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Unraveling tumor
microenvironment
heterogeneity in malignant
pleural mesothelioma
identifies biologically distinct
immune subtypes enabling
prognosis determination

Kaidi Yang1*, Tongxin Yang1, Tao Yang1, Ye Yuan2

and Fang Li1*

1Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army General Hospital,
Sanya, China, 2Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third
Military Medical University (Army Medical University), Chongqing, China
Background: Malignant pleural mesothelioma (MPM) is a rare and intractable

disease exhibiting a remarkable intratumoral heterogeneity and dismal

prognosis. Although immunotherapy has reshaped the therapeutic strategies

for MPM, patients react with discrepant responsiveness.

Methods: Herein, we recruited 333 MPM patients from 5 various cohorts and

developed an in-silico classification system using unsupervised Non-negative

Matrix Factorization and Nearest Template Prediction algorithms. The genomic

alterations, immune signatures, and patient outcomes were systemically analyzed

across the external TCGA-MESO samples. Machine learning-based integrated

methodology was applied to identify a gene classifier for clinical application.

Results: The gene expression profiling-based classification algorithm identified

immune-related subtypes for MPMs. In comparison with the non-immune

subtype, we validated the existence of abundant immunocytes in the immune

subtype. Immune-suppressed MPMs were enriched with stroma fraction,

myeloid components, and immunosuppressive tumor-associated

macrophages (TAMs) as well exhibited increased TGF-b signature that

informs worse clinical outcomes and reduced efficacy of anti-PD-1

treatment. The immune-activated MPMs harbored the highest lymphocyte

infiltration, growing TCR and BCR diversity, and presented the pan-cancer

immune phenotype of IFN-g dominant, which confers these tumors with better

drug response when undergoing immune checkpoint inhibitor (ICI) treatment.

Genetically, BAP1 mutation was most commonly found in patients of immune-

activated MPMs and was associated with a favorable outcome in a subtype-
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specific pattern. Finally, a robust 12-gene classifier was generated to classify

MPMs with high accuracy, holding promise value in predicting patient survival.

Conclusions: We demonstrate that the novel classification system can be

exploited to guide the identification of diverse immune subtypes, providing

critical biological insights into the mechanisms driving tumor heterogeneity

and responsible for cancer-related patient prognoses.
KEYWORDS

malignant pleural mesothelioma, immune subtypes, immunotherapy, prognosis,
machine learning-based gene classifier
Introduction

Malignant pleural mesothelioma (MPM) is a rare and lethal

cancer arising from the linings of the lungs, known as the pleura

(1). Due to its insidious onset and high local invasiveness, this

cancer is often diagnosed at an advanced stage, rendering it

incurable (2).

For a long time, platinum-based chemotherapy combined

with pemetrexed has been the state-of-the-art treatment for

advanced MPM (3). Drug development for this lethal cancer

has been slowly pushed over the last two decades until the recent

advances in immune checkpoint inhibition (4, 5). Immune

checkpoint inhibitors (ICIs) targeting PD-1 and CTLA4 have

shown encouraging clinical activity with good tolerability in

untreated, histologically confirmed unresectable MPMs relative

to standard first-line chemotherapy. Nonetheless, the median

life expectancy is only one and a half years, even with 4-months

extended survival benefits (6). The varying clinical responses to

ICIs and no credible biomarkers available emphasize a more

personalized regimen for MPMs (7).

Overexpression of PD-L1 has been confirmed as a predictor of

response to anti-PD1 therapy in multiple solid tumors, whereas

efficacy by PD-L1 status demonstrated no improvements in

survival benefits for MPM patients (7, 8). Emerging evidence

indicated the intra-tumoral CD8+ T cell infiltration, TGF-b
signaling, and Treg content were associated with curative

responses and outcomes (9–11), while for MPM, limited

research was available. MPM develops in a heterogeneous

immune microenvironment that dynamically interacts with

mesothelioma tumor cells to sustain cancer growth and

progression (12–14). We hypothesized that a deep dissection of

the immunological profiles within MPMs would provide a

framework for an in-depth understanding of the immune-

genomic mechanisms responsible for cancer-related prognosis

and maximize response to immune-based therapies. Lee et al.

recently profiled the intratumoral cellular networks within 12

MPMs using CyTOF and defined two immunologic subtypes
02
showing predictive value for ICI response (15). However so far,

there is no extensive cohort-based immunological classification

system for MPMs, and a robust gene classifier specific for

predicting prognosis and subtyping is still lacking.

