 Gradient features of the gland cavity

The HOG was employed to represent the cavity features,

given that the number of cavities between the cells in a pathology

image is significantly less than those in the cells. The HOG is a

feature descriptor used for object detection in computer vision

and image processing that represents the gradient information in

different directions within the local regions of an image. In this

study, we modified the HOG descriptor to count the cavity

features between the cells.

2.2.2.3 Local features described with SIFT, SURF,
and ORB

SIFT, SURF, and ORB are three common methods used to

describe the local feature points in an image.

These image local feature points are generally employed to

match and recognize images. They can reveal the most

important parts of an image and do not change when the

image’s brightness, shape, or noise levels change, e.g., the

points of corners and edges or the highlights and dark spots.

2.2.2.4 Color features

The color correlogram is a representation of the image color

distribution that indicates the proportion of pixels of a certain

color with respect to the entire image and reflects the spatial

correlation between different color pairs. Experimental results

have revealed that color correlograms perform retrieval more

efficiently than color histograms and color coherence vectors. It

is complex to compute the color correlogram with respect to the

correlation between any colors. By contrast, the color auto-

correlogram is a simple scheme that only shows how pixels of

the same color are related to each other in space. For efficiency

and convenience, we used the color auto-correlogram to extract

the color features. In addition, the color auto-correlogram can

eliminate the image differences caused by different staining
Frontiers in Oncology 04
owing to its consideration of the statistical properties of the

same color.
2.3 DL feature

DL features were extracted from the convolutional and fully

connected layers of the CNN. These features include abstract

visual characteristics. Most researchers agree that spatially closer

pixels are more connected than distant ones. Each neuron

requires only local visual information, not the full image.

Then, global information is compiled from the local data.
2.4 Fusion CNN construction

Although the hand-crafted and DL features contain a wide

range of information that is important for the global pathology

slice in addition to the local tissue, we still need an effective

method to aggregate these features from various scales to

increase the overall accuracy, which should be higher than the

values corresponding to any individual feature.

Figure 1A shows that, apart from hand-crafted feature and

DL feature extraction (Figure 1B), the proposed network is made

up of three components: the matching network (Figure 1C),

which is used to adjust the hand-crafted features; the integrated

network (Figure 1D), which is used to process all of the features;

and the fusion network (Figures 1E, F), which is used to combine

different features. In the following sections, further details will be

provided regarding each network.
2.4.1 Feature extraction
2.4.1.1 Hand-crafted feature extraction

Figure 2 presents the extraction process of the hand-crafted

features. Cell nucleus characteristics that include the texture and

shape features shows in Figure 2A. To obtain the texture feature,

the critical step is the calculation of the GLCM. First, all cell

nuclei are extracted from the original pathology images using the

watershed segmentation algorithm. Thereafter, the six statistical

properties calculated from the GLCM of each cell nucleus image

are used to form the texture features of the corresponding

nucleus. Finally, we input all the texture features of the

nucleus to the combined bag of words (BoW) (33) and term

frequency–inverse document frequency (TF–IDF) (34) model

(as detailed in Section 2.4.2) to obtain the texture features of each

pathology image. Similar processes are used to obtain the shape

feature of each pathology image; the Fourier descriptors of the

contour of each cell nucleus are input to the BoW and TF–IDF

model to obtain the shape features of the corresponding

pathology images. Both the texture features and shape features

are limited to 50 dimensions to facilitate the subsequent feature

fusion process.
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FIGURE 1

Proposed network for pathology image classification: (A) the whole workflow; (B) DL feature extraction; (C) architecture of the matching
network; (D) architecture of the integrated network; (E) and (F) for architecture of the fusion network with and without concatenation.
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FIGURE 2

Hand-crafted feature extraction: (A) texture and shape feature extraction of the cell nuclei; (B) cavity feature extraction; (C) feature extraction;
(D) color feature extraction.
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A total of 30 orientations and eight pixels in each cell block

were found to be the most suitable for the classification of

pathology images after multiple evaluation experiments. In

addition, the HOG features are not normalized because the

normalization is used to eliminate the difference in contrast due

to illumination in the processing of natural images, which is not

suitable for medical images. Because of the different sizes of the

cavities, the number of cell blocks in each cavity are different. We

use the BoW and TF–IDF model to obtain the statistical

information of the cell blocks in the cavity, which are selected

as the cavity features. The detailed extraction of cavity features is

shown in Figure 2B.

