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Despite its growing use in cancer treatment, immunotherapy has been virtually

ineffective in clinical trials for gliomas. The inherently cold tumor immune

microenvironment (TIME) in gliomas, characterized by a high ratio of pro-

tumor to anti-tumor immune cell infiltrates, acts as a seemingly

insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within

these tumors are key contributors to this cold TIME, often functioning indirectly

through activation and recruitment of pro-tumor immune cell types.

Furthermore, drivers of GSC plasticity and heterogeneity (e.g. ,

reprogramming transcription factors, epigenetic modifications) are

associated with induction of immunosuppressive cell states. Recent studies

have identified GSC-intrinsic mechanisms, including functional mimicry of

immune suppressive cell types, as key determinants of anti-tumor immune

escape. In this review, we cover recent advancements in our understanding of

GSC-intrinsic mechanisms that modulate GSC-TIME interactions and discuss

cutting-edge techniques and bioinformatics platforms available to study

immune modulation at high cellular resolution with exploration of both

malignant (i.e., GSC) and non-malignant (i.e., immune) cell fractions. Finally,

we provide insight into the therapeutic opportunities for targeting

immunomodulatory GSC-intrinsic mechanisms to potentiate immunotherapy

response in gliomas.
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1 Glioblastoma stem cells

High-grade gliomas, including glioblastoma (GBM), are

h igh ly he te rogeneous wi th a complex oncogen ic

microenvironment consisting of distinct tumor niches and

remarkable cell heterogeneity (1, 2). A critical component of

glioma malignancy derives from the distinct population of

glioma stem cells (GSCs) that function to promote and

maintain oncogenicity through their capacity for self-renewal,

cellular adaptation, and multipotency (3–5). These stem-like

cells engage in a synergistic relationship with the surrounding

tumor microenvironment (TME) to promote tumor progression

and contribute to the vast degree of intratumoral heterogeneity,

immune-suppression, and therapy resistance encountered in

gliomas (5). The plasticity of GSCs facilitates shifts between

distinct tumorigenic stem-like states and allows for transitions

along the spectrum of differentiation that characterizes glioma

cells (6–8). These state transitions are brought on by various

stemness-inducing stimuli (e.g., hypoxia, interaction with non-

neoplastic cells, immune exposure, therapeutics, etc.) and

carried out by reprogramming mechanisms that involve

specific transcription factors and dynamic epigenetic

modifications that alter transcriptional profi les and

consequently, cellular and molecular phenotypes (9) (Figure 1).

A unique facet of cancer stem cell biology is the capacity of a

tumor-propagating stem-like cancer cells to evolve from a non-
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stem-like state through a process known as dedifferentiation.

Reprogramming transcription factors, collectively referred to as

the Yamanaka factors (Oct3/4, Sox2, Klf4, c-Myc), play critical

driving roles in this process (10, 11). In particular, Oct4 and

Sox2 are sufficient to induce stem cell properties and in vivo

tumor-propagating potential in differentiated and non-tumor-

propagating GBM cells (12, 13). Additionally, our lab has

identified multiple mechanisms downstream of Oct4 and Sox2

underlying GSC stemness and tumorigenicity (12–17).

Furthermore, epigenetic modifications mediated by Sox2 and

Oct4 have implications in GSC-immune interactions that

contribute to an immunosuppressive TME (17).

In spite of the progress in our understanding of GSC biology,

the inherent heterogeneity and plasticity of the GSC population

and resulting phenotypic consequences have restricted the

impact of ongoing therapeutic efforts. In this review, we cover

the advancements in our understanding of GSC plasticity, GSC-

intrinsic immunomodulatory mechanisms, and the capacity of

GSCs to co-opt immunosuppressive cell phenotypes.

Additionally, we discuss the application of evaluable and

emerging cutting-edge techniques to study immunosuppressive

GSC states and cell-cell interactions at high cellular resolution.

Finally, we discuss potential therapeutic approaches aimed at

exploiting epigenetic mechanisms and metabolic vulnerabilities

associated with acquired immunosuppressive GSC states to

enhance the efficacy of GBM immunotherapy.
FIGURE 1

Adaptive responses drive immunosuppressive GSC mechanisms. (A) GBM cells face constant adaptive pressure due to stimuli in the surrounding
TME including cell-cell interactions with non-neoplastic counterparts, standard-of-care therapeutics and availability of oxygen and nutrients.
(B) These extrinsic stimuli induce reprogramming events, including acquisition of a stem-like state in GBM cells. Transition to a GSC state results
from altered gene expression mediated by various transcriptional regulators (e.g., epigenetic modifiers, transcription factors) that regulate
immunomodulatory mechanisms. (C) GSC-intrinsic immunomodulatory mechanisms occur through induction (yellow) or repression (red) of
immune-related genes that play a key role in shaping the TIME in GBM. Cell types: EC, endothelial cell; n, neuron; Teff, effector T cell; Treg,
regulatory T cell; NK; natural killer cell; TAM, tumor-associated macrophage/microglia; DC, dendritic cell.
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2 Contribution of GSCs to the
immunosuppressive
microenvironment in glioblastoma

2.1 Immunosuppressive TME in GBM

A hal lmark of GBM and significant barr ier to

immunotherapies is the immunosuppressive TME defined by

relatively high numbers of suppressive, pro-tumor immune cell

infiltrates (e.g., regulatory T cells (Tregs), tumor-associated

microglia, tumor-associated macrophages (TAMs), myeloid-

derived suppressor cells (MDSCs)) and high prevalence of

dysfunctional T cell states (e.g., exhaustion) (18–26). High

infiltration of immunosuppressive myeloid and lymphoid cell

populations negatively correlates with patient prognosis and

therapy response in GBM (19, 25, 27–29). Notably, most

infiltrating immune cells in GBM are of myeloid origin (e.g.,

monocyte-derived macrophages, brain-resident microglia, and

MDSCs) and are defined by a variety of pro-tumor phenotypes

that function to suppress the anti-tumor immune response (20,

24, 26, 30–32). Beyond their direct immune suppressive

functions, pro-tumor myeloid populations (i.e., TAMs,

microglia, and MDSCs) promote GBM growth, invasion, and

angiogenesis (33–39). Moreover, TAMs have the capacity to

induce a mesenchymal state in GBM, which is associated with

therapy resistance and poor patient survival (40–42).

As mentioned above, GBM is highly heterogeneous and can

be broadly classified by three molecularly defined subtypes –

classical, proneural, or mesenchymal (43) – each with unique

immunosuppressive characteristics. The diversity of myeloid cell

states is demonstrated by the existence of myeloid phenotypes

that preferentially associate with specific GBM subtypes and

specific tumor niches. For example, mesenchymal tumors are

enriched in blood-derived macrophages that possess a

transcriptionally distinct immunosuppressive profile marked

by upregulation of genes involved in chemokine signaling and

lymphocyte chemotaxis and reside in microvascular and peri-

necrotic regions (31).