In this work, we enrolled 333 MPM patients from five

independent cohorts as a large-sample MPM cohort, and 87

MPM patients came from TCGA dataset. Several unsupervised

classification methods, particularly the non-negative matrix

factorization (NMF) and nearest template prediction (NTP)

algorithms, were applied to distinguish distinct immunological

phenotypes and reveal the intratumoral heterogeneity of MPMs.

The predictive, reliable multi-gene classifier holds the value in

immune subtyping and prognostic determination and can be

used to guide immunotherapy strategies.
Methods

Malignant pleural mesothelioma
patient cohort

We enrolled the gene expression profiles and clinical

information of MPM datasets from Gene Expression Omnibus

(GEO) with the accession numbers GSE29354 (16), GSE2549

(17), GSE163722 (18), and GSE51024 (19). The expression files

of the MTAB-6877 dataset (20) were provided in ArrayExpress

(https://www.ebi.ac.uk/arrayexpress/). The ComBat method

came from sva package (R version 3.38.0) was used to remove

batch effects across different microarray platforms. As shown in

Figure S1A, the deviations of mean gene expression were

removed and the five datasets were thus comparable to each

other. Subsequently, a large MPM dataset including 333

qualified expression profiles was set as a training cohort, while

the RNA-seq v2 level-3 dataset of TCGA-MESO (Mesothelioma,

from UCSC-Xena) was used for external validation. Detailed

information on these datasets is shown in Supplementary Table

S1. To validate the finding in proteomic level, we performed
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extensive analysis of the Reverse Phase Protein Array (RPPA)

data from TCGA cohort on 63 human MPMs characterized with

a set of 219 protein features.
NMF classification

After reserving high-variance gene features ranked in the

top half of total samples, we performed subtype classification

with the mRNA expression profiles using the NMF algorithm

packed into the NMF package (R version 0.24.0). We plotted

the rank-changing trend diagram of the cophenetic coefficient

and determined the point that dropped the most along with the

rank-changing as the best rank (number of classification). To

functionally annotate each subclass/module, the gene

signatures were extracted using the extractfeatures function

and subsequently used for gene over-representation (ORA)

analysis utilizing the clusterProfiler package (R version 4.5.0).

MPMs conferred with the highest immune module score were

denoted as an immune-related subtype. Then, the top 200

exemplar genes in the immune module were identified as the

classifier genes to dichotomize samples into the immune and

non- immune subtypes , fu r ther opt imized by the

multidimensional scal ing random forest (MDS-RF)

algorithm. To sub-classify immune MPMs, a 26-immune

signature scoring file was generated from the IOBR package

(R version 0.99.0) as an input into the NTP module

(GenePattern platform, https://cloud.genepattern.org). The

molecular similarity between the two MPM cohorts was

estimated using Subclass Mapping (GenePattern).
Immune signature analysis

To delineate the tumor microenvironment (TME)

contexture, the IOBR package (https://github.com/IOBR/

IOBR) integrating eight published methodologies was used for

computing the single-sample gene set enrichment (ssGSEA)

score (21). Identifying TME signatures associated with ICI

response was performed using the iobr_cor_plot function.

Immune-related indices, previously defined by TCGA pan-

cancer programs, were incorporated into comparisons across

different subtypes. Also, Thorsson’s pan-cancer immune

phenotyping (22) was used for feature comparisons and

subtype correlations. Immune-related indices, including

Stroma fraction, Leukocyte fraction, TCR richness, and so on,

were obtained from supplementary material of Thorsson’s

research. Of note, the index has been adjusted for tumor

purity as demonstrated. Tumor immune proportions were

computed by CIBERSORT, which ran with mRNA profiles as

input and produced absolute abundances of 22 immune
Frontiers in Oncology 03
components. To predict the immunotherapy response of MPM