SURF finds almost as many key points as SIFT, but its vector

dimensions are smaller (64 vs 128 dimensions). In addition,

ORB is an enhanced method that is based on the features from

accelerated segment test (FAST) algorithm, which is the

approach that has the lowest dimensionality (32 dimensions)

of the extracted features and the least number of feature points.

The feature points for SIFT, SURF, and ORB are input to the

BoW and TF-IDF model to obtain 50-dimensional feature

vectors, as illustrated in Figure 2C. As a result, we identified

three eigenvectors, all of which represent distinct local aspects of

the pathology images as a whole. This is the same as the above

features of both the cell nuclei and cavities; they are all

concerned with the local area of the image. The pathology

images do not have sufficient global features, but the color

features and DL features address this deficiency. This makes it

possible to optimize the feature fusion.

The color features were designed to consist of 50

dimensions, which is the same as the number of dimensions of

other features, to appropriately match in the proposed CNN

model. We quantize the pathology images into ten colors in the

red, green, and blue (RGB) space, and the distance vectors

representing the different distances in which the color
Frontiers in Oncology 07
distribution is calculated were set as 1, 3, 5, 7, and 9. Thus, a

final color feature with 50 dimensions is obtained, as shown

in Figure 2D.
2.4.1.2 DL feature extraction

Figure 1B presents the extraction procedure of the DL

features. Because the dataset of pathology images is small,

models with multiple parameters may induce the overfitting

phenomenon; thus, ResNet-18, which is a small neural network,

was selected as the backbone of the CNN. Finally, an integrated

network, which includes two convolutional blocks, is used to

resize the DL features to the size of the other hand-

crafted features.
2.4.2 Matching network
Before the different features are fused, the complex features

should undergo some preliminary processing to ensure that the

dimensions are the same.

The same hand-crafted features of each pathology image are

placed vertically to create a larger set of features. Then, we

employ the BoW model in combination with the TF–IDF model

to extract a specific low-dimensional set from the single-scale

image. For the unsupervised grouping of a large number of

extracted features, the BoWmethod uses the K-means clustering

method. In K-means, features that are similar to each other are

grouped into a category, aka “clustering”. The TF–IDF uses the

term frequency and inverse document frequency to determine

the weight vector of features. The term frequency is the number

of times a feature appears in all features, and the inverse

document frequency measures the uniqueness of a feature.

The flowchart of feature pre-processing is presented in

Figure 3. First, we use the training feature sets to generate the

BoW codebook. The cluster features are the number of times
FIGURE 3

BoW and TF–IDF model.
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each image feature in the codebook appears in the image. Then,

we use augmentation algorithms to add more data to the small

datasets to generalize them (see Algorithm 1, 2).

In particular, Algorithm 1 is used on the cluster features

processed by the BoW model, and 2 is used to improve the color

features calculated directly from the image. Here, m and n are

respectively the dimensionality and augmented multiples of one

feature vector. The codebook is used to determine the clustering

information for each feature point. Then, we use the normally

distributed noise called “perturbation noise” to perturb the

clustering information for data augmentation. Lastly, we use

the TF–IDF model’s weighting of features to count how often

each feature vector occurs in the augmented feature sets.

The operations described above yield one-dimensional

features at least 1×50 in size, which is not compatible with the

dimensions of the DL features. The one-dimensional feature is a

combination of all the hand-crafted features. Therefore, a

matching network is necessary to minimize the discrepancies

between the sizes of the hand-crafted and DL features, i.e., a 1D-

to-2D vector conversion is performed.

