
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Liang Qiao,
Westmead Institute for Medical
Research, Australia

REVIEWED BY

Francisco X. Real,
Spanish National Cancer Research
Center (CNIO), Spain
Rocco Mazzolini,
Centre de Regulació Genòmica, Spain
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(2022) Challenges in precision
medicine in pancreatic cancer: A focus
in cancer stem cells and microbiota.
Front. Oncol. 12:995357.
doi: 10.3389/fonc.2022.995357

COPYRIGHT
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Pancreatic cancer adenocarcinoma (PDAC) is a lethal disease, with the lowest

5-years survival rate of all cancers due to late diagnosis. Despite the advance

and success of precision oncology in gastrointestinal cancers, the frequency of

molecular-informed therapy decisions in PDAC is currently neglectable. The

reasons for this dismal situation are mainly the absence of effective early

diagnostic biomarkers and therapy resistance. PDAC cancer stem cells

(PDAC-SC), which are regarded as essential for tumor initiation, relapse and

drug resistance, are highly dependent on their niche i.e. microanatomical

structures of the tumor microenvironment. There is an altered microbiome

in PDAC patients embedded within the highly desmoplastic tumor

microenvironment, which is known to determine therapeutic responses and

affecting survival in PDAC patients. We consider that understanding the

communication network that exists between the microbiome and the PDAC-

SC niche by co-culture of patient-derived organoids (PDOs) with TME

microbiota would recapitulate the complexity of PDAC paving the way

towards a precision oncology treatment-response prediction.

KEYWORDS

precisionmedicine, PDAC, cancer stem cell, niche factors, microbiota, early diagnosis,
therapy resistance, organoid co-culture
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Introduction

Precision medicine (PM) involves the customization of

healthcare for a specific individual on the basis of biomarker

measurements obtained at the individual and population levels

(1). Remarkably, in the last years the management of cancers of

the gastrointestinal system is moving towards a precision

medicine paradigm (2) in which biomarkers for precision

medicine are a topic of intense research (3, 4).

In the last decade it has been established the central role of

cancer stem cells (CSC)- i.e. the subpopulation of cancer cells

capable of self-renewing and producing progeny- in the

progression, treatment resistance and metastasis of

gastrointestinal cancer (5–7). CSCs depend on their niches,

which are anatomically distinct regions within the tumor

microenvironment (TME). These niches maintain the principal

properties of CSCs, preserve their phenotypic plasticity, protect

them from the immune system and facilitate their metastatic

potential (8–10). Interestingly, biomarkers related to CSCs and its

niche/TME have been found to be among the most accurate in

prediction of disease progression and, specially, disease recurrence

(11–13) and also to develop tailored therapies that optimize

patient’s opportunities to cure (14)

A variety of tumors contain bacteria what suggests that the

microbiome could play a role in the TME (15). In fact, the

microbiome is proposed to have an active involvement in the

pathogenesis and treatment responses. This is in line with the

view that tumors should be treated as biosystems instead of only

a set of transformed epithelial cells (16). Specifically, microbiota-

related biomarkers have recently been posed both as predictors

of disease progression and treatment response (17), and as

relevant targets of anti-cancer therapies in many malignancies

(18). Thus, studying the interplay between cancer stem cells and

intratumoral microbiota seems to be a promising strategy in the

development of new biomarkers for a cancer precision medicine.
Challenges in PDAC
personalized treatment

Pancreatic ductal adenocarcinoma (PDAC) is a lethal

disease, with the lowest 5-years survival rate of all cancers (18)

Although PDAC presents low frequency (incidence of 8–12

cases per 100 000 people per year, and a 1·3% lifetime risk for

the disease) will be the second cancer-related death reason in

2040 in the USA (18). Despite the advance and success of

precision oncology in gastrointestinal cancers, the frequency of

molecular-informed therapy decisions in PDAC is currently

neglectable (19)Therefore, understanding the pathogenesis of

this lethal disease is urgently needed to stratify patients and to

develop personalized novel therapeutic approaches for it.