patients, we imported the tumor pre-treatment expression

profiles into TIDE (http://tide.dfci.harvard.edu), which

computed the response scores based on signatures of T-cell

dysfunction and exclusion, the two primary mechanisms of

tumor immune evasion (23). The cohort of human MPMs that

received anti-PD-1 immunotherapy (GSE99070) was considered

for investigating of association between immune subtypes and

immunotherapy response.
Pathway activity analysis

The dataset of pathway activity comprising 1387 constituent

pathways was downloaded from UCSC-Xena browser (http://

xena.ucsc.edu/). Pathway analysis was conducted using the

PARADIGM algorithm (24), and the top expressed pathways

were generated through differential expression analysis.
Genomic mutation analysis

The mutation annotation format (MAF) file with aggregated

somatic mutation annotation of TCGA MPM cases was

deposited in the TCGA portal. For summarization, analyses,

and visualization of somatic genomic alterations, various

functions were provided by the maftools package (R version

2.7.40). The mafCompare function was applied to compare two

groups to identify and visualize differentially mutated genes. The

clinicalenrichment function was used for groupwise

comparisons, thus identifying enriched mutations or copy

number variations (CNVs) for each subtype. We ran

MutSigCV1.41 using the recommended default parameters on

GenePattern to identify the driven mutations highly relevant to

MPMs (q-value < 0.10).
Subtype classifier identification

First, we prefiltered genes by different feature selection

algorithms, including Chi2-algorithm, Fast correlation-

based filter, and Information gain using the Biocomb

package (R version 0.4). This set of gene candidates was

supplemented with gene features computed by machine-

learning models of Randomforest (RF), XGBoost, and

Brutal. Genes nominated by multiple algorithms were

ranked by the frequency of being selected by the six

methods. It resulted in a panel of 94 genes selected by at

least four algorithms. (Supplementary Table 2) Then, we

used the findCorrelation function packed in the Caret
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https://cloud.genepattern.org
https://github.com/IOBR/IOBR
https://github.com/IOBR/IOBR
http://tide.dfci.harvard.edu
http://xena.ucsc.edu/
http://xena.ucsc.edu/
https://doi.org/10.3389/fonc.2022.995651
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.995651
package 6.0-92 to remove highly correlated features. If two

features have a high correlation, the function looks at each

feature through pair-wise correlations and removes the

feature with the mean absolute correlation over 0.8. After

removing features showing high correlation, we adopted a

stepwise selection strategy to determine the optimal size of

the gene panel. Specifically, starting from the top-ranked

gene (ordered by count and index of mean decrease

accuracy), gene panels with incremental sizes (adding one

gene at a time) were evaluated for their ability to correctly

classify each case by RF with a cross-validation approach of

LOOCV (leave-one-out cross-validation). To identify the

best feature combination to improve classification accuracy,

especially for distinguishing immune-activated from

immune-suppressed subtype, we adopted the approach

similar to the multiple algorithms-based feature selection

method above, followed by removing features with high

pair-wise correlations. The two comparisons (immune

versus non-immune, immune-activated versus immune-

suppressed) respectively generate seven and nine genes

through the recursive feature elimination (RFE) algorithms

using rfeControl functions (from Caret package 6.0-92),

which was assisted by machine learning methods of RF-

LOOCV or RF-CV. The optimal features computed from

two classification systems were combined into a 16-gene

panel for the following filtering step. All the models metrics

of gene features filtering and selection process were stored in

Supplementary Table 3. Then, we apportion the data into

training and test sets, with 70-30 splits, and fit the models on

the training sets. By evaluating the performance of different

machine learning models (Linear discriminant analysis,

Naive Bayes, Bagged trees, and RF with LOOCV or CV) on

testing sets, we identified the best machine-learning model

(with the highest prediction accuracy) when undergoing the

RFE process, which generated the optimal gene features. The

selected gene classifier was evaluated for its predictive

efficiency in the external TCGA-MESO dataset.
Statistical analysis

When the dependent variable was continuous but not

normally distributed for two independent groups, the Mann-

Whitney U test was used for comparisons. In comparison,

normally distributed data were compared between two groups

via the Student t-test. We performed a Shapiro test to check

whether the considered data is normally distributed data or not

by the stats package (R version 4.0.4). Kaplan-Meier plot and

Log-rank test were used to estimate the survival curve and

compare the difference in survival curves between different

groups. The Chi-square test illustrated the correlations

between newly defined subtypes and proposed molecular

subtypes. The forest plot was used to visualize the prognostic
Frontiers in Oncology 04
impact of individual variables of the multivariate Cox regression

