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Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment

including in head and neck squamous cell carcinomas (HNSCCs); however,

only a fraction of HNSCC patients respond to ICI, whereas the majority fail to

do so. The mechanisms underlying such variable responses remain

incompletely understood. A better understanding of such mechanisms may

broaden the spectrum of responding patients and enhance the rate of ICI

response. HNSCCs exhibit a high level of genetic heterogeneity, manifested as

mutations or amplifications of oncogenes (e.g., PIK3CA) and mutations of

tumor suppressor genes (e.g., TP53). The immune tumor microenvironment

(TME) of HNSCCs also varies significantly in composition and in relative

abundance of distinct immune subsets such as CD8 tumor-infiltrating

lymphocytes (TILs) or tumor-associated macrophages (TAMs), which

represents a high degree of immunological heterogeneity. Here, we briefly

discuss how heterogeneous ICI responses may be attributed to tumor-intrinsic

factors, including genetic, transcriptional, and functional variations in tumor

cells, and host-intrinsic factors, including cellular composition of the TME (e.g.,

CD8 TILs and TAMs), and host-intrinsic differences in the T cell receptor (TCR)

repertoire of CD8 TILs. We also discuss the potential impact of these factors on

designing strategies for personalized immunotherapy of HNSCCs.
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Introduction

Head and neck cancer (HNC) is a heterogeneous group of

cancers arising from the mucosal surfaces of the upper

aerodigestive tract including sinonasal and oral cavities,

nasopharynx, oropharynx, hypopharynx, and larynx (1).

Collectively, HNC is the sixth most prevalent cancer

worldwide with 890,000 new cases and 450,000 deaths in 2018

(1, 2). In the United States (US), HNC accounts for 3-4% new

cases of all cancer types (3), with 90% of cases being head and

neck squamous cell carcinoma (HNSCC). The risk factors for

HNSCC include carcinogens (e.g., tobacco and alcohol) and

human papilloma virus (HPV) (1, 4). Hence, HNSCC can be

classified as HPV+ or HPV− based on the distinct etiological

factors. In general, HPV+ HNSCC patients exhibited better

overall survival (OS) than HPV− patients, the latter showing

worse prognosis (1, 4). During the past few decades, the

incidence of HPV+ oropharyngeal HNSCCs has been

increasing rapidly in the US (1, 4).

Extensive genomic and multi-omic studies performed using

HNSCC patient samples conclude that HNSCCs displayed a

high level of tumor heterogeneity including genetic, epigenetic,

transcriptional, and functional variations between tumors or

within tumors. A comprehensive multi-omic study revealed that

HPV− HNSCCs can be clustered into three major subtypes by

integrating copy-number, RNA, miRNA, protein, and

phosphor-peptide data. The three subtypes include high

chromosome instability (CIN), Basal, and Immune (5). CIN

cluster was associated with heavy smoking and exhibited the

worst prognosis (5). On the other hand, Immune cluster was

enriched with tumors where smoking evidence was weak and

associated with higher immune scores (5). Another study also

employed multi-omic approaches to compare different types of

SCCs in lung, cervix and head and neck, and showed that

HNSCCs appeared to scatter broadly instead of localizing to

discrete TumorMap islands and distributed into distinct

iClusters (6). These findings are consistent with other large

genomic studies showing that HNSCCs harbor a high level of

genetic and epigenetic alterations (7–9).

HNSCC datasets of the Cancer Genome Atlas (TCGA)

identified many commonly occurring genetic alterations in

both HPV− and HPV+ HNSCCs. The most commonly

mutated gene in HNSCC is tumor suppressor gene TP53 (8),

encoding a transcription factor regulating DNA repair, cell cycle,

senescence, and apoptosis (10). Over 80% of HPV− HNSCCs

harbor TP53 mutations; in contrast, TP53 mutations almost

never occur in HPV+ HNSCCs (~3%) (8), due to p53 protein

degradation induced by the HPV E6 oncoprotein (11, 12).