GSCs also avoid recognition by the immune system through

expression of checkpoint inhibitors, including PD-L1, CD70,

A2aR and TDO, and downregulation of antigen-presentation

molecules, specifically MHC class I (MHC-1) molecules (17,

44–46). Furthermore, GSCs can regulate the immune TME by

recruiting and polarizing myeloid cells to an immunosuppressive

state, producing T cell-suppressing cytokines, and monopolizing

nutrients necessary for proper T cell function (47–51). For

example, Wu et al. demonstrated GSC-mediated recruitment

and polarization of macrophages and microglia to an M2-like

phenotype through production of TGF-b1, MIC-1 and CSF-1

(47). From a metabolic standpoint, GSCs preferentially take up

glucose from the microenvironment, leading to impaired T cell

function due to glucose deprivation (49–51).
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There are mult iple contributors to the lack of

immunotherapy efficacy in GBM. These include a relatively

low gene mutation rate resulting in relatively few tumor-

associated neoantigens (52), a unique TME comprised of an

abundance of tumor-associated immunosuppressive M2-like

macrophages (comprising up to 60% of immune cells) (20)

and the immune-privileged brain environment (53). However,

the fact that standard-of-care chemo/radiation for newly

diagnosed GBM can lead to hypermutated recurrent tumors

(54) unresponsive to immunotherapy and the efficacy of

immunotherapy in cases of CNS metastases (e.g., melanoma)

emphasize the potential dominant role for the GBM TME in

driving immunotherapy resistance (55–58). For example, the

TME of brain metastases and primary CNS tumors, including

GBM, have distinct immune landscapes whereby brain

metastases contain higher infiltration of leukocytes and fewer

cells of monocytic-lineage (19).
2.2 Molecular regulation of the
immunosuppressive GSC transcriptome

Understanding the therapeutic consequences and

vulnerabilities of GBM cell heterogeneity and plasticity is an

ongoing effort in the scientific community. Despite the

association between genetic aberrations and cell states in GBM

(59), genomic alterations alone are insufficient to explain the

highly adaptive and heterogeneous nature of GSCs (60).

Epigenetic modifications mediate the acquisition of a stem-like

state in cancer cells, including GBM, and recent studies have

implicated epigenetic variability as a driving force in the

adaptation of GBM to external stimuli throughout tumor

evolution (4, 12, 14–16, 60–62).

Epigenetic mechanisms, including the addition and removal

of activating or repressive marks to histone proteins, DNA, and

RNA, serve to regulate gene expression in a reversible manner

(62, 63). Notably, the balance between transcriptionally

repressive methylation and activating demethylation of DNA,

controlled by DNAmethyltransferases (DNMTs) and ten-eleven

translocation proteins (TETs), respectively, governs acquisition

and maintenance of the GSC phenotype (12, 16). On the other

hand, RNA methylation occurs post-transcriptionally to alter

mRNA stability and impact stem cell differentiation (64–66).

Histone proteins, which are essential for forming and stabilizing

chromatin structure in either accessible (euchromatin) or

inaccessible (heterochromatin) states, are also susceptible to

modifications (e.g., methylation, acetylation, phosphorylation)

which consequently alter chromatin architecture and lead to

activation or repression of gene transcription (63). The

progression from chromatin remodeling to transcription

activation involves the activity of epigenetic readers, such as

bromodomain and extraterminal domain (BET) proteins, that

detect and bind histone marks. Readers recruit transcription
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regulatory factors and/or chromatin remodeling protein

complexes to control gene expression (67). Collectively,

dysregulation of epigenetic factors underlies the acquisition,

maintenance, and plasticity of the GSC phenotype and

represents a promising avenue for GSC-targeted therapeutics

in GBM.

A relatively underappreciated aspect of dynamic GSC states

is their contribution to the immunosuppressive tumor

microenvironment. The role of the tumor microenvironment,

specifically the immune compartment, in driving GBM and GSC

states is being increasingly elucidated (7, 31, 41, 68, 69).

However, improved understanding of how GSC adaptations

influence the immune TME is crucial to overcome the

immunosuppressive pressures that diminish the efficacy of

immunotherapy in gliomas. As discussed above, the cell-

intrinsic factors that modify and drive GSC states and

trans i t ions are abundant and inc lude spec ia l ized

reprogramming transcription factors, epigenetic modifiers,

transcriptional regulators, cellular cycles, etc. In this section,

we discuss findings that highlight the effects of GSC-intrinsic

transcriptional variation and cellular transitions on their

immunomodulatory role.

2.2.1 Transcription factors
As mentioned previously, the most notable transcription

factors associated with acquisition of a stem-like phenotype are

the Yamanaka factors. Of particular interest in the context of

glioma, especially related to the immune influence of GSCs, are

Sox2 and Oct4. Sox2, which is a ubiquitously expressed

transcription factor in cancer stem cells, has a direct effect on

the immunosuppressive capacity of GSCs through induction of

CD39 (ENTPD1), an ectonucleotidase responsible for

hydrolyzing ATP towards adenosine and a critical mediator of

immune response in cancer (70, 71). In GSCs, knockdown of

Sox2 increased the extracellular ATP concentration and

enhanced dendritic cell recruitment and phagocytic-ability as

well as T-cell-mediated GSC lysis in co-cultures in direct

association with a reduction in CD39 (70).

Another noteworthy stem cell-driving transcription factor,

Oct4 (POU5F1), cooperates with Sox2 to induce an

immunosuppressive transcriptome in GSCs, defined by

induction of immune checkpoint inhibitory molecules (PD-L1,

CD70, A2aR and TDO) alongside dysregulation of immune

modulatory cytokines and chemokines including upregulation

of SSP1, IL8, CXCL3, and CCL20 and downregulation of CCL5,

CXCL9, and CXCL10. This GSC immune-suppressive

phenotype was found to be mediated by and dependent on the

BET protein BRD4 which is involved in directing chromatin

remodeling in response to histone modifications (17).

Aside from the classical cancer stem cell reprogramming

transcription factors, other transcription factors are involved in

both the induction of a glioma stem-like state and acquisition of
Frontiers in Oncology 04
an immunosuppressive GSC phenotype. Yin Yang 1 (YY1), a

zinc-finger transcription factor involved in polycomb protein

recruitment and transcription regulation (72, 73), is necessary

for maintenance of the stem cell phenotype in GBM, is

associated with Sox2 and Oct4 expression across cancers (74–

77), and mediates both chemotherapy and radiation resistance in

GBM (74, 78). The YY1-CDK9 transcriptional complex in GBM

cells promotes Treg infiltration, inhibits RNA methylation-

dependent interferon responses, and reduces the efficacy of

immune checkpoint inhibitor therapy in GBM (77),

highlighting how transcription factors and epigenetic

modifications cooperate to impart immunomodulatory

function in GBM cells.

While we typically think of external pressures when

discussing induction of stemness, pre-programmed

endogenous processes such as the circadian rhythm may also

drive and maintain the stem cell phenotype in cancer cells (79,

80). The circadian rhythm is a cell-autonomous, cyclical process

composed of transcriptional-translational feedback loops that

govern carefully timed adjustments in gene expression (81). The

transcriptional variation attributed to circadian oscillations has a

demonstrated capacity to alter cancer stem cell states, their

interaction with the TME, and their susceptibility to

therapeutic agents (79, 82–86). Disruption of the circadian

rhythm leads to altered immune cell infiltration and T-cell

exhaustion in a variety of cancers (85, 87, 88). In glioma, the

CLOCK-BMAL1 complex, the main transcriptional component

in the circadian rhythm, modulates the stem cell phenotype by

enhancing self-renewal capacity and migration and regulating

GSC metabolism (89–91). Furthermore, CLOCK, in partnership

with BMAL1, upregulates LGMN via induction of OLFML3, a

novel microglia-recruiting factor, in GSCs to enhance infiltration

of microglia and polarize them to an immunosuppressive

phenotype (89, 92) . This finding, a long with our

understanding of circadian dysfunction in cancer ,

demonstrates the possibility of dynamic immunomodulatory

GSC phenotypes mediated by cell-intrinsic processes.