Current therapies rely on conventional polychemotherapies

with poor outcomes and molecular-informed targeted therapy
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opportunities only exist in a tiny minority of patients (19). This

clearly demonstrates that the tremendous potential of genetically

guided precision oncology used in other GI malignancies (2, 20),

in PDAC meets important limitations. For that reason, there is

the need to expand the knowledge about PDAC biology in order

to decipher other targetable mechanism such as tumor

microenvironment and cellular plasticity (5, 21)

Cellular plasticity is the ability of tumor cells to adapt to

changing conditions by acquiring different molecular and

phenotypic identities and, thereby, plasticity programs are key

regulators of acquired treatment resistance (22).For this

purpose, one of the most critical questions in both cancer

research and clinic is how PDAC is maintained and expanded

after it has emerged. Cancer stem cells (CSCs), and particularly

PDAC stem cells (PDAC-SC) have been considered as a

subpopulation of cancer cells capable of self-renewing and

producing progeny cells that are critical for cancer growth (23,

24). This mechanism may underlie the maintenance of cancer

and its resistance to conventional therapies.

According to the current model, CSCs are not a fixed cell

population but a plastic one, i.e. the aforementioned

characteristics can be acquired and lost dependent on

environmental stimuli (25)Therefore, CSC are highly

dependent on their niche, i.e. microanatomical structures of

TME in which CSCs are maintained and protected from therapy

(26, 27)

In this regard, in an unbiased approach, clonogenic capacity

of PDAC-SC was shown to be fully defined by the

microenvironment and not by tumor-cell-intrinsic-features

(28) confirming a dichotomous role of stroma either

promoting or inhibiting PDAC-SC tumorigenic capacity (29, 30)

We believe that the PDAC CSC (PDAC-SC) biology is

strongly affected by the interplay between the genetic

alteration and the tumor microenvironment, particularly

the microbiome. Unraveling the link between microbiota and

cancer stem cells technologies will provide insights into the

pathology of cancers of the gastrointestinal system, as well as

promote the translation of these findings to the clinics towards

personalized medicine.
Late diagnostic

Given the dismal prognosis of PDAC patients, early and

differential diagnosis of severe pancreatic cancers is essential and

challenging for patients with PDAC and constitutes an unmet

clinical problem (18). Symptoms are unspecific and often

emerge only during late disease stages, at which point, tumors

can be either locally non-resectable or present as metastatic

disease. At present, PDAC is diagnosed using imaging tests and

currently, despite other promising circulating biomarkers have

been described (31) the sole FDA-approved biomarker for

PDAC is serum CA19-9, mostly used for disease monitoring
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rather than screening, due to inherent limits of sensitivity and

specificity: CA19-9 levels can be elevated in several conditions

unrelated to pancreatic cancer, while subjects lacking the Lewis-

A antigen do not produce CA19-9 at all (32). Thus, the outcome

of PDAC patients could improve with sensitive and affordable

tests that would permit early detection of the disease.

A plethora of studies have shown that microbiota most likely

affects the malignant phenotype and prognosis of PDAC (33, 34)

Therefore, microbiome signatures enable robust metagenomic

classifiers for PDAC detection at high disease specificity and

with potential towards cost-effective PDAC screening and

monitoring. Interestingly, in a recent study (35), showed that

faecal metagenomic classifiers had much better performance

than saliva-based classifiers and could identify patients with

PDAC with an AUC score of up to 0.84 based on a set of 27

microbial species, with consistent accuracy across early and late

disease stages, increasing when combined with serum levels of

CA19-9, indicating the potential for non-invasive, robust, and

specific faecal microbiota-based early diagnosis for PDAC (35)

Many studies suggest that quiescent plastic CSCs are already

present but resting/latent during early stages of disease

development (26, 36). Importantly, early quiescent PDAC-SCs

initiate KRAS mutant pancreatic lesions leading to PDAC in the

context of pancreatitis (37, 38) a condition known to be heavily

influenced by microbiome (33). Interestingly, circulating PDAC

circulating tumor cells with stem-like characteristics could be

used as an early PDAC biomarker (39).
Therapy resistance

The accumulation of driver mutations is accompanied by

histological changes that represent the different stages of PDAC

development. Morphological evolution begins with the formation

of precursor lesions, termed pancreatic intraepithelial neoplasia

(PanIN), with increasing histological grades followed by

progression to invasive adenocarcinoma (Figure 1A).

A histopathological hallmark of PDAC is a desmoplastic

reaction to the tumor that is present in both primary and

metastatic tumors (40). Pancreatic stellate cells, a myofibroblast-

like type of cell in the pancreas are activated by cancer cells to

produce high fibrosis surrounding the tumor (41).The resultant

desmoplasia is known to be responsible for creating a mighty

mechanical barrier around the tumor cells, preventing appropriate

vascularization, and thus limiting exposure to chemotherapy and

largely preventing immune cell infiltration (42)

Early research largely stemmed from the idea that the

surrounding desmoplasia is tum or promoting but this view of

its role is most probably an imperfect one (29). Therapeutic

approaches to target stromal desmoplasia have classically

focused on depleting the stromal constituents but results have
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been generally disappointing, owing to the multi-faceted nature

of tumor stroma (43). Furthermore, TME composition is a cell-

extrinsic factor that influences the transcriptional landscape.