Another commonly mutated gene in HNSCCs is PIK3CA,

encoding a catalytic subunit (p110a) of phosphoinositide 3-

kinase (PI3K). PIK3CA genetic alterations, including both point

mutations and gene amplification, affected both HPV+ and
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HPV− HNSCCs (56% and 34%, respectively) (8, 13), making

PIK3CA the most frequently mutated gene in HPV+ HNSCCs.

We evaluated the TCGA HNSCC dataset and found that the

patients with PIK3CA amplification and gain (PIK3CAAmp) had

a much greater chance of harboring TP53 mutations (14).

Moreover, PIK3CAAmp/TP53Mut group exhibited significantly

worse survival compared to PIK3CAWT/TP53WT groups (14).

Prior studies have generated murine models that mimicked

the alterations of PIK3CA and/or p53 in HNSCCs (15–17);

however, none of the previous studies showed that genetic

alterations in these two genes can spontaneously induce

HNSCC development. We recently established a genetically

engineered mouse model by deleting p53 and constitutively

activating PIK3CA in mouse keratin 15-expressing (K15+)

stem cells, which leads to the spontaneous development of

multi-lineage tumors including SCCs, termed keratin-15-p53-

PIK3CA (KPPA) tumors (14). Furthermore, we derived

transplantable daughter cell lines from KPPA tumors, which

may provide a platform for testing new therapeutic strategies in

HNSCCs (18).

HNSCCs also exhibited a high level of immunological

heterogeneity, evidenced by a highly variable immune tumor

microenvironment (TME) (19–21). Prior studies showed that the

infiltration extent of CD8 tumor-infiltrating lymphocytes (TILs)

correlated with HNSCC prognosis (22–25), while myeloid cell

infiltration may contribute to worse survival and metastasis (19).

We uploaded RNA-seq data of TCGA-HNSCC patients onto

CIBERSORT and found that HNSCCs with PIK3CAAmp/TP53mut

have significantly lower expression of gene signatures for CD8 T

cells and activated natural killer (NK) cells but significantly higher

expression of macrophage gene signature, compared with HNSCCs

lacking both mutations (14). HNSCC is also characterized by

defects in DNA repair pathways that can be induced by drug

perturbation such as PARP inhibitor (26) or by loss of tumor

suppressors such as Smad4 (27). SMAD4 loss has been associated

with downregulation of FANC/BRCA genes in HNSCC harboring

increased genomic instability (26). Genomic instability in HNSCC

may generate cytosolic double-stranded DNA (dsDNA), which can

be sensed by STING protein (28). STING activation subsequently

induces type I interferon (IFN) and TNFa production, and triggers

anti-tumor innate immunity (26). It would be of great interest to

further elucidate whether a different level of genomic instability

influences the level of CD8 TILs in HNSCC.
Differential responses to immune
checkpoint inhibitors (ICI) in human
HNSCC patients

So far, two ICIs, namely, nivolumab and pembrolizumab,

both of which are anti-PD-1 monoclonal antibodies (mAbs),

were approved by FDA for treating recurrent/metastatic (R/M)
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HNSCCs (29–31). However, only a fraction of HNSCC patients

(10-20%) responded to ICI while others failed to do so (29–31).

KEYNOTE-048 trial tested ICI for treating R/M HNSCCs in first

line therapy (32). The study reported positive results in OS, thus,

ICI emerged as the new standard-of-care (SOC) therapy (32).

According to the observed efficacy and safety, pembrolizumab

(pembro) plus platinum and 5-fluorouracil (5-FU) serves as a

proper first-line therapy for R/M HNSCC while pembro

monotherapy is an appropriate first-line treatment for PD-L1+

R/M HNSCC (combined positive score (CPS)>1). However,

many issues remain to be addressed. While pembro plus

chemotherapy increased OS, it did not significantly increase

overall response rate (ORR) between Pembro+Platinum+5-FU

(35.6%) vs. EXTREME (cetuximab+Platinum+5-FU) (36.3%),

moreover, it significantly reduced the duration of response

(DOR) between Pembro only (22.6 months) vs. Pembro

+Platinum+5-FU (6.7 months) (32). Hence, other strategies

are worth exploring to improve ORR and extend DOR. With

regard to pembro monotherapy, the ORR still remained low, and

the progressive disease rate was 40.5% (32); thus, it is critical to

enhance treatment efficacy and better stratify and identify

patients who would benefit the most from ICI treatment.