2.2.2 Histone modifications
As discussed previously, readers of histone modifications,

e.g., BRDs, can direct acquisition of an immunosuppressive

p h e n o t y p e i n G SC s ( 1 7 ) . B RD s a l s o h a v e a n

immunomodulatory role in ATRX-deficient, IDH-mutant

gliomas. Deficiency of ATRX, a histone protein involved in

the chromatin remodeling SWI/SNF family, occurs in >80% of

IDH-mutant grade II/III astrocytomas and >50% of secondary

GBMs (93, 94). Hu et al. reports a BRD3/4-dependent

induction of an immunosuppressive transcriptome, marked

by upregulation of PD-L1/2, IL-33, CXCL8/9, CSF2, and IL-6,

in ATRX-deficient glioma cells (95). Furthermore, this ATRX

loss resulted in decreased T-cell-mediated glioma cell lysis,

increased macrophage immune-suppressive M2-like
frontiersin.org
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polarization, and enhanced Treg tumor infi ltration.

Independently, Babikir et al. found increased infiltration of

immunosuppressive monocyte-lineage cells in ATRX-mutant

versus ATRX-wildtype IDH-mutant glioma (96). While the

former findings were not in the context of cancer stem cells,

ATRX-mutant IDH1-mutant GSCs have been shown to

possess increased cell propagation capacity and upregulation

of TGF-beta-associated pathways compared to ATRX-wildtype

GSCs (97) suggesting that ATRX-deficiency enhances certain

stemness characteristics in glioma in accordance with

increased immunosuppressive effects.

Enzymes that remove histone acetylation marks, known

collectively as histone deacetylases (HDACs), also regulate

GSC-intrinsic immunomodulatory mechanisms (44, 98). A

major factor in the poor immunogenicity of gliomas derives

from the innate ability of GSCs to evade the immune response

through dysregulation of major histocompatibility complex

(MHC) molecule expression (44). Specifically, Yang et al.

demonstrated HDAC-dependent MHC-1 downregulation in

GSCs that consequently suppressed the function of tumor-

infiltrating lymphocytes (TILs). Furthermore, pan-HDAC

inhibition not only enhanced MHC-1 expression and the T-

cell response, but it downregulated Sox2 and Oct4 protein

expression and decreased the self-renewal capacity of GSCs.

While the knowledge that HDAC inhibitors upregulate MHC-1

molecule expression in cancer is not new (99–103), this study

extended the findings to gliomas and, more importantly, detailed

the association between HDAC regulation of MHC1 expression

and maintenance of the stem cell phenotype. Aside fromMHC-1

expression, histone deacetylation via HDAC8 in glioma cells

represses NKG2D ligand expression to evade natural killer (NK)

cell-mediated tumor cell death (104). A study by Zhan et al.

found that HDAC1 and HDAC2 promote GSC evasion of the

suppressive interferon-mediated immune response through

their involvement in the nucleosome remodeling and

deacetylase (NuRD) complex (105). Zhan and colleagues show

that methyl-CpG-binding domain 3 (MBD3) recruits and

assembles the HDAC-containing NuRD complex at the

promoter of STAT1 where deacetylation of H3K27 leads to

repression of STAT1 transcription. From there, STAT1

repression desensitizes GSCs to interferon treatment. The

driver of this mechanism, MBD3, also regulates proliferation,

viability, and self-renewal capacity of GSCs and positively

correlates with expression of Sox2, Olig2, and Nestin in GBM

specimens (106). Together, these findings directly link glioma

cell-intrinsic HDAC-mediated immunosuppression to the

acquisition and maintenance of the stemness phenotype

of GSCs.
2.2.3 DNA and RNA methylation
The dynamics and consequences of DNA methylation in

cancer biology have been vastly explored. Patterns of DNA
Frontiers in Oncology 05
methylation mediate repression of gene transcription thereby

altering cell states and phenotypes and contributing to tumor

progression (12, 16, 60). In the context of gliomas, levels of DNA

methylation are associated with the IDH-mutation status of the

tumor with IDH-mutant gliomas tending to acquire a

hypermethylated phenotype, commonly referred to as the

glioma CpG island methylator phenotype or G-CIMP (107).

This CpG island hypermethylation has been implicated in

controlling immunomodulatory effects of GSCs in both IDH-

mutant and IDH-wildtype gliomas. Specifically, in IDH-mutant

GSCs, increased methylation of the NKG2D ligand gene

promoter suppresses its expression leading to the ability of

GSCs to evade NK cell-mediated cytotoxicity (108). In line

with evidence that decreasing DNA methylation in cancers

enhances immunogenicity through upregulation of MHC-1

expression (109–112), GSCs are found to contain increased

methylation along the regulatory regions of HLA genes (113).

Similarly, a separate study discovered that methylation-

dependent regulation of MHC-1 and ICAM1 expression

regulates T cell-mediated GSC cytotoxicity in IDH-wildtype

glioma (46). Gangoso et al. demonstrated emergence of a

DNA methylation-dependent immune evasive phenotype

highly associated with mesenchymal and mesenchymal-like

GBM states (68). These GSCs were found to have extensive

hypomethylation, especially along genes involved in immune-

suppressive processes. Furthermore, immune evasive GSCs

fostered an immunosuppressive TME in vivo characterized by

enhanced infiltration of macrophages and myeloid-derived

suppressor cells (MDSCs) and increased TIL dysfunction (68).

Unlike DNA methylation, RNA methylation is a relatively

underappreciated regulator of the stem cell phenotype. In

embryonic stem cells (ESCs), low levels of N (6)-

methyladenosine (m6A methylation) promote pluripotency

and protect against differentiation (64–66). Many transcripts

of pluripotency genes, including Nanog, Sox2 and Klf2, are

regulated by m6A methylation in both human and mouse

ESCs (64, 65). In GSCs, Cui et al. found that METTL3, a

catalytic subunit of the m6A methyltransferase complex,

reduces cell proliferation and self-renewal capacity along with

CD44 expression, through methylation of pluripotency-driving

transcripts (114). However, conflicting roles of METTL3 in

GSCs have been demonstrated by other studies (115–117).

Visvanathan et al. showed that GSCs are enriched for

METTL3 which functions to stabilized SOX2 expression and

enhance self-renewal capacity (117). Moreover, METTL3 has

been linked to TMZ resistance in GBM cells (115, 116). On the

other hand, ALKBH5, an m6A RNA demethylase, is highly

expressed in GSCs and associated with poor patient prognosis in

GBM (118). Through demethylation, ALKBH5 enhances both

self-renewal capacity and expression of stemness genes (i.e.,

Nestin, Sox2, Nanog, and Oct4) in GSCs (118). Furthermore,

ALKBH5 can indirectly regulate the GBM cell-intrinsic

immunosuppressive phenotype by demethylating the lncRNA
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NEAT1 which allows for NEAT1-mediated paraspeckle

assembly (119). From there, relocation of transcriptional

repressors to the newly assembled paraspeckles results in

upregulation of CXCL8 and IL8. Consequently, ALKBH5-

initiated CXCL8/IL8 induction improves tumor-associated

macrophage infiltration and promotes tumor progression,

demonstrating the impact of post-transcriptional epigenetic

modifications in regulating the immunosuppressive GSC

phenotype. These findings suggest the need for a more refined

investigation of the role of m6A methylation in controlling the

GSC phenotype, taking special care to account for and address

the heterogeneous and dynamic states of GSCs.