Depending on the mRNA expression two major tumor subtypes

have been described: basal or classical (44, 45). Interestingly,

basal subtype presents stem-like properties (46), which

interestingly correlates with dismal prognosis (47) and poor

gemcitabine response (48).

In this regard, the intestinal microbiome has recently gained

increasing interest in the field of PDAC TME with studies

suggesting a tumorigenic relevance of bacterial dysbiosis

within the TME. Since the early evidence of bacteria presence

in PDAC TME (16, 34) and despite substantial inter-individual

variability of the gut flora, some studies concur in their findings,

pointing at different bacterial species potentially involved in

PDAC tumorigenesis thought their interaction with the

desmoplastic stroma (49). The formation of a new

desmoplastic niche that offers lower colonization resistance

and provides nutrition in the form of increased glycan levels

might favor the migration of specific bacteria (25, 50, 51). In

turn, new resident bacteria might remodulate the TME to

promote tumor development and progression by favoring a

PDAC-SC niche refractive to chemotherapy by inducing EMT-

dependent stemness state or metabolizing chemotherapeutic

agents (25, 34, 51), processes that could even cooperate to

enhance therapy resistance (52).

The most prominent, although not exclusive, microbes

identified in pancreatic tissue samples and associated with PDAC

TME are Gram-negative bacteria, more specifically from the

phylum Proteobacteria (25, 50, 53). Among Proteobacteria,

Gammaproteobacteria was associated with poor patient prognosis

(34, 53). These bacteria express the enzyme cytidine deaminase which

enables themetabolization of the chemotherapeutic drug gemcitabine

(2′,2′-difluorodeoxycytidine), which is commonly used for treatment

of PDAC patients in the adjuvant and palliative setting, into its

inactive form (2′,2′-difluorodeoxyuridine) (40). This might synergize

with a quiescent PDAC-SC subpopulation, able to evade

chemotherapeutic anti-tumor therapies (54) which is a hallmark of

plastic PDAC-SC and responsible for disease relapse years after

successful surgical intervention or tumor free survival (55).

Importantly, a distinct tumor microbiome was shown to clearly

discriminate long-term survivor (median survival: 9.66 years) from

short-term survivor (median survival: 1.66 years) PDAC patients

with a strong correlation between dismal prognosis and low

diversity (56). Long-term-survivors (LTS) contain higher alpha-

diversity, presenting also Gram positive classes such as Clostridia

and Actinomycetia, and a LTS-specific intra-tumoral microbiome

signature was described (56). Of note, elevated levels of single

microbial species correlated with poor prognosis, making diversity

analysis, even in the stools an attractive, cheap, and non-invasive

method to predict prognosis (35, 57).
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Personalized medicine in PDAC:
A holistic ex vivo co-culturing
modeling to predict
treatment response

To follow a personalized medicine approach, there is an

urgent need to find a model that recapitulates the tumor

characteristics and that could be generated in a useful time

frame taking into account the time constraints of PDAC
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management. Current models show limitations. PDAC derived

2D cell lines fail in reproducing the polarity, microenvironment,

cell metabolism and gene expression which can affect drug

response prediction (58). Patient-derived xenografts (PDX)

better reproduce the tumor and predict drug response but the

use of PDX remains challenging due to time concerns and the

lack of a human microenvironment.

Alternatively, organoids are a 3D model derived from CSC

that can be generated in 2-4 weeks and maintain the histological

and genetic features of the tumor of origin. In 2013, Huch et al.
B

A

FIGURE 1

Intratumoral Microbiota may define PDAC stem cell niche, thereby constituting a diagnosis and prognosis biomarker. (A) In the development of
PDAC, driver mutations accumulation is accompanied by an increasing desmoplastic reaction (blue lines) as a hallmark histopathological feature
in PDAC stroma. Microbiota embedded in the desmoplastic stroma changes towards a dysbiotic low-diversity composition that might impact the
PDAC stem cell niche by favoring tumor progression and resistance to chemotherapy. (B) Patient-derived organoids (PDOs) are generated mainly
from PDAC resection containing PDAC cancer stem cells (PDAC-SC). PDOs can be co-cultured with the patient microbiota to recapitulate the
PDAC-SC niche. This co-culture technique paves the way to the study of microbiome-focused precision medicine bench-to-beside approaches
to overcome the lack of early diagnosis and therapy resistance in PDAC.
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described for the first time the generation of pancreatic

organoids (59). Several years later, the same model was used

to generate PDAC organoids from mouse and human tissue

defining the medium composition (60). This offers the

possibility to design a personalized medicine approach by

using primary PDAC patient material (tumor resection or fine

needle biopsy) to generate patient-derived-organoids (PDOs)

that can work as patient avatars to predict the therapy response.