Besides chemotherapy, HNSCC patients are often treated by

radiation therapy (RT), whose critical role has been investigated

and reviewed extensively (33–38).

For treating locally advanced HNSCCs, a randomized, double-

blind, and placebo-controlled phase 3 trial compared avelumab

(anti-PD-L1) plus chemoradiotherapy (CRT) vs. CRT alone, where

anti-PD-L1 was administrated concurrently with CRT; however,

the trial reported negative results (39). Therefore, more effective,

and novel combinatorial strategies are needed to better treat locally

advanced HNSCCs. Nivolumab was employed to treat at-risk,

previously untreated, resectable HPV+ and HPV− HNSCC in a

neoadjuvant setting (40–43). One of the neoadjuvant trials

compared HPV+ vs. HPV− HNSCCs and showed that HPV+
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HNSCC patients responded better to neoadjuvant nivolumab,

although the response rate was low in both HPV+ and HPV−

HNSCCs (40) compared to other cancer types (44, 45). Less

respons iveness in HNSCC is cons i s t ent wi th i t s

immunosuppressive TME (19, 46). Recent and ongoing ICI trials

in HNSCCs were extensively reviewed (31, 47). However, it remains

poorly understood why some patients responded to ICIs while

others failed to do so (48–50). A better understanding of the

mechanisms underlying such variable responses may broaden the

spectrum of responding patients and enhance the rate of ICI

response in HNSCCs.

It remains unresolved whether HPV+ HNSCC patients

responded to ICI better than HPV− ones because clinical studies

reported inconsistent results (Table 1). In the KEYNOTE-012 trial

with pembro as first-line or subsequent-line treatment, R/M HPV+

HNSCC patients showed a higher ORR than HPV− patients (25%

vs. 14%) (51). The expansion cohort of KEYNOTE-012 reported an

even higher ORR (32% vs. 14%), and favorable 6-month

progression-free survival rate (37% vs. 20%) and 6-month OS

rate (70% vs. 56%) in HPV+ HNSCC patients compared to

HPV− ones (52). Similarly, a higher ORR was reported for HPV+

patients in CheckMate 141 trial (53) using nivolumab (HPV+ vs.

HPV−: 17.2% vs. 14.3%) and in HAWK study (54) using

durvalumab (HPV+ vs. HPV−: 29.4% vs. 10.8%). However,

Keynote-055 trial using pembro showed a similar ORR in R/M

HNSCC patients regardless of HPV status (HPV+ vs. HPV−: 16%

vs. 15%) (55). A similar ORR was also reported for HPV+ and

HPV− HNSCC patients (HPV+ vs. HPV−, 15% vs. 17%) in

NCT01375842 trial using Atezolizumab (56). Two recent meta-

analysis integrated all the clinical data and showed that anti-PD-1/

PD-L1 therapy favored a higher response rate in HPV+ than HPV−

HNSCC patients (57, 58). While these studies collectively suggest an

increased sensitivity of HPV+ HNSCCs to ICI treatment, future

clinical trials with a greater number of patients probably are needed

to completely resolve this issue.
TABLE 1 Summary of clinical trial studies for differential ICI response in HPV+ vs HPV− HNSCC patients.

Study Pub
Year

Phase Treatment Total patient
(N)

HPV status
(n)

ORR Median os
(months)

Ref
#

Keynote-012 2016 lb Pembrolizumab (anti-
PD-1)

60 HPV-pos (23)
HPV-neg (37)

25%
14%

Not reached
8

51

Keynote-012, Expansion
cohort

2016 lb Pembrolizumab (anti-
PD-1)

132 HPV-pos (28)
HPV-neg (104)

32%
14%

52

CheckMate 141, 2-year
update

2018 III Nivolumab (anti-PD-1) 240 HPV-pos (64)
HPV-neg (56)

17.2%
14.3%

9.1
7.7

53

HAWK Trial 2019 II Durvalumab (anti-PD-
L1)