2.3 Immunosuppressive influence of metabolic
plasticity in GSCs

A hallmark of cancer, metabolic remodeling permits cells to

adapt and persist in conditions of depleted oxygen and/or

nutrients by utilizing alternative metabolic pathways (120).

Cancer stem cells in particular possess a great potential for

metabolic reprogramming compared to more differentiated

counterparts (121–123). In GBM, GSCs readily adjust their

metabolic preferences to meet their energy demands (49, 123–

125). Remodeling in response to hypoxic or low glucose

environments occurs through various mechanisms including

epigenetic modification (3, 126, 127), HIF-1a signaling (125,

128, 129), and altered expression of metabolic enzymes and

transporters (49, 130). In general, metabolic profiles in GBM

cells are spatially distinct and attributed to TME interactions and

restricted nutrient availability (122, 125, 131, 132) with different

GSC subsets having distinct metabolic preferences and

dependencies (121, 133, 134).

Notably, metabolic reprogramming in GSCs modulates the

anti-tumor immune response in favor of tumor progression. As

mentioned previously, GSCs suppress T cell function and recruit

and polarize microglia through glucose monopolization and

circadian dysregulation, respectively (49, 89, 90). Additionally,

GBM cells in spatial proximity to immune cells have distinct

metabolic profiles associated with immune-suppressive

transcriptional signatures. Similar to immune-responsive cells,

hypoxia-responsive GBM cells, which are enriched for GSCs,

reside in regions enriched in TAMs and T cells (including

exhausted CD8+ T cells), linking hypoxia-induced metabolic

remodeling to tumor-promoting immune interactions (135).

Furthermore, Coy et al. identified increased levels of

extracellular immune-suppressive adenosine in GBM

attributed to high expression of CD73, which functions

alongside CD39 to metabolize ATP into adenosine, in

hypoxia-responsive GBM cells (131). Collectively, these

findings demonstrate a connection between TME-driven

metabolic reprogramming and GSC-mediated immune

suppression, and prompt further investigation into

therapeutically relevant metabolic vulnerabilities in these

immune-suppressive cells.
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2.4 GSC plasticity and immune cell mimicry
Over the last decade or so, our understanding of the

phenotypic plasticity of cancer cells has expanded to include

the ability of cancer stem cells to behave like, or mimic, the

function of other cells (Figure 2) (136). For example, GSCs can

behave like vascular endothelial cells and pericytes to promote

angiogenesis and increase oxygen and nutrient availability in a

phenomenon referred to as vasculogenic mimicry (137–139). In

many respects, this epitomizes the inherent plasticity of GSCs

and is mediated by epigenetic mechanisms and influenced by

conditions in the TME (136–141). Additionally, subsets of

GSCs resemble neuronal and glial progenitor cells and

engage in synaptic interactions to promote tumor invasion

and progression (59, 142–146). Notably, a similar process

affecting the GBM immune microenvironment has been

identified whereby GSCs mimic immune cell function by co-

opting transcriptional profiles typically associated with

myeloid cells (68, 147). The aforementioned study by

Gangoso et al. demonstrated acquisition of a myeloid-related

immunosuppressive transcriptional profile in GSCs mediated by

a DNA methylation-dependent immunoediting mechanism in

response to repeated immune exposure (68). In particular, Irf8,

Nt5e, and Cd274 were among the genes upregulated in immune

evasive, mesenchymal-like GSCs due to DNA demethylation.

Due to the often myeloid-specific expression of Irf8 and

transcriptome-level induction of myeloid-related signatures,

they concluded that altered DNA methylation governs

acquisition of a myeloid-mimicking phenotype in GSCs (68).

Furthermore, our lab has identified a Treg-like transcriptional

profile in TGFBR2high GSCs driven by Oct4 and Sox2 that

regulates the immunosuppressive TME by repressing T cell

function through the action of effector genes canonically

expressed by Tregs (e.g., CD274, ENTPD1, NT5E, LGALS1,

TGFB1) (148). Collectively, these findings suggest that GSCs co-

opt functions of non-neoplastic cells from the TME through

dynamic state transitions to facilitate tumor progression and

suppress the immune response.

In summary, GSCs alter their immunomodulatory

phenotype in response to stemness-regulating stimuli

(Figure 1). A variety of gene expression regulators carry out

these transformations, from pluripotency-driving transcription

factors and circadian transcriptional complexes to epigenetic

modifications (Table 1). While improving, our understanding of

the immunosuppressive functions of GSCs as they relate to their

heterogeneous and ever-changing states is l imited.

Unfortunately, many studies conducted in the context of GSC-

immune interactions are restricted from the start to certain

subpopulations of GSCs (e.g., gatekeeping GSCs by their CD133

expression). This not only sets the stage for potentially context-

dependent findings, but inaccurately represents the diverse

spectrum of GSC phenotypes found in patient specimens.

Moving forward, it is essential to approach studies of GSC-

intrinsic mechanisms from an unbiased starting point, especially
frontiersin.org

https://doi.org/10.3389/fonc.2022.995498
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Johnson et al. 10.3389/fonc.2022.995498

Frontiers in Oncology frontiersin.org07
)

)

)

)

,

FIGURE 2

Consequences of GSC lineage plasticity. A defining characteristic of GSCs is their multipotency, or ability to differentiate into various cell types
within a particular cell lineage. Cancer stem cells, including GSCs, can imitate cell types from multiple lineages by co-opting their transcriptional
profiles and consequently mimicking their functions.
TABLE 1 GSC-intrinsic mechanisms modulating the immune response.

Class Regulatory
Factor

Mechanism Immune effect GSC context Ref
(s)

Transcription
Factors

Sox2 Decreased extracellular ATP via CD39 induction ↑ DC-mediated GSC phagocytosis; ↓
T cell-mediated GSC lysis

Patient-derived GSCs (70)

Oct4 (POU5F1)
and Sox2

BRD4-dependent induction of checkpoint inhibitory
molecules and immune-suppressive cytokines/
chemokines

↓ T cell infiltration, ↑ Treg
infiltration, ↓ T cell activation, ↑ M2-
like macrophage polarization

Patient-derived GSCs (17)

Yin Yang 1 (YY1) Facilitates m6A-mediated suppression of interferon-
related genes via induction of METTL3, YTHFD2
and genes involved in transcription elongation

↑ Treg infiltration, ↓ interferon
responses, ↓ ICI efficacy

CD133+ patient-derived GSCs (77)

CLOCK-BMAL1
complex

Induction of LGMN via OLFML3 ↑ Infiltration and polarization of
immunosuppressive microglia

Patient-derived GSCs (89,
92)

Chromatin
modifications

ATRX deficiency BRD3/4-dependent induction of PD-L1/2 and
immune-suppressive cytokines/chemokines