model using the forestmodel package (R version 0.6.2). All

analyses were performed by Graphpad Prism 8.0 or R version

4.0.2, and a two-sided p-value less than 0.05 was considered

statistically significant.
Results

Identification of immune-associated
subtype for an integrated large-sample
MPM cohort

A total of 333 MPMs patients from five independent cohorts

were enrolled, along with their clinical information and

microarray-based expression profiles. After correcting batch

effects, an integrated large-sample MPM cohort were

established for subsequent analysis. To obtain a robust

classification system and distinct molecular patterns, we

applied the NMF algorithm to reduce data dimensionality by

decomposing it into several smaller non-negative factors with

physical interpretation for subclass discovery. As cophenetic

correlation coefficients from k = 2 to k = 10, we determined

k=4 as the parameter that yielded the most robust clustering

(Figures S1B, C). Among the four subclasses, we defined the one

characterized with high immune enrichment scores as an

immune-associated subtype, whereas the other three subclasses

were respectively termed as Cell cycle-, Epithelial/Interferon

(IFN) response-, and Extracellular matrix (ECM)-related

subtypes according to the results of ORA analysis (Figure 1A

and Figure S2). The top 200 weighted genes in the immune

module/subclass were defined as exemplar genes that reflect the

core features of immune components in MPM (Figure S1D). To

simplify the subtyping process for fast-recognition of immune

related subtypes, we performed consensus clustering analysis

using the exemplar genes, which classified MPM patients into

immune and non-immune subclasses (Figure 1B). Next, this

classification was further modified by the MDS-RF algorithm

(Figure 1C). The sorting result of multiple methods for the 333

MPM patients was shown in Figure 1D and Supplementary

Table 4. We presented that simplifying the classification process

using the top 200 weighted genes matched with the genome-

wide expression profiling-based NMF algorithm for identifying

immune-related subtypes for MPMs.
Sub-classification and dissection of MPM
immune microenvironment

Recent studies on the immunological microenvironment

revealed three representative phenotypes with general

applicability, including inflamed, excluded, and desert subtypes

(25). To further dissect the immunological heterogeneity for
frontiersin.org
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MPMs, scorings of 26 immune-related signatures were collected

to subdivide the immune-related MPMs into two subsets using

the NTP algorithm. One subset of 55 patients (16.5%, 55/333)

showed increased enrichment of immunocytes, cytolytic activity

(CYT) score, ooand IFN related signatures as compared with

other MPMs and hence, was termed an immune-activated

subtype (Figure 2A). Other indices like Wnt/b-catenin
signaling, TGF-b signaling, and the extracellular matrix (ECM)

have been shown to play an essential role in establishing

immunological tolerance (9, 26, 27). Likewise, the myeloid

components, including tumor-associated macrophages (TAMs)

and myeloid-derived suppressor cells (MDSCs), act as central

regulators of immune suppression and can secrete multiple

soluble cytokines and chemokines to deactivate the process of

immune activation (28). For these reasons, we defined the sub-

classified subtype with high stroma infiltration and immune-

suppressive components as immune-suppressed MPMs (21.0%,

70/333) (Figure 2A). The redefined three subtypes (immune-
Frontiers in Oncology 05
activated, immune-suppressed and non-immune) were relatively

well distributed in different enrolled MPM cohorts

(Supplementary Table 5). Histologically, consistent with

previous finding (20), sarcomatoid MPMs was enriched in

immune-activated MPMs relative to other subtypes (27.3%

versus 3.9%, 12.1%). By contrast, greater proportions of

epithelioid and biphasic tumors were respectively present in

non-immune and immune-suppressed MPMs (Figure S3A).