The matching network consists of nine convolution blocks,

where each one contains fractional strides, batch normalization,

and ReLU activation. Figure 1C presents the network

architecture. The one-dimensional vector with a size of

1×1×50 is converted into a two-dimensional vector with a size

of 224×224×3. This is the same as the usual input size of a CNN

(except for ResNet (35), VGG-Net (36), and Inception), and the

two-dimensional space of DL features. This makes it easier to

tune hyperparameters and combine hand-crafted and

DL features.
2.4.3 Integrated network
A network is needed to combine the hand-crafted and DL

feature vectors. The integrated network consists of a backbone

and an additional network. The ResNet, VGG-Net, DenseNet

(37) architectures among others were employed as the

backbone. As illustrated in Figure 1D, the additional network

features two convolutional operations and one average pooling

layer. The convolutional operation is used to refine the

backbone’s output properties by mapping them into low-

dimensional space. In addition, the average pooling helps

prevent overfitting. We obtain one-dimensional feature

vectors for the fusion network.
2.4.4 Fusion network
After the data have been processed by the integrated network,

all image features, both hand-crafted and DL features, are

converted into one-dimensional vectors with a length of 128.

The hand-crafted and DL features are correlated, and hence an

early fusion approach that merges various vectors at the feature

level is employed to integrate the eight image features before the

final classification of the diagnostic pathology.
Frontiers in Oncology 08
Figure 1E or 1F shows the fusion network architecture. The

fusion network has a number of parameters that are unique to it.

From left to right, the lengths of each block are 128, 84, 42, and 2.

For each feature, as the input vectors decrease, we employ a

dropout rate of 0.5 in our fully connected layers. In Figure 1E,

each hand-crafted feature is joined with the DL feature with the

same dimension. This enables the early fusion of different feature

vectors. Lastly, the prediction vectors with positive and negative

probability values for the above eight features are stacked

vertically to create a vector of length 16. Then, after inputting

the cascaded one-dimensional vector to the fully connected

layer, we predict whether the image is normal or abnormal.

The concatenation of the individual features in the fully

connected layer is shown in Figure 1E, and Figure 1F presents

the alternative fusion network, which does not include the

concatenation in the fully connected layers.
2.5 Fusion CNN implementation

The feature extraction and DCNN models were both

implemented using our in-house software. The running

environment was Pytorch 1.8.0, CUDA 11.1, and Python 3.7.1

on Windows 10 operating system with an advanced hardware

configuration in terms of the GPU and CPU, i.e., GeForce RTX

3090 and Intel Xeon W-2255, respectively. In terms of training

parameters, the optimizer was stochastic gradient descent (SGD)

with a momentum of 0.9 and weight decay of 0.001, the learning

rate was set to 0.01, which decayed by 0.1 every 7 epochs, and the

loss function was a cross-entropy loss function describing the

distance between two probability distributions. The batch size of

each block is listed in Figure 1C or 1D.
3 Results and discussion

3.1 Data augmentation for hand-crafted
features

We used Algorithm 2 to augment the color features, whereas

Algorithm 1 was used to augment the other hand-crafted features

(called “proposed augmentation”). Data augmentation was also

performed directly on the images, e.g., rotation, translation,

normalization, cropping (called “image augmentation”). After

augmentation, we built a database to evaluate our method.

Figure 4 visualizes both augmentation techniques using t-

distributed stochastic neighbor embedding (t-SNE). In Figures 4

(B1)–(B7), which visualize the results after image augmentation,

each class’s data distribution has substantial gaps and overlaps.

This shows that augmented pathological image segments do not

represent the actual data distribution. In contrast, for the results

after proposed augmentation in Figures 4(A1)–(A7), these

outliers show that freshly created feature points may fill the
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A B

FIGURE 4

Visualization of hand-crafted features using t-SNE from proposed augmentation (A) and image augmentation (B).
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gaps left by missing spatial data, which is in line with previous

results from image augmentation, but the red and green points

from proposed augmentation are more uniformly distributed in

the feature space.

Algorithm 1: Algorithm 1: Data Augmentation Method 1
Input: Cluster feature set:

C = c1, c2,⋯, cmf g
Output: Augmented feature set:

A = a11,⋯, a1n , a21,⋯, a2n ,⋯, am1,⋯, amnf g
for

i ∈ 1, 2,⋯, n½ �   do

Initialize

gij = fg
for

j ∈ 1, 2,⋯,m½ �   do

gij ∪ ⌈ temp ⌉ ! gij ,∀ temp ∼ N 0, 1ð Þ
end

Gi = gij + C

C ∪ ∪n
i=1 Gi ! A  
Algorithm 2: Algorithm 1: Data Augmentation Method 2
Input: Cluster feature set:

C = c1, c2,⋯, cmf g
Output: Augmented feature set:

A = a11,⋯, a1n , a21,⋯, a2n ,⋯, am1,⋯, amnf g
Initialize

G = fg
for

i ∈ 1, 2,⋯, n½ �   do

G0
i = g1, g2,⋯ gmf g ∼ N 0, 1ð Þ

Gi = C + G0
i

Gi=f(Gi) , where

(Continued)
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f =
1

1 + e−x

�
�
�
�

�
�
�
�
− 0:5

C ∪ ∪n
i=1 Gi ! A  
Table 1 also presents the results of pathology classification

with the proposed augmentation for better understanding. In

terms of image accuracy, specificity, and the area under the

receiver operating characteristic curve (AUC), the proposed

augmentation performs marginally better than the

conventional image augmentation; however, the sensitivity of

both approaches is equal to 0.9727. Hence, the proposed method

is better than augmenting the images directly.
3.2 Performance of the proposed
network with different backbones

For the three common deep CNNs (DCNNs) that act as the

backbone, we chose ResNet (35), VGG (36), and DenseNet (37).

To train each DCNN and produce models of various sizes, a

small dataset was input to the three major networks, each of

which had different numbers of layers. These networks were

ResNet (with 18 or 50 layers), VGG (with 11 or 16 layers), and

DenseNet (with 121or 201 layers).

Table 2 lists the number of parameters of each of the chosen

DCNN models as well as the accuracy of the predictions for the

training, validation, and test sets. Since there are 546 positive and

554 negative pathology images in the entire dataset of 1100

images, the divided ratio of each sub-dataset for the training,

validation, and test sets is 3:1:1. There are strong correlations

between the size of the DL model and the size of the data

samples. This resulted in either underfitting or overfitting,

depending on whether the DL model was too basic or too

complicated to provide accurate predictions for the unrelated

characteristics included in the small dataset. For the same

backbone, there is a tendency for the accuracy to decrease

with an increase in the number of parameters, as shown in

Table 2. Moreover, the best training performance was achieved

by ResNet. In particular, ResNet-18 obtained the best test

accuracy of 95.45% when compared with the test accuracies of

the other DL models.

Figure 5 compares the results obtained from different

backbone models in terms of the accuracy and loss curves.

After epoch 10, the accuracy curves level off, and the loss
TABLE 1 Performance comparison between proposed augmentation and image augmentation.

Augmentation Method Accuracy Specificity Sensitivity AUC

Proposed Augmentation 0.9545 0.9364 0.9727 0.9834

Image Augmentation 0.9555 0.9182 0.9727 0.9783
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TABLE 2 Correlation between model size and training accuracy.

Backbone Parameters Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%)

ResNet-18 14,677,072 99.22 100.00 95.45

ResNet-50 30,547,536 99.46 100.00 94.09

VGG-11 12,721,040 98.80 98.63 93.64

VGG-16 18,215,248 97.35 97.73 93.64

DenseNet-121 11,634,064 99.48 90.00 88.64

DenseNet-201 18,639,248 98.18 90.45 85.91
Frontiers in Oncology
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FIGURE 5

Comparison of the training, validation, and test set accuracy and loss curves with various backbone models: (A) ResNet-18, (B) ResNet-50,
(C) VGG-11, (D) VGG-16, (E) DenseNet-121, and (F) DenseNet-201.
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curves approach equilibrium with only small fluctuations. In

particular, the test loss curve of ResNet-50 is more unstable than

the loss curve of ResNet-18. This indicates that the accuracy

curve of ResNet-50 is less stable than the accuracy curve of

ResNet-18. Moreover, because of the small number of

parameters, VGG-11 and VGG-16 have variable accuracy

performance. Although DenseNet yields the expected outcome

in training accuracy, the validation and test accuracies are poor

given the excessive number of network layers of DenseNet. This

indicates that the model has the problem of overfitting, and the

more the layers of the network, the more obvious is

the overfitting phenomenon. Furthermore, ResNet exhibits the

best performance when compared with VGG and DenseNet. The

evaluation indicators, namely, the accuracy, specificity,

sensitivity, and AUC, are presented in Table 3.