↑ T cell apoptosis, ↓ T cell-mediated
tumor cell lysis, ↑ Macrophage
polarization, and ↑ Treg infiltration

IDH-mutant glioma cells (95)

HDACs MHC-1 downregulation ↓ T cell recognition of GSCs, ↓ T
cell-mediated GSC lysis

CD133+ patient-derived GSCs (44)

MBD3 Promotes assembly of the HDAC-containing NuRD
complex which represses STAT1 expression via
histone deacetylation

↓ interferon-mediated GSC
suppression

CD133+ patient-derived GSCs (106

DNA
methylation

Hypermethylation ↓ NKG2D ligand expression ↓ NK cell-mediated GSC killing IDH-mutant GSCs (108

Hypermethylation ↓ expression of HLA genes ↓ Immune recognition of GSCs GSCs induced via lentiviral
expression of reprogramming
TFs in GBM-derived cells

(113

Hypermethylation ↓ FAS, MHC-1, and ICAM1 expression ↓ T cell recognition of GSCs, ↓ T
cell-mediated GSC lysis

Mouse GSCs (46)

Hypomethylation Enhanced immune evasion via activated expression
of immune-suppressive genes

↑ Macrophage and MDSC
infiltration, ↑ TIL exhaustion

Mouse GSCs & patient-
derived GSCs

(68)

RNA
methylation

ALKBH5 Upregulation of CXCL8/IL8 via demethylation of
lncRNA NEAT1

↑ TAM infiltration U87 GBM cells (119
DC, dendritic cell; GSC, glioma stem cell; Treg, regulatory T cell; ICI, immune checkpoint inhibitor; HDACs, histone deacetylases; NK, natural killer; IDH, isocitrate dehydrogenase; MDSC
myeloid-derived suppressor cell; TIL, tumor-infiltrating lymphocyte; TAM, tumor-associated macrophage; TFs, transcription factors.
↓, decreased; ↑, increased.
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in the context of TME interactions whereby both cell intrinsic

and extrinsic influences constantly drive GSC adaptation and

state plasticity. In the next section, we discuss cutting-edge

techniques and bioinformatics tools available to study

heterogeneous and dynamic GSC states at a high cellular

resolution allowing for deep exploration of the bidirectional

interaction between GSCs and cells of the TME that influence

GSC-mediated immunomodulation (Table 2).
3 Analytical tools to explore GBM
heterogeneity

3.1 Deconvolution of bulk tumor
sequencing

Whole tumor sequencing modalities, such as whole-genome

and whole-exome sequencing, RNA-sequencing (RNA-seq),

bisulfite sequencing, and assays for chromatin accessibility

sequencing (ATAC-seq), have been widely used to classify

tumors and explore context-specific cancer biology. However,

these sequencing analyses conducted on dissociated bulk tumor

specimens output an average value across all cells, placing

limitations on the ability to distinguish which cell type or

compartment is contributing to said output and, therefore,
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interfering with exploration of heterogeneous cell populations

and phenotypes. Computational tools to deconvolute bulk-

sequencing (bulk-seq) data have been developed, allowing one

to take full advantage of large, pre-existing datasets of bulk-seq

patient tumor specimens. These tools present an opportunity to

infer cellular-level data from a vast number of patient tumors

when the use of more advanced technologies is unfeasible or

cost-prohibitive.

Computational deconvolution of bulk RNA-seq data has

garnered interest in the realm of cancer immunology by granting

insight into the composition of the immune compartment (e.g.,

cell type proportions and overall extent of immune infiltration)

and transcriptional phenotypes within immune cell types based

on associated expression of cell-specific markers (149–156). The

degree of immune cell infiltration and tumor purity (i.e.,

proportion of tumor composed of neoplastic cells), calculated

through ESTIMATE (149), have been associated with molecular

phenotypes and trends in patient survival, with high immune

cell infiltration and low tumor purity corresponding to

mesenchymal tumors and shorter survival (193, 194). More in-

depth analytic tools, such as CIBERSORTx (150), xCell (151),

MCP-Counter (152), EPIC (153, 154), quanTIseq (155) and

TIMER (156), go beyond the extent of immune infiltration and

tumor purity to deduce absolute and relative cell proportions

based on pre-set or user-defined cell signatures. The
TABLE 2 Summary of cutting-edge technologies for cell-level resolution analysis.

Sequencing
Modality

Description Detection and Deconvolution Platforms

Bulk RNA-seq
deconvolution

Estimated extent of immune/stromal compartments &
tumor purity

ESTIMATE (149)

Estimated proportions of infiltrating immune cell types CIBERSORTx (150), xCell (151), MCP-counter (152), EPIC (153, 154),
quanTIseq (155), TIMER (156)

Gene expression profiles of imputed cell populations CIBERSORTx (150)

Single-cell omics mRNA expression scRNA-seq

Chromatin accessibility scATAC-seq (157)

DNA methylation scRRBS (158)

Surface marker-based quantification of cell population
frequencies

CyTOF (159, 160)

T cell receptor (TCR) sequences Multiplex PCR- or RACE PCR-based TCR sequencing (161)

Histone modifications scCUT&Tag (162, 163)

Same-cell Single-cell
Multi omics

Cell surface protein epitopes + mRNA expression CITE-seq (164, 165)

Chromatin accessibility + mRNA expression sci-CAR (166)

DNA methylation + CNVs + mRNA expression scTRIO-seq (167, 168)

Chromatin accessibility + DNA methylation + mRNA
expression

scNMT-seq (169)

Spatial omics Sequencing-based RNA expression imaging STARmap (170), FISSEQ (171)

In situ hybridization RNA expression imaging RNAScope (172), MERFISH (173, 174), seqFISH/seqFISH+ (175–177)

Barcode-based Spot-capture RNA expression Slide-seq (178, 179), 10X Visium, HDST (180)

Localization of proteins/metabolites/lipids via mass
spectrometry imaging

ToF-SIMS (181, 182), MALDI-TOF/-FTICR (183)

Spatially resolved antibody-based epitope detection Imaging mass cytometry (184)
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CIBERSORTx algorithm takes it a step further by allowing users

to impute gene expression profiles (GEPs) for the estimated cell

populations. However, this additional step is not recommended

for low abundance cell types, such as tumor-infiltrating

lymphocytes in GBM, due to insufficient statistical power. In

populations with sufficient abundance, imputed GEPs can define

cell-type specific transcriptional phenotypes in immune cells

(e.g., M1/M2 macrophages, functional or exhausted T cells,

activated natural killer or dendritic cells, etc.) and permit

further exploration into cell-cell interactions based on ligand/

receptor expression within respective cell types.