112 HPV-pos (34)
HPV-neg (65)

29.4%
10.8%

10.2
5

54

Keynote-055 2017 II Pembrolizumab (anti-
PD-1)

171 HPV-pos (37)
HPV-neg (131)

16%
15%

55

NCT01375842 2018 la Atezolizumab (anti-PD-
L1)

32a HPV-pos (13)
HPV-neg (12)

15%
17%

56
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aIn NCT01375842, four patients with nasopharyngeal cancer were excluded from the HPV analysis population and three patients with unknown status.
in.org

https://doi.org/10.3389/fonc.2022.995434
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.995434
Differential responses to ICI in
mouse HNSCC models

To better delineate why ICI treatment results into variable

responses, we employed another syngeneic mouse model of

SCC, namely, the A223 tumor with Smad4 deletion, which has

been characterized previously (59–61). While Smad4 mutations

do not occur commonly in HNSCCs, Smad4 deletion is

frequently observed in a large portion of HNSCC samples

(62). Given Smad4 plays a key role in TGFb signaling and

Smad4-deficient SCCs elevated TGFb level (63), we investigated

whether Smad4-/- SCCs responded to combined TGFb/PD-L1
blockade differentially. We found that distinct immune TME

profiles of therapeutic responders emerge in combined TGFb/
PD-L1 blockade-treated SCC (64). Responders contained more

CD8 TILs and these CD8 TILs also exhibited more potent

effector functions compared to non-responders (64).

Additionally, responders harbored more M1 macrophages and

less resident monocytes in the TME, compared to non-

responders (64). The expression of major histocompatibility

complex (MHC) was higher on responder myeloid cells or

dendritic cells than non-responder counterparts (64).

Nevertheless, it remains unclear why certain tumor recipients

emerged as responders while others as non-responders.

To test whether oncogenic driver mutations affect

differential ICI responses, we employed the two established

KPPA tumor lines (TAb2 vs. TCh3), both of which harbor

TP53 deletion and PIK3CA hyperactivation. When transplanted

into C57BL/6 recipients, TAb2 and TCh3 tumors responded to

anti-PD-L1 differentially, with the former completely lacking

response and the latter being relatively sensitive (18). We

employed conventional flow cytometry and single-cell RNA-

sequencing to identify the difference in TILs. We found that

TAb2 and TCh3 KPPA tumors exhibited heterogeneous

immune profiles pre-existing treatment that dictated their

unresponsiveness or sensitivity to anti-PD-L1 (18). Others

have established murine HNSCC cell lines from primary

4NQO-induced tumors in the tongue of C57BL/6 (B6) mice,

which were designated 4MOSC, short for 4NQO-induced

murine oral squamous cells (65). Some of the 4MOSC cell

lines also exhibited variable responses to anti-PD-1 (65).

Overall, ICI treatment can result in heterogeneous outcomes

in preclinical models. These findings are consistent with

clinical observations.
Tumor-intrinsic factors influence
differential ICI responses

Extensive prior studies have suggested a critical role of

tumor-intrinsic factors in mediating differential responses to

ICI, including tumor mutational burden (TMB), PD-L1
Frontiers in Oncology 04
expression, or genetic and epigenetic differences in tumor cells

themselves (Figure 1). For instance, TMB was shown to correlate

to ICI efficacy in melanoma and non-small cell lung cancer

(NSCLC) (66–68). However, the role of TMB in HNSCCs

remains controversial. While studies showed that TMBhigh

HNSCCs responded to ICI treatment better (69–71),

conflicting data showed that TMB did not correlate with ICI

response (72, 73). The pathogenesis of HPV− HNSCCs are

strongly associated with carcinogens (e.g., tobacco); thus,

HPV− HNSCCs contain a high level of TMB yet they failed to

respond to neoadjuvant nivolumab treatment as well as

melanoma or NSCLCs (40). Overall, these data indicate that

the TMB level does not fully explain differential ICI responses in

HNSCCs. It remains unclear why the role of TMB in HNSCCs

differ from melanoma and NSCLC. It is possible that HNSCC is

a type of cancers that are inherently heterogeneous (5, 6). It is

also possible that HNSCCs may have a lower level of CD8 TIL

infiltration before ICI treatment compared to other cancers such

as melanoma.