PDOs can be also generated from human induced pluripotent

stem cells (61).

In that sense, different PDAC PDOs biobanks have been

generated (30, 60, 62, 63). PDAC organoids recapitulate the

mutation profile of the original tumor (62, 63) and have been

demonstrated to be a valuable tool to test drug sensitivity (48,

62–64) that even allows the study of drug-induced vulnerabilities

in tumor relapse that can be therapeutically exploited in a bench-

to-bedside approach (19).

Nevertheless, PDOs present some limitations such as that

the drug response can be modified by the transcriptional changes

due to the bottleneck of medium composition. In fact, PDOs

transcriptional landscape depends on culture conditions

favoring certain subtypes (63). Furthermore, dependence on

growth factors and medium composition can exert a selective

pressure to select the organoids containing the driver mutations

of PDAC (30).

The lack of physiological niche factors could be bypassed by

the use of tumor-on-a-chip devices that reproduces the TME.

This includes the incorporation of stromal cells (65, 66) what

highlights the importance of the co-culture with other cell types

in order to mimic the complexity of the tumor. This is

particularly relevant in PDAC, a tumor characterized by its

low cellularity. Organotypic co-culture models have been

established in PDAC PDOs. In that sense, PDOs have been

co-cultured with cancer associated fibroblasts (CAFs) (67–70)

and infiltrating lymphocytes isolated from blood (67)

Interestingly, in co-culture experiments, Lodestijn et al.

demonstrated that the factors secreted by TME maintain

populations of tumor cmells with clonogenic potential

(28).This shows the importance of co-culture PDAC-SC with

the stromal factors responsible for maintaining CSCs and/or

promoting the dedifferentiation of non-CSC tumor cells.

Since tumor microbiome is clearly affecting PDAC

oncogenesis (34, 53, 71–73) this could be considered another

key TME element with an impact on PDAC drug screening. The

addition of the purified tumor microbiome to the PDO models

would add a layer of complexity to the in vitro modeling of this

dismal prognosis disease, better reproducing the tumor

characteristics anticipating a good predictive drug response tool.

In particular, it could be interesting to study the effect of

microbiome on PDAC-SC population. As far as we know, the

co-culture of organoids and microbiome has not been done yet in

PDAC but there are established protocols in intestinal models (74,

75). The microinjection of the bacteria into the lumen mimics the
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microbiome habitat (75). However, the manipulation of specific

factors (e. g. oxygen and nutrient levels) to allow the co-culture of

a diversity of bacteria with organoids remain to be established.

Co-culture experiments could be used to envisage the effect

of tumor microbiota on CSCs. Furthermore, developing a model

able to recapitulate the complexity of PDAC-SC niche

(Figure 1B) paves the way towards a more accurate and

physiological treatment-response prediction capacity of

cultured PDOs.
Molecular studies to uncover
microbiome- stem cell
niche crosstalk

As stated before, in vitro models aiming to recapitulate the

complexity of PDAC-SC niche need to include the microbiome

axis to fully define the complex crosstalk between stem cells

and microbiota.

The controlled escalation of biological complexity on the

host side as well as in the composition of microbiome-derived

secreted factors or live bacterial communities enable the proof-

of-concept of a complex interaction mechanism in a controlled

and standardized environment. These models open the door to a

new generation of molecular studies difficult to study in vivo.

Microbial communities in the gut are known to produce

small molecules and metabolites that significantly contribute to

host functions and homeostasis (76). This interplay has been

extensively studied in the intestine using microbiome-organoid

co-culture models. In this regard, Sodhi et al. (28) found that

bacterial Lipopolysaccharide (LPS) activates Toll-like receptor 4

(TLR-4) and enhances cell differentiation of goblet cell lineages

in colonic organoids but inhibits Lgr5+ colon stem cells (77, 78)

Similarly, a recent study found that dietary raffinose is utilized by

Lactobacillus reuteri to convert it to fructose which in turn

engages glycolysis to fuel stem cell proliferation under stress

conditions (79).