The value of bulk deconvolution algorithms is ultimately

dependent upon two factors: (i) use of a validated, context-

specific cell signature matrix and (ii) supportive findings

through in vitro and/or in vivo experimentation. Varn et al.

applied the CIBERSORTx platform to construct and validate a

glioma cell signature matrix encompassing both neoplastic and

non-neoplastic cell types derived from single-cell RNA-seq of

IDH-wildtype and IDH-mutant patient gliomas (31). These

efforts defined the temporal transitions in the composition of

neoplastic cell populations and the associated changes in

infiltrating immune cell types in newly diagnosed and

recurrent tumors (31, 195). Moreover, a second CIBERSORTx

cell signature matrix was constructed to infer proportions of

GBM histological features within tumors by using gene

expression profiles specific to Ivy GAP-defined histological

features (e.g., leading-edge, infiltrating tumor, cellular tumor,

microvascular proliferation, and pseudopalisading cells around

necrosis) (196). After pathologist-based validation of the

inferred proportions, Varn and colleagues were able to

calculate correlations between cellular states and histological

features. Together, utilization of CIBERSORTx software to

estimate proportions of distinct cellular states and phenotypes

and the extent of hallmark histological features (196, 197)

allowed for comprehensive analysis of tumor cell interactions

with and in relationship to the TME in a computational manner,

setting the stage for downstream investigation of potentially

therapeutically actionable cell states and mechanisms.

While tools for deconvolution of bulk sequencing still have

their place in cancer research, especially due to their low cost and

accessibility and the large volumes of publicly available data

from patient tumors, the advent of cutting-edge single-cell

sequencing technologies have turned what was once purely

computational predictions into actual omics information at

cellular-resolution.
3.2 Single-cell tools to explore glioma-
immune cell interactions

The development of single-cell technologies to explore

cellular states at the genomic, epigenomic, transcriptomic,

proteomic, and metabolomic levels has led to unprecedented
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understanding of the inner workings of cancer (198–200). The

resolution of single-cell sequencing allows for in-depth

evaluation of rare cancer cell populations (e.g., GSC subsets

and tumor-infiltrating immune cell subsets) within tumors that

are otherwise lost in bulk analyses. The growing repertoire of

single-cell technologies allows us to explore not only the

constantly adapting cancer cell population but also the non-

neoplastic cells in the surrounding TME, providing insight into

the fluctuating & bidirectional communication between

cell compartments.

In glioma, single-cell RNA-seq (scRNA-seq) analyses have

broadened our knowledge of dynamic cellular and molecular

phenotypes that represent the heterogeneous nature of gliomas,

confer therapy resistance, and drive tumor recurrence in patients

(1, 59, 134). Previously, GBMs were classified by their molecular

subtype as determined by bulk sequencing of tumors (43).

However, classification of tumor subtypes based on bulk

transcriptome analyses masks the inherently high degree of

intra-tumoral heterogeneity in GBM, demonstrated in early

single-cell analyses by the representation of multiple molecular

subtypes within individual tumors (1). Since then, scRNA-seq

analyses conducted in patient tumors have defined distinct

cellular states that vary in respect to their gene expression

profiles (59, 60, 201), interaction with the TME (31, 41, 59,

68), and metabolic states (59, 135). Notably, Neftel et al.

demonstrated that glioma cells can exist in and transition

between four cellular states, oligodendrocyte-progenitor-like

(OPC-like), neural progenitor-like (NPC-like), astrocyte-like

(AC-like), and mesenchymal-like (MES-like), that differentially

express genes involved in cell cycle, development, metabolism,

and immune response, and in which all but one state (MES-like)

resemble normal neurodevelopmental cell types (59). Cells in the

MES-like state, which expresses higher levels of hypoxia-

response and glycolytic genes relative to the other states, form

synergistic relationships with TAMs to promote their respective

mesenchymal- l ike , immunosuppressive phenotypes ,

demonstrated by Hara et al. (41).

Aside from scRNA-seq, one of the more commonly used

single-cell techniques in the study of gliomas is cytometry by

time-of-flight (CyTOF) (159, 160). CyTOF provides valuable

information on cell proportions based on surface marker

expression and has been used to characterize variation in

immune cell landscapes between primary and metastatic CNS

cancers (19), newly diagnosed and recurrent GBMs (20), and

immune checkpoint inhibitor (ICI) refractory and responsive

cancers and GBM mouse models (202). For example, Fu et al.

identified a significant decrease in the proportion of tumor-

promoting macrophages and microglia with recurrence whereas

the frequencies of T cells, B cells, and NK cells were relatively

unchanged (20). In another study, Simonds and colleagues

compared immune cell proportions between ICI-refractory

(GBM and sarcoma) and ICI-sensitive (renal cell carcinoma)

cancers and found decreased T cells and DCs, but increased
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TAMs in ICI-refractory tumors (202). This aligns with the

previously discussed finding that brain metastases, which are

more sensitive to immunotherapy than GBM, have relatively

more leukocytes and less myeloid cells in their TME, also

assessed through CyTOF analysis (19).

Additional insight into cancer-immune interactions from

the perspective of infiltrating immune cells can be obtained

through techniques like CITE-seq (164, 165) and T cell receptor

(TCR) sequencing (161) that provide information on surface

marker-defined cell expression profiles and TCR variability and

clonality, respectively. The use of CITE-seq, which

simultaneously quantifies epitope-specific cell types and their

associated transcriptomes via RNA sequencing, in glioma has

identified novel markers for various transcriptionally defined

subsets of TAMs with demonstrated susceptibility to

macrophage-directed therapeutics (203). This exploration of

the TAM population also unveiled a shift from microglia-

derived to monocyte-derived TAMs in the TME with tumor

recurrence (203). Notably, high infiltration of monocytic

macrophages relative to resident microglia corresponds to

increased malignancy in gliomas (19, 204). As for the tumor-

infiltrating lymphoid population, TCR sequencing of newly

diagnosed and recurrent GBMs revealed a diminished TCR

repertoire with recurrence (22), which leads to suppressed T

cell-mediated immune response via altered antigen-recognition

machinery. Based on our understanding of how dynamic GSC

states differentially express MHCmolecules (44, 46, 113) and the

fundamental knowledge that TCR repertoires are shaped in

response to antigen exposure, one could infer that

immunoediting mechanisms within GSCs directly alter T cell

clonality during tumor progression, adding another facet to the

immune evasive nature of glioma cells. However, this has yet to

be conclusively demonstrated in the context of gliomas.

Alternatively, a restricted TCR repertoire could signify T cell

specification against the most actionable tumor antigens;

however, those T cells are rendered ineffective for the reasons

discussed in this review. Hypotheticals aside, these single-cell

analyses expand on our understanding of immune TME changes

with recurrence that suppress the immune response and

facilitate glioma progression.

As discussed previously, epigenetic changes contribute

significantly to the acquisition of an immune evasive

phenotype in glioma cells in response to immune exposure, a

mechanism widely referred to as immunoediting (68). These

single-cell modalities to measure epigenetic changes can be

combined with single-cell transcriptomics to provide

unparalleled information on adaptive cell transitions within

tumors. For example, a multimodal approach involving

scRNA-seq and single-cell reduced representation bisulfite

sequencing (scRRBS) in gliomas by Johnson et al. revealed

DNA methylation-mediated induction of cell states associated
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with activation of stress response pathways and increased

therapy resistance (60). Defined by distinct transcriptome and

DNA methylome profiles, Johnson and colleagues identified

three cell states referred to as stem-like, proliferating stem-like,

and differentiated-like. Multi omic analysis revealed key

transcriptional regulators in each cell state with differentiated-

like cells having enhanced activity in transcription factors

involved in hypoxia and stress response, demonstrating the

value of epigenetic modifiers in stress-induced cell state

plasticity (60).