Table 3 lists four quantitative indicators that reveal how

well 220 pathology test images (20% of the total images) can be

predicted. A total of 110 positive and 110 negative pathology

images were analyzed. This performance is based on the

proportion of positive and negative samples that were

correctly predicted using the accuracy, specificity, sensitivity,

and AUC indicators. The proposed model with the ResNet

backbone yielded the best performance. In particular, ResNet-

18 obtained the best accuracy of 95.45%. This accuracy was

higher than those of other models by 1–10 percentage points.

The proposed model using ResNet-50 exhibited the expected

performance. The highest value of specificity represents that

the performance was superior in predicting the negative

samples. In particular, ResNet-18 specializes in predicting

positive samples, whereas ResNet-50 demonstrates a high

performance in predicting negative samples. The nearly equal

AUC values of both models demonstrate an equivalent

performance in positive and negative prediction. In addition,

there are several significant differences between VGG-11 and

VGG-16. Both demonstrated acceptable performances (with an

accuracy of 93.64%) when compared with the proposed model

with a DenseNet backbone. Moreover, an undesirable

performance was obtained by DenseNet, and accuracies

lower than 90% do not guarantee the accurate prediction of

pathology images. This result can be mainly attributed to the

poor sensitivity (i.e., a low prediction performance for positive
Frontiers in Oncology 12
samples), namely, 88.64% for DenseNet-121 and 81.82% for

DenseNet-201.

Figure 6 shows the receiver operating characteristic (ROC)

curves and AUCs for the proposed model with different

backbones, where the specificity and sensitivity are expressed

as the false positive rate and true positive rate, respectively.

ResNet-18 (orange line) and ResNet-50 (red line) have the

highest true positive rate (sensitivity) and lowest false positive

rate (specificity), respectively. VGG-11 (yellow line) and VGG-

16 (green line) both perform well, although VGG-11 performs

somewhat better. The blue and purple lines show that the

DenseNets achieve the worst performance. Figure 7 shows

each network’s confusion matrix, which shows the number of

correct and incorrect identifications for each category. The 107

true positives for ResNet-18 and 106 true negatives for ResNet-

50 show their ability to recognize healthy and diseased tissue.

DenseNet-201 has the most false positives (11 samples) and false

negatives (20 samples) of all the incorrectly classified samples.

DenseNet-121 has a similar performance, which could lead to

misdiagnosis in clinical artificial intelligence-assisted therapy.

In general, our recommendation is to use ResNet-18 as the

backbone in the proposed deep network for assistance in the

diagnosis of prostate cancer pathology images. This is because

ResNet-18 has the highest accuracy, is the most stable, and

converges to the correct value for the loss function. The

following experiments are therefore based on ResNet-18.
3.3 Individual features vs fused features

Eight features were extracted from the pathology images to

detect prostate cancer. In particular, seven hand-crafted features,

namely, the SIFT, SURF, and ORB local features, the texture and

shape of the cell nuclei, the HOG of the cavities, color of the image,

and the DL feature were extracted. As shown in Figure 8, to evaluate

the performance of the fused features, we examined the proposed

network’s performance using various features. Performance varies

based on the distinct qualities of each feature. There is a similarity in

that none of the hand-crafted features outperform the DL feature.

Moreover, there are significant differences in the accuracy,

sensitivity, specificity, and AUC indicators for each feature, and
TABLE 3 Performance of the proposed network with different backbones..

Backbone Accuracy Specificity Sensitivity AUC

ResNet-18 0.9545 0.9364 0.9727 0.9834

ResNet-50 0.9409 0.9636 0.9182 0.9860

VGG-11 0.9364 0.9273 0.9455 0.9639

VGG-16 0.9364 0.9182 0.9545 0.9576

DenseNet-121 0.8864 0.9364 0.8864 0.9483

DenseNet-201 0.8591 0.9000 0.8182 0.9293
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FIGURE 6

Receiver operating characteristic curves of the proposed network with ResNet-18, ResNet-50, VGG-11, VGG-16, DenseNet-121, and DenseNet-
201 backbones.
A B

D E F

C

FIGURE 7

Confusion matrix of the proposed network with (A) ResNet-18, (B) ResNet-50, (C) VGG-11, (D) VGG-16, (E) DenseNet-121, and
(F) DenseNet-201 backbones.
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none exceed 90%. The results for the fused features in Figure 8

demonstrate that the proposed DCNN overcame this constraint by

fusing the various hand-crafted and DL features. With the help of

the seven hand-crafted features, the DL feature’s accuracy, AUC,

sensitivity, and specificity increased from 89.09 (for all indicators) to

95.45, 98.34, 97.27, and 93.64, respectively.
3.4 Performance of the fusion network
with and without concatenation