Next, we performed survival analysis and observed that

immune-suppressed MPM patients displayed shortened

survival relative to immune-activated or non-immune MPM

patients (Figure 2B), indicating the prognostic significance of the

immunological subtyping. The immune-related signature was a

good indicator of patient survival (29). Our multivariate analysis

by the Cox proportional hazards model on prognoses of patients

indicated that the Th2 cells, MDSC, and Pan-F-TBRs (Pan

fibroblast TGF-b response signature) informed poor outcome

(Figure S3B). To investigate whether the immunological
A

B

D

C

FIGURE 1

Identification of immune subtype for an integrated large-sample MPM cohort. (A) Non-negative matrix factorization (NMF) algorithms identified
four functional expression modules to classify the microarray-based expression profiles of 333 MPM samples. One expression module showed
the highest immune enrichment score and NMF module weight was marked red and recognized as an immune-associated subtype. IFN,
Interferon; ECM, Extracellular matrix. (B) Consensus clustering based on the top 200 exemplar genes expression identified two subclasses with
one subclass presenting enrichment of immune-related NMF module. (C) The multidimensional scaling random forest (MDS-RF) refined the
classification and divided whole MPM samples into immune and non-immune subtypes. (D) Heatmap shows the final classification results along
with various NMF modules, exemplar clustering subtypes, immune module weight, and immune enrichment score.
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subtyping can predict the treatment response of ICIs, the

pretreatment human MPMs (n=10) upon the immunotherapy

of anti-PD-1 were classified using the same approach

(GSE99070, Figure 2C). Intriguingly, although with only two

patients, immune-activated MPM patients show partial or

complete response to the treatment. By comparison, most of

the immune-suppressed and non-immune patients (2/3, 4/5)

were shown to be unresponsive when undergoing such therapy

(Figure 2C), highlighting the relevance of our immunological
Frontiers in Oncology 06
subtyping to the therapeutic effects of ICI. Relative to the non-

response subgroup, the ICI response subgroup showed

prominent expressions of pathways regulating T-cell inflamed,

cytokines, and MHC class-II, along with decreased enrichments

of TGF-b signaling and tumor immune escape (Figure 2D).

Immune-activated MPMs were enriched with these signatures

and also highly expressed multiple immune checkpoint genes

(Figure 2A and Figure S4A), demonstrating that ICI therapy is

poised for clinical evaluation for them.
A

B

D

C

FIGURE 2

Sub-classification and dissection of MPM immune microenvironment. (A) The immune subtype was further subdivided into immune-activated
(70/125, 21.0%) and immune-suppressed (55/333, 16.5%) MPMs, using nearest template prediction (NTP) analysis with signatures covering 26
immune- and TME-related signatures. TAM, Tumor-associated macrophage; MDSC, Myeloid-derived suppressor cell; TLS, Tertiary lymphoid
structure; CYT, Cytolytic activity. pDCs, Plasmacytoid dendritic cell; Pan-F-TBRs, Pan fibroblast TGF-b response signature. (B) Kaplan-Meier
survival analyses of overall survival in the integrated MPM cohort with different immunological subtypes. **, p < 0.01; *, p < 0.05; n.s., Not
significant. (C) The heatmap showing the expressions of 26 immune- and TME-related signatures in the pretreatment human MPM cohort upon
the anti-PD-1 treatment. The dataset was classified using the same approach as previously shown in Figure 2A. Top column shows the
corresponding immune subtype and mRECIST response of each case. ICI, Immune checkpoint inhibitor. (D) The normalized signature score of
immune characteristics in anti-PD-1 response and non-response subgroups. CR, Complete response; PR, Partial response; PD, Progression
disease; SD, Stable disease.
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Validation of the novel immune-
subtyping in external TCGA-MPM cohort