PD-L1 expression has been used as a biomarker for

correlating ICI responses in HNSCCs. Clinical trial data

showed that PD-L1 expression is predictive of the response

rate and survival if the CPS was used based on expression of

tumor and TME (31). However, the PD-L1 expression based on

the tumor proportion score (TPS) does not predict ICI response

rate or survival (31), suggesting that tumor-derived PD-L1

expression is less important than combined PD-L1 expression

from both tumor and TME. Nevertheless, CPS cannot accurately

predict ICI responses and additional accurate biomarkers are

needed. Tumors may respond to ICI better if tumor cells are

capable of increasing the PD-L1 expression in response to

inflammatory stimuli abundant in the immune TME. In line

with this idea, studies from melanoma suggest that conserved

IFN-g signaling drives clinical response to ICI treatment (74),

although it remains unknown whether this mechanism also

operates in HNSCCs. Our studies suggest that the ability of

tumor cells to upregulate PD-L1 expression in response to IFN-g
stimulation may serve as a predictive marker for ICI responses

(18), consistent with prior findings that IFN-g and expanded

immune gene signatures correlated with better ICI response in

HNSCCs (75).

We uncovered tumor-intrinsic differences that may underlie

the differential responses to ICI by employing two KPPA tumor

lines, TAb2 vs. TCh3 (18). TAb2 tumors failed to respond to

anti-PD-L1, whereas TCh3 tumors were relatively sensitive (18).

Unresponsive TAb2 tumors were highly enriched with

functional tumor-associated macrophages (TAMs), especially

M2-TAMs (18). In contrast, sensitive TCh3 tumors contained

more CD8 TILs with better effector functions before anti-PD-L1

treatment (18). While anti-PD-L1 did not affect the TME of

TAb2 tumors, it significantly increased the number of CD8 TILs

in TCh3 tumors (18). These studies suggest that pre-existing

immune profiles may dictate the likelihood of a given tumor to
frontiersin.org
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FIGURE 1

Summary of host-intrinsic and tumor-intrinsic factors that may influence the heterogeneous outcomes of ICI treatment. (Top) Host-intrinsic
factors: (1) distinct TCR repertoires in responders vs. non-responders, (2) different level of CD8 TIL infiltration, (3) different cellular composition
of the TME. Various subsets of immune cells are shown including CD4 T cells, B cells and myeloid cells, whereas many subsets of other cells in
the TME are not shown including NK cells, Tregs, fibroblasts etc. TCR, T cell receptor; TIL, tumor-infiltrating lymphocyte; TME, tumor
microenvironment. (Middle) The interaction between CD8 T cells and tumor cells. CD8 T cells recognize the MHC class I/peptide complex
present on tumor cell surface. CD8 T cells can express various exhaustion markers including PD-1, TIM-3, LAG-3 etc. CD8 T cells can also
secrete cytokines such as IFN-g, while tumor cells express IFNg receptor (IFNgR). (Bottom) Tumor-intrinsic factors: (1) differential level of MHC
class I or class II expression, (2) PD-L1 expression on tumors (shown) or other cells in the TME (not shown), (3) the level of TMB, and (4) other
potential factors such as genetic or epigenetic alterations in tumor cells, differential transcriptomes; activation of different oncogenic signaling
pathways. TMB, tumor mutational burden.
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respond to anti-PD-L1, consistent with clinical data showing

that increased CD8 TILs before ICI treatment correlated with

better responses and survival (76).

The obvious question is why these two tumor lines exhibited

differential immune profiles before anti-PD-L1 treatment. We

performed RNA-seq and whole exome sequencing (WES) and

discovered tumor-specific transcriptional, genetic, and epigenetic

changes in TAb2 and TCh3 (18). For example, TAb2 tumors

expressed a higher level of CSF1, VEGF-C and VEGF-D, and

TAb2 tumor cells drastically expanded F4/80+ TAMs from bone

marrow precursors in a CSF1 and VEGF dependent manner (18).