Another technology amenable to single-cell implementation

is the Assay for Transposase-Accessible Chromatin via

Sequencing (ATAC-Seq (157)). Using this approach

Guilhamon and colleagues found three GSC states, reactive,

constructive, and invasive, distinguished by their chromatin

accessibility profiles. Cells in the reactive state had increased

accessibility to the promoters of immune-related genes, include

genes associated with Tregs. Alternatively, the invasive GSC state

had a demonstrated negative correlation with survival in

orthotopic xenografts (201).

Currently, several technologies are being developed for

multimodal single-cell application (Table 2) in addition to

sophisticated computational tools for downstream analyses

following single-cell sequencing. Often used in developmental

biology but increasingly applied to cancer studies, these analyses

can inform cellular hierarchies through pseudo-lineage tracing

(e.g., pseudotime analysis (30, 205–207)), predicted cell state

transitions (e.g., RNA Velocity (142)), and even metabolic

phenotypes (e.g., Compass (208)). Since single-cell sequencing

provides a point-in-time view of cell states, these algorithm-

based insights into cellular transitions may reveal previously

undetectable adaptive mechanisms in GSCs. Multi-plexing these

state-of-the-art tools will permit interrogation of highly

dimensional cell phenotypes at an unparalleled depth and can

provide insight into clonal architecture and lineage tracing,

regulators of GSC states, links between genetic and epigenetic

profiles, drivers of adaptive responses to therapeutic or immune

stimuli, and more (199). We envision these approaches being

combined with scRNA-Seq to explore the role of the TME in

promoting reversible, epigenetic-mediated GSC state transitions

and, thus, build upon similar studies utilizing bulk multimodal

analysis in patient-derived GSCs (61). Similar analyses at single-

cell resolution would be invaluable in examining specific cell

subsets and assessing their reciprocal impact on the TME.

Unfortunately, every rose has its thorn, and a major one for

these cutting-edge single-cell sequencing technologies is the

complete absence of spatial information. When it comes to

understanding the influence of endogenous cell interactions,

specifically GSC interactions with the surrounding TME, this

information is critical, especially for pre-clinical studies relying

on accurate representation of patient tumors. However, this
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information is lost with dissociative single-cell techniques, which

is where newly generated spatially resolved omics technologies

come into play.
3.3 Spatial omics

While cell-cell interactions can be inferred to a degree

through computational manipulation of scRNA-seq data

(209–212), spatial omics provide next-level understanding

of these interactions by accounting for endogenous tissue

organization and cell-cell proximity (213). Interrogation of

RNA localization in tissue specimens using spatial

transcriptomics techniques, broadly classified as either

high-plex RNA imaging or spatial barcoding (199, 213), is

arguably the most used spatial analysis as of now. High-plex

imaging techniques include in situ sequencing (e.g.,

STARmap (170), FISSEQ (171)) and fluorescent in situ

hybridization (e.g. RNAScope (172), MERFISH (173, 174),

and seqFISH (175–177)) that provide single-cell resolution

spatial gene expression with the limitation of relying on

predetermined target transcripts and quality imaging

instrumentation. On the other hand, spatial barcoding or in

situ capture techniques, including Slide-seq (178, 179), 10X

Visium, and high-definition spatial transcriptomics (180),

provide unbiased, transcriptome-wide expression output.

However, data is collected at multi-cellular spot resolution

which requires additional deconvolution analysis to

appropriately distinguish individual cell expression.

Aside from gene expression data, spatially resolved

proteomic, metabolomic, and lipidomic information can be

gathered from tissue specimens using imaging mass

spectrometry or cytometry techniques. Unbiased coverage

of biochemical features can be achieved through semi-

quantitative mass spectrometry imaging (MSI) methods

including time-of-flight secondary ion mass spectrometry

(ToF-S IMS) (181 , 182) and matr ix -as s i s t ed laser

desorption/ionization (MALDI) time-of-flight (MALDI-

TOF) or fourier transform ion cyclotron resonance

(MALDI-FTICR) mass spectrometry (183). Alternatively,

imaging mass cytometry (IMC) can detect and quantify

surface protein profiles using isotope-coupled antibody

panels (184) in a method analogous to a spatially resolved

CyTOF analysis . While many of the above spatial

technologies have yet to be applied in the context of GBM,

RNAScope and MSI methods have been utilized with the

former identifying expression-based prognostic markers from

GBM tissues (214, 215). On the other hand, MSI methods

have investigated GBM heterogeneity based on metabolic and

proteomic profiles and drug distribution in tumors (131,

216–220).
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Integration of spatial and single-cell omics data grants

unprecedented understanding of cellular and molecular

phenotypes of cancer cells within their native environment.

Ravi et. Al. define spatially distinct cellular phenotypes

distinguished by transcriptional and metabolic programs

through integration of spatial transcriptomics, MALDI-FTICR

mass spectrometry, and mass cytometry proteomics (132). These

five phenotypes were classified as radial glia, spatial OPC, neural

development, reactive hypoxia, and reactive immune.

Furthermore, cell phenotypes overlapped with previously

established GSC states and were further distinguished by their

spatial localization and proximity to immune cell infiltrates.

Specifically, the reactive immune cell state, which has similarities

to both the MES1 and AC-like states defined by Neftel et al. (59),

had significant interaction with both myeloid and lymphoid

infiltrating immune cells. Moreover, T cells near reactive-

immune cells expressed higher levels of PD-1, representative

of T cell exhaustion (132). Overall, multi-modal in situ

sequencing of sequential tumor tissue slices paints a spatially

resolved, complete picture of native cellular states, paving the

way for mechanistic validation and identification of potentially

translatable therapeutic vulnerabilities within specified

cell types.

While single-cell and spatial analyses cannot classify

GSCs by their defining functional traits (i.e., self-renewal

capacity, multipotency, and tumor propagation capacity),

these technologies are advantageous in their own rights for

characterization of GSCs. Notably, chromatin accessibility

profiles and validated GSC-specific transcriptomes can be

used to delineate between GSCs and differentiated GBM

cells in silico (134, 157, 201, 221–223). Additionally, high

resolution omics data provides information at a remarkable

depth necessary for proper investigation of dynamic and

heterogeneous GSC states. Overall, the degree of insight

into dynamic GSC biology afforded by multi-dimensional

single-cell and spatial technologies has the potential to

elucidate not only the factors that coordinate adaptive and

immunosuppressive GSC mechanisms but their associated

therapeutic vulnerabilities. Meticulous experimental design

and utilization of spatially resolved single-cell technologies

could conceivably inform novel treatment approaches

capable of eliciting substantial anti-tumor response, a feat

yet to be achieved in recurrent GBM.
4 Therapeutic opportunities

The existence of dynamic GSC states shaped by cell-intrinsic

factors, the tumor microenvironment, and therapeutic pressures

demand a revised approach to GBM therapy development that’s

directed at disrupting the bidirectional interactions between

GSCs and the TME that promote GBM malignancy, immune
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evasion, and tumor recurrence. Given the pervasive involvement