This section presents the influence of concatenation on the

fusion network, which was also used without concatenation to

fuse the seven different hand-crafted features, the DL feature

alone, and all fused features.
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Table 4 shows the evaluation results. First, a comparison of

the first two rows of Table 4 shows that the concatenation

substantially enhances the classification results in terms of

accuracy, specificity, sensitivity, and AUC. Moreover, we

compare the results for the fused hand-crafted features, the DL

feature, and the fusion of all features using the fusion network

without concatenation. The use of the DL feature and fused

hand-crafted features significantly improves the classification

performance, as shown in the final three rows of Table 4. Overall,

the fusion of seven hand-crafted features and the DL feature

improves the classification results, and the concatenation of the

fusion network further improves these results.
FIGURE 8

Classification performance with individual features or fused features.
TABLE 4 Classification performance with different features and feature fusion with/without concatenation.

Fusion Network Accuracy Specificity Sensitivity AUC

All Feature Fusion with Concatenation 0.9545 0.9364 0.9727 0.9834

All Feature Fusion without Concatenation 0.9091 0.8727 0.9455 0.9698

Deep Feature 0.8909 0.8909 0.8909 0.8909

Hand-crafted Feature Fusion without Concatenation 0.8636 0.8091 0.9182 0.9036
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3.5 Ten-fold cross-validation
of ResNet-18

The stability of the proposed model was verified by

conducting a 10-fold cross-validation experiment, as shown in

Figure 9, which reveals the performance of the proposed model

with respect to unseen pathology images. The training accuracy

is constant at approximately 99%. Moreover, the test accuracy

exhibits relatively large fluctuations when compared with the

training accuracy. Most test accuracies for each fold are over

94%, especially the three highest values of 96.82%, 96.73%, and

96.48% for the tenth, seventh, and ninth folds, and with the

exception of 90.68% and 90.72% for the fourth and sixth folds.

Overall, the experimental results demonstrate the effectiveness

and stability of the proposed model.
3.6 Heatmaps using Grad-CAM++

The results show that the proposed model’s region of focus

in the pathology images differs significantly from that used in

ResNet-18’s direct classification. Using Grad-CAM++ (38), a

heatmap was created to demonstrate the differences between the

two models and is shown in Figure 10. The top five rows present

samples with positive pathology results, and the bottom four

rows present the negative samples. In most cases, we confirmed

that the proposed deep learning model classify each class by

assigning weights to cell nucleus and glands lesions more

appropriately. Although not all actual pathognomonic areas
Frontiers in Oncology 15
were weighted, the highlighted areas have more prominent

nucleoli and larger nuclei, more close and crowded glands,

and increased pleomorphism.
4 Conclusions

By combining eight image features, a novel DL classification

model was created. The eight features consist of the SIFT, SURF,

and ORB local image features; the form and texture of cell nuclei;

the HOG cavity feature; color; and a CNN DL feature. Among

them, the seven hand-crafted features are extracted using a BoW

and TF–IDF model along with a novel data augmentation

method, and the DL feature is extracted using ResNet-18.

The proposed DL network includes matching, integrated,

and fusion networks. A backbone and an additional network

comprise the integrated network. The size of the hand-crafted

features is converted to the size of the image using the matching

network, and the eight two-dimensional vectors are integrated

and processed using the integrated network. The fusion network

includes eight fully connected layers with concatenation to

effectively fuse the distinct properties of each feature and

classify the pathology images.

ResNet-18/50, VGG-11/16, and DenseNet-121/201 were

evaluated in the experiments. The results show that ResNet-18

obtains the best accuracy, sensitivity, specificity, and AUC. We

further evaluated the individual features, the two proposed

augmentation methods, the fusion network design, model

stability, and model-focused heatmaps to ensure that the
FIGURE 9

Ten-fold cross validation.
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proposed network employed the best design. The suggested

method could be suitable for other pathology images, such as

those of breast cancer and thyroid cancer, because it is based on

the underlying principles of feature engineering and DL.
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