To see whether the above classification system can be

reappeared, we explored the expression profiles from the

TCGA-MESO dataset containing 87 patients and performed

the same classification procedures (Figures S5A, B). The

classification results showed that 54.0% (47/87) of patients

were immune-related MPMs characterized with distinct

immune phenotypes. Among them, 24 patients (27.6%) were

defined as immune-activated MPMs, and other 23 patients

(26.4%) were regarded as immune-suppressed MPMs,

enriched with TAMs, Treg cells, MDSCs and, tumor immune

escape signatures, indicating that immune characteristics can

reappear in the validation cohort (Figure 3A). Subtypes of the

TCGA dataset showed high consistency with corresponding

subtypes of the large-sample MPM cohort through subclass

correlation analysis (Figure S5C), suggesting a good

reproducibility of the three-subgroup-clustering system for

identifying MPM immunological signatures. Kaplan-Meier

survival analyses confirmed that immune-activated MPMs

exhibited the most favourable outcome relative to the other

two subtypes (Figure 3B). By associating our immune subtyping

with Thorsson’s pan-cancer immune phenotyping (22), we

found that approximately 50% of immune-activated MPMs

pertained to the IFN-g-dominant (C2) phenotype. In contrast,

the wound healing (C1) phenotype occupied the most parts

(47.8%, 45%) for the other two subtypes. C6 phenotype, defined

as TGF-b dominant, showed the largest proportion in immune-

suppressed MPMs compared with other subtypes (21.7% versus

10%, 8.3%) (Figure 3C), supporting the previous findings of

TGF-b’s role in immunosuppression (30). Further profiling of

the immune milieu demonstrated that three MPM subtypes

manifested distinct immune-related signatures. Immune-

activated MPMs harbor the lowest genomic alteration fraction

and homologous recombination defects (HRDs), reflecting their

ability to repair DNA damage and maintain genomic stability.

The much more hypervariable and diverse TCR and BCR, and

highest lymphocyte infiltration score informed increased

probability of immune responsiveness to ICIs (Figure 3D),

consistent with the findings of ICI response estimated by

TIDE (Figure 3A). By contrast, immune-suppressed subtype

MPMs displayed the highest stroma and leukocyte fractions

(Figure 3D). Microsatellite instability (MSI) status and tumor

mutation burden (TMB) has been widely recognized as

biomarkers predicting the therapeutic efficacy of ICIs (31–33).

As the ICI therapeutic effects estimated by TIDE (Figure 3A), the

decreased MSI scores in immune-suppressed MPMs also

informs poor ICI efficacy (Figure S5D). In comparison, as we

observed, there was no significant difference in TMB levels

across the three groups (Figure S5D).
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Then, we investigated the oncogenic pathways mediating

the distinct phenotype of each subtype. Interestingly, immune-

activated MPMs displayed the most intense T cell-mediated

antitumor response, with high scorings of the T-cell receptor,

JAK-STAT, and interferon-g. Stromal-enriched immune-

suppressed MPMs were associated with high activities of

MAPK, TNFa-NF-kB, and IL-7 signalings, while non-

immune MPMs were characterized by abundant intracellular

signals of N-cadherin, FGF, EphA2, EGFR, and hypoxia

(Figure S6A).
Genomic landscape of the three MPM
immune subtypes

Gene- or pathway-level somatic mutations were shown to

affect the immune microenvironment. With the implementation

of well-established statistical and computational methods in the

maftools package, we presented the genomic landscape of

mutational alterations and copy number variations across the

three immunological subtypes. It is illustrated that the three

immunological subtypes displayed distinct genomic

characteristics (Figure 4A and Figures S7A, B). Of note,

immune-suppressed MPMs had the highest genomic alteration

rate of SETDB1 and NF2 (18%, 45%) relative to immune-

activated (0%, 25%) and non-immune (2%, 28%) MPMs

(Figures 4A, B). BAP1 alteration was most commonly found in

patients with immune-activated MPMs (Figure 4A) and was

specifically associated with a favorable outcome for these

patients (Figure 4D and Figure S7C), indicating subtype-

specific prognostic value. MTAP loss is a reliable surrogate for

CDKN2A (p16) homozygous deletion in mesothelioma

diagnosis (34, 35). These two highly specific markers for

malignancy lesions of mesothelioma have lower copy number

deletion rates in immune-activated MPMs than other MPMs

(Figure 4C and Figure S7A). LATS2mutation or inactivation is a

positive regulator of mesothelioma proliferation via

constitutively activating YAP and Hippo signaling pathways

(36). Herein, we demonstrated that LATS2 genomic alteration

was an indicator of adverse prognosis for both immune-

activated and immune-suppressed MPMs (Figure 4D), while

the same finding was not observed in non-immune MPMs

(Figure S7D). To support the findings at the proteomic level,

we determined the phosphorylation levels of the residues serine

127 (S127) of YAP, together with a common CDKN2A encoding

tumor suppressor, p16 (INK4A) (37), across the three subtypes

using TCGA-RPPA dataset. As expected, immune-activated

MPMs exhibited compromised phospho-YAP (S127) levels

and upregulated p16 (INK4A) levels relative to non-immune

MPMs with statistical significance, which would be a partial

interpretation of the optimistic outcomes (Figure S7E).
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FIGURE 3

Validation of the novel immune-subtyping in external MPM cohort. (A) The TCGA-MPM cases were subdivided into non-immune (40/87, 46.0%),
immune-suppressed (23/87, 26.4%), and immune-activated (24/87, 27.6%) MPMs using methods of consensus clustering, MDS-RF modification,
and NTP division with signatures covering 26 immune- and TME-related signatures which were shown in the heatmap. Top column shows the
predicted ICI response estimated by IOBR and corresponding immune subtype of each case. (B) Kaplan-Meier survival analyses of overall
survival in MPMs with different immunological subtypes using TCGA RNA-seq cohort. **, p < 0.01; *, p < 0.05; n.s., Not significant.
(C) Percentage column plots showing the distribution of predicted Thorsson’s pan-cancer immune phenotyping across the three immune
subtypes. ***, p > 0.001; **, p > 0.01; *, p > 0.05; n.s., Not significant. (D) Scoring or fraction of immune cell components and indices in different
immune subtypes.
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FIGURE 4

Genomic landscape of the three MPM immune subtypes. (A) Oncoplot representation of the distribution of genomic alterations (mutations and
copy number variations) in driven genes identified by Mutsig across the three MPM immune subtypes, with the significance of mutations (Log10
transformation of MutSig q-value) shown at the left panel. Genomic alterations frequency of all MPM samples stratified by immunological
subtypes were listed on the right side of the Oncoplot. The top column illustrates the overall counts of genomic alterations per sample with
Log10 transformation, and the column at the bottom presents the mutation spectrum of base substitutions. NOS, Not otherwise specified. Del,
Deletion. (B, C) Identification of significantly enriched mutations (B), p < 0.05) or CNAs (copy number alterations) (C), p < 0.01) of genes for each
subtype by pairwise comparisons. The upper and bottom columns indicate the alteration rate in enriched subtype and the other subtypes
respectively. (D) Kaplan-Meier curves of the overall survival in the corresponding subtype of MPM patients stratified by BAP1 or LATS2 genomic
alteration status. WT, Wild-type.
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Development and validation of robust
classifiers for distinguishing three
subtypes of MPMs

To simplify a biomarker set classifying MPMs for molecular

diagnosis and clinical practice, we set out to develop a robust

panel of classifier genes with the application of machine-learning

algorithms. The workflow is shown in Figure 5A. To identify

non-redundant and uncorrelated marker genes, we assembled

multiple variable feature-selection algorithms to select the most

informative features and ranked the candidates in order of

feature importance (Supplementary Table 2, see Materials and

Methods for details). To determine the optimal gene panel size,

we iteratively trained the RF-LOOCV model by adding one gene

in one run. We noticed that classifier performance was almost no

more improved for panels larger than 20 genes (Figure S8A).

Although the average overall accuracy of classification reaches a

maximum around 0.850, the capability of this model for

distinguishing immune-activated MPMs from immune-

suppressed MPMs is still far from satisfactory (Figure S8A).

Therefore, we adopted a two-step feature selection process

accompanied by an RFE algorithm to obtain the optimum

gene combinations for improving the separating capacity of

two comparisons, including immune v.s. non-immune and

immune-suppressed v.s. immune-activated (Figure S8B). Using

the combined 16-gene panel as an input for multiple machine

learning training procedures, we identified the RF plus cross-

validation (CV) algorithm as the best one in terms of

classification accuracy. In this setting, a 12-gene classifier

showed the highest discriminant performance (93.6%) with

RFE process on the training set and was thus identified as the

best optimal set (Figure 5B