As stated before, some bacterial families are conducive to

oncogenesis and progression, while others prevent tumor

development and might aid innate and therapeutically induced

anti-tumor immunity. However, studying microbiome effects on

tumor-related immunity in ex vivo systems is challenging,

normally forcing the use of in vivo models which makes it

difficult to dissect direct effects of microbiota on immune cells.

Again, the use of microbiome-organoid co-culture approaches

could circumvent the difficulties. In this regard, a recent study

developed a novel immune-enhanced tumor organoid system to

study factors affecting Immune Checkpoint Blockade (ICB)

response. Selective testing of bacterial-derived metabolites

from species found in the immunomodulatory host-

microbiome significantly increased ICB-induced apoptosis of

tumor cells and altered immune cell receptor expression (80).
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Organoid have been used extensively to model senescence and

aging-related conditions (81). In this regard, a recent study (82)

found that gut microbiota metabolite trimethylamine N-oxide

induces aging-associated senescent phenotype in midbrain

organoids. Also, with these models, stem cell DNA damage

associated to microbiota could be studied. Microbial co-culture

with gastric organoids uncovered the mechanism by which

Helicobacter pylori favours the accumulation of DNA damage

promoting gastric cancer. In this regard (83), reported that DNA

damage by H. pylori occurs in an ALPK1/TIFA/NF-KB-dependent

manner in S-phase cells and importantly, the H. pylori LPS

precursor (b-ADP-heptose) was sufficient to induce this damage.

Similar approaches could indeed be used to isolate individual

microbiome-induced factors that alter PDAC-SC niche with the

intrinsic limitation of the complexity of PDAC TME defined above.

Although a co-culture of microbiome and escalation of biological

complexity on the host side is possible, certain hallmarks of PDAC

such as the strong desmoplastic reaction and the organoid bias

towards a classical subtype (84) would be challenging to fully

recapitulate PDAC complexity at the experimental level.
Discussion and future prospects:
Towards a microbiome-targeted
precision medicine

Current research in the personalized medicine field promises

new hope for developing new tools for early diagnosis and for

improving treatment of this deadly disease. Along these lines,

our ever-expanding understanding of PDAC-SC and the

interplay between intratumoral microbiome and oncogenes in

all aspects of PDAC is promising. We now know that PDAC-SC

play a fundamental role in the initiation and development of

PDAC, and these cells are largely responsible for the aggressive,

chemoresistant and metastatic nature of this cancer (26, 37, 85)

(32, 43, 74). They are known to be dependent on niche factors

(28–30). Thus, understanding the communication network that

exists within the TME, including the PDAC-SC niche, are not

only important for understanding PDAC pathogenesis, but may

also be relevant at the level of resistance to conventional

therapies and cellular plasticity.

As outlined above, evidence supporting a tumor-promoting

role of an altered host microbiome at different sites is

accumulating (34, 53, 71). This altered diversity may be a

consequence of tumorigenesis, as the evolution of an

inflammatory tumor microenvironment might promote

bacterial translocation from the gut into the pancreas (25, 34,

56). Considering all the above evidence it is reasonable to

speculate that the interplay between the intratumoral

microbiota and oncogenic mutations promotes a specific

PDAC-SC niche thereby impacting the tumor progression,

chemoresistance and patient prognosis.
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This interplay seems to be important in other gastrointestinal

malignancies such as gastric cancer (86), esophageal cancer (87,

88). In this line, 26 microbial markers were proposed as early

detection biomarkers to discriminate adenoma from colorectal

cancer (89), and 30 microbial markers were identified and

validated as diagnosis biomarkers in cohorts of individuals with

early hepatocellular carcinoma and healthy controls (90).

In the case of PDAC, an improvement in treatment response

due to the modulation of the patient’s microbiome is already

proposed in preclinical studies. Some even demonstrate a

potential modulation of PDAC intratumoral microbiota with

spec ific an t ib io t i c s ove rcoming gemc i t ab ine and

immunotherapy resistance in mouse models (57). In this

regard, clinical trials focusing on compiling 16S rRNA profiles

of PDAC patient samples and modulating microbiota are on the

rise (based on http://clinicaltrials.gov/)

There is mounting evidence that patient microbiome

composition can be used as a biomarker for disease progression

as well as a druggable target to increase therapeutic efficacy of

PDAC treatment. Therefore microbiome modulating strategies

targeting the microbiome-dependent PDAC-SC niche would

increase therapeutic responses and survival of PDAC patients

paving the way towards the cure of this deadly disease.
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