ICI unresponsive TAb2 tumors upregulated distinct signaling

pathways that correlate with aggressive tumor phenotypes such as

STAT3 pathway (18). However, it remains unknown what tumor-

specific changes account for such differential phenotypes, and

further studies are warranted. Our studies also suggest that

stratifying cancers according to their genetic alterations alone

may not be sufficient and evaluating HNSCC tumor-intrinsic

cues together with immune profiles in the TME may help better

predict ICI responses.
The effects of host-intrinsic factors
on differential ICI responses

Since the adaptive immune system is vastly distinct between

different individuals, it is possible that immunological

heterogeneity may contribute to the highly variable outcomes

of ICI therapy (Figure 1). One of the key features of adaptive

immunity is “diversity”, generated via a somatic DNA

recombination process, termed V(D)J recombination. V(D)J

recombination occurs in a random stochastic manner in the

progenitors of T or B cells, thereby creating a vastly diverse T cell

receptor (TCR) or B cell receptor (BCR) repertoire in millions of

T or B cells, respectively (77, 78). The TCR of most conventional

T cells consists of two different protein chains, an alpha (a)
chain and a beta (b) chain, encoded by TRA and TRB,

respectively, and linked by disulfide bonds. A TCR clonotype

consists of a unique TCRa and a TCRb chain with unique V(D)J

usage and complementarity-determining region 3 (CDR3).

CDR3 encompasses the highly divergent junction of V(D)J

recombination and determines TCR specificity; hence, its

unique nucleotide or protein sequences can serve as a barcode

for individual TCRs.

Studying the formation and diversity of the human TCR

repertoire has been difficult due to limited access to human

thymus samples and non-feasibility of manipulating variables in

vivo. Therefore, humanized mouse models were generated by

implanting immunodeficient mice with human hematopoietic

stem cells (HSCs) and human thymus from the same or

different donors to study the development of human T cell

repertoire (79). Despite receiving identical HSCs and thymi and

having same genetic background and environment, human TCR
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repertoires were formed in a largely stochastic manner and totally

divergent in different recipient mice (79). This means that each

individual has an almost completely different TCR repertoire,

even in the case of identical twins, an observation which may

explain why genetically controlled autoimmune diseases exhibit

incomplete penetrance in monozygotic twins (80). Similar to the

human TCR repertoires, we predict that individual mice will

contain an almost completely different thymic TCR repertoire

even if they have identical genetic background (e.g., B6). The

initially formed TCR repertoire will be continuously shaped by

additional factors including immunization of foreign antigens,

pathogen infection, or therapeutic interventions (e.g., CRT).

Nonetheless, the peripheral TCR repertoire will remain

divergent in individual mice. Prior studies showed that many

different TCR clonotypes can react to the same MHC/peptide

antigens including model or viral antigens (81, 82). These studies

collectively implicate a possibility that different mice could mount

anti-tumor immune responses against the same tumor antigens

utilizing totally distinct TCR clonotypes. Thus, we propose that

the intrinsic differences in diverse TCR repertoires may also

contribute to heterogeneous anti-tumor immune responses in

different hosts (83). If so, this notion may offer a new explanation

for why some hosts would harbor T cells that can eradicate

tumors, while others would not.

We proposed “a hole in TCR repertoire” hypothesis to explain

the differential ICI responses (83). Currently, there is no data to

support the existence of “any hole” in the TCR repertoire given it

is dynamic and constantly shaped by various factors. However,

there are abundant data supporting immunological differences in

individual cancer patients or mouse recipients transplanted with

tumors. The frequency of CD8 and CD4 TILs differed in patient

samples and positively correlated with clinical outcomes in

HNSCCs (23). We also found that the percentage of CD8 TILs

varied substantially in HNSCCs with a small fraction containing a

high level of CD8 TILs while most patient samples were infiltrated

with a low to moderate level of CD8 TILs (20), consistent with an

immunosuppressive TME of HNSCCs (19, 84). However, it

remains unknown whether the TCR repertoires of CD8 TILs

differ in tumor-eradicating vs. tumor-progressing hosts. In this

regard, our previous studies showed that Smad4−/− SCCs (A223)

elicited divergent responses when transplanted into genetically

identical WT B6 mice (20). While a small fraction of tumor-

bearing recipients spontaneously rejected the A223 tumor

(regressor), most of them underwent tumor progression

(progressor) (20). Intriguingly, the top TCR clonotypes were

almost mutually exclusive between regressors and progressors

(20). Furthermore, both regressor and progressor top TCR

clonotypes presented in a recipient-specific manner, suggesting

a highly individualized anti-tumor immune response (20). Further

studies are warranted to investigate whether the TCR repertoires

of CD8 TILs differ in ICI responders vs. non-responders, which

may be easier to address using syngeneic mouse models since WT

B6 mice have a limited number of MHC class I alleles. The
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differences in TCR repertoires need to be functionally defined and

quantified using an antigen-specific system which can test if

distinct TCR clonotypes elicit qualitatively or quantitatively

different responses against the same tumor-specific antigen.

It is thus conceivable that immunological heterogeneity (e.g.,

differences in the TIL TCR repertoire) contributes to the highly

variable outcomes of ICI treatment. Why has this idea not been

discussed before? Likely because the well-established dogma

assumes that there would be sufficient TCR clones that can

effectively recognize any tumor-antigen in a given individual due

to the enormous size of a TCR repertoire: the estimated T cell

number is about 3×1011 (85) and the number of TCR clonotypes

is about 1010 in a given adult (86). Indeed, our adaptive immune

system can recognize millions of different pathogens or foreign

antigens. However, the effect of immunological heterogeneity is

understudied in the context of anti-tumor immunity, and many

fundamental questions remain to be addressed, for instance, the

actual factors responsible for the highly variable ICI responses

remain elusive. Beside TCR differences, BCR may also differ in

responders vs. non-responders. Prior studies showed that

characteristics of tumor-infiltrating B cells also varied

significantly in HNSCCs and correlated with clinical outcomes

(87, 88). Overall, future studies are needed to elucidate whether

and how host-specific immunological heterogeneity influences

differential responses to ICI.
Discussion

Why are responses to ICI heterogeneous in different cancer

patients? What underlying mechanisms lead to such differential

responses? These are imperative and fundamental questions for

cancer immunology field. Addressing such questions may

substantially impact developing new strategies for personalized

cancer immunotherapy. We suggest that both tumor-intrinsic

and host-intrinsic factors may contribute to differential ICI

responses. For instance, by establishing and employing two

SCC tumor lines, TAb2 vs. TCh3, both of which harbor TP53

deletion and PIK3CA hyperactivation, we uncovered tumor-

intrinsic differences that may underlie the differential

responses to ICI (18). However, it still remains to be addressed

what tumor-specific genetic or epigenetic changes lead to

unresponsiveness in TAb2 or sensitize TCh3 to anti-PD-L1

treatment, and whether such changes are also applicable to the

heterogeneous ICI responses in human HNSCCs.

Distinct top TIL TCR clonotypes were found to correlate with

tumor eradication vs. tumor progression phenotypes (20). This

observation implies that regressor and progressor CD8 TILs might

mount drastically different responses by employing distinct TCRs

against the same A223 tumor cell line. In line with our observation,

prior studies showed that many different TCR clonotypes can react

to the same MHC/peptide antigens including model or viral

antigens (81, 82). It remains unknown whether the top TCR
Frontiers in Oncology 07
clonotypes differ in ICI responders vs. non-responders. To

address whether the spectrum of TCR clonotypes within

regressor or ICI responder provides advantageous recognition of

tumor antigens over the spectrum of TCR clonotypes within

progressor or ICI non-responder, it would require an antigen-

specific model system. Altogether, we propose that stochastic

differences in TIL TCR repertoire may be one of several factors

that might underlie differential responses to ICI treatment. Of

course, this notion does not exclude the contribution of tumor-

intrinsic factors, including TMB, tumor immunogenicity, PD-L1

expression or others, to differential ICI responses (21, 50, 89–92);

nevertheless, our hypothesis may offer a new perspective to test

whether stochastic differences in TCR repertoire contribute to

variable ICI responses in different individuals.
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