of epigenetic modifications in GSC plasticity and acquisition of

immunosuppressive phenotypes, using epigenetic inhibitors to

augment the response of GBM to available immunotherapies

warrants investigation (Figure 3). Notably, clinical attempts to

treat newly diagnosed and recurrent GBM with epigenetic

inhibitors (plus chemoradiation and surgery) have had

negligible anti-tumor effects compared to standard-of-care

treatment alone (186–191). However, preclinical studies

investigating the immune effects of epigenetic inhibitors

demonstrate increased immunogenicity, indicating that

combining epigenetic and immunostimulatory treatment

modalities may have potent anti-tumor effects (Table 3) (17,

44, 46, 104, 185). Two early phase clinical trials combining anti-

PD1 checkpoint inhibitors with azacytidine (DNA

methyltransferase inhibitor) or vorinostat (HDAC inhibitor)
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plus standard chemoradiation are currently underway in IDH-

mutant gliomas (NCT03684811) and newly diagnosed GBM

(NCT03426891), respectively. Additionally, several clinical trials

testing combination epigenetic and immune therapy have been

conducted or are currently underway in a variety of cancers,

however, durable clinical effects are rare and often restricted to

small subsets of patients (224–236). However, ongoing clinical

trials may provide insight into mechanisms of resistance and

opportunities for therapeutic improvement. Given the

knowledge that immune cell states are also intimately

controlled by epigenetic modifications (237), the lack of

response from combination epigenetic-immune therapies may

be due in part to unwanted effects on systemic immune cell pools

that alter their phenotypic profiles and potentially induce

dysfunctional states. Thus, strategies for targeting immune

suppressive mechanism specifically within the TME while
FIGURE 3

Therapeutic approaches to target immunosuppressive GSCs. Increased understanding of the malignant properties of GSCs and their inherent
plasticity and heterogeneity has designated GSCs as desirable therapeutic targets. The role of GSCs in driving and maintaining an
immunosuppressive TME suggests that GSC-targeted therapies could potentiate current immunotherapies. Targeting stemness mechanisms
that also mediate immunosuppressive mechanisms in GSCs (white arrows) has the potential to augment immunotherapy response in GBM by
increasing expression of tumor-specific antigens and repressing immunosuppressive cell interactions. CAR-T cell, chimeric antigen receptor T
cell; DC, dendritic cell; NK, natural killer cell; Teff, effector T cell; Treg, regulatory T cell; TAM, tumor-associated macrophage/microglia; MDSC,
myeloid-derived suppressor cell; ICIs, immune checkpoint inhibitors; HDACi, HDAC inhibitors; DNMTi, DNMT inhibitors; TGFbRi, TGFb receptor
inhibitors; OXPHOSi, oxidative phosphorylation inhibitors.
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avoiding counterproductive systemic effects are needed. Despite

these early phase results, the immunogenic effects of epigenetic

inhibitors and combo epigenetic-immune therapy in preclinical

GBM studies are promising (17, 44, 46, 104, 185, 192) and

deserve to be explored to their full extent in clinical trials.

Notably, increased immune recognition and resultant cytolysis

of tumor cells by T cells and NK cells has been achieved through

HDAC inhibitors and DNA hypomethylating agents (e.g.,

decitabine) (44, 46, 104, 185). Additionally, BRD4 inhibition

attenuated an immunosuppressive GSC phenotype to enhance

the anti-tumor immune response (17). Furthermore, BRD4 was

implicated in an acquired immunosuppressive gene expression

profile in GSCs refractory to CAR-T cell treatment. Targeting

BRD4 in a mouse model of GBM effectively potentiated CAR-T

cell therapy, highlighting the potential for clinical success with

combination epigenetic and immunotherapy in GBM (192).

The involvement of GSCs in modulation of the anti-tumor

immune response has prompted investigation into GSC-targeted
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immune-related therapies (Figure 3). Proposed methods include

chimeric antigen recognition T cells (CAR-T cells) or dendritic cell

vaccines directed at GSC-specific surface markers and antigens (53).

However, the immunosuppressive effects of GSCs may attenuate

the functionality of these engineered immune cells, thereby

impeding therapeutic efficacy. Alternatively, forced differentiation

of GSCs into a cellular state responsive to current therapeutic

regimens holds promise (238), especially in combination with

immunotherapy, but fails to consider how controlled

differentiation would oppose plasticity mechanisms induced by

standard-of-care treatments and/or potentially select for a more

immunosuppressive GSC state. Therefore, we propose combining

immunotherapy with approaches that disrupt mechanisms

governing the transition of GSCs to immunosuppressive states

and/or exploit cellular and molecular vulnerabilities inherent in

these cell states (Figure 3). Identifying actionable therapeutic targets

by incorporating high-dimensional, spatially aware single-cell

analyses of patient tumor specimens and patient-derived GSC
TABLE 3 Epigenetic- and immunotherapy-based attempts to target GSCs.

Epigenetic inhibitors

Drug Target Stage Trial
Phase

Context Other
treatments

Outcome Ref
(s)

NCT #

Decitabine DNMTs Pre-
clinical

NA Murine GSCs NA Increased T cell-mediated killing of GSCs (46) NA

Decitabine DNMTs Pre-
clinical

NA Patient-derived
primary GBM
cell lines

NA Increased antigen-specific T cell-mediated glioma cytotoxicity (185) NA

JQ1 Pan-BET Pre-
clinical

NA Human GBM
neurospheres

NA Reduced expression of immunosuppressive transcriptome in
GSCs; Reduced immunosuppressive effect on T cells & M2
macrophage polarization

(17) NA

PCI-34051 HDAC8 Pre-
clinical

NA Murine glioma
mouse model

NA Prolonged survival; Reduced invasion of anti-inflammatory
microglia; Increased NK cell-mediated glioma cytotoxicity

(104) NA

Vorinostat HDACs Pre-
clinical

NA Murine glioma
mouse model

GSC lysate
vaccine

Prolonged survival and increased T cell tumor infiltration (44) NA

Vorinostat HDACs Clinical I/II Newly
diagnosed GBM

SOC Did not meet primary efficacy endpoint (OS = 15mo) (186) NCT00731731

Vorinostat HDACs Clinical II Recurrent GBM Prior SOC Modest effects; Met primary efficacy endpoint (PFS = 6mo) (187) NCT00238303

Vorinostat HDACs Clinical I/II Recurrent GBM Bevacizumab,
TMZ

Met primary endpoint (PFS = 6mo); Improvement in PFS
not statistically significant

(188) NCT00939991

Vorinostat HDACs Clinical II Recurrent GBM Bevacizumab No significant improvement in PFS or OS (189) NCT01266031

Romidepsin HDACs Clinical I/II Recurrent
glioma

Prior SOC Did not meet primary efficacy endpoint (PFS = 6mo) (190) NCT00085540

Panobinostat HDACs Clinical II Recurrent GBM Bevacizumab No significant improvement in PFS (191) NCT00859222

Epigenetic inhibitors plus immunotherapy

JQ1 +CAR-T
cells

Pan-
BET,
EGFR

Pre-
clinical

NA Human GBM
mouse model

NA Prolonged survival (192) NA

Azacytidine +
Nivolumab

DNMTs,
PD1

Clinical I/II IDH-mutant
gliomas

SOC Completed - No Results NA NCT03684811

Vorinostat +
Pembrolizumab

HDACs,
PD1

Clinical I Newly
diagnosed GBM

SOC Active NA NCT03426891
f

SOC, standard-of-care treatment (surgery followed by TMZ & radiation); OS, overall survival; PFS, progression-free survival.
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models into preclinical studies allows for development of

therapeutics with high potential for clinical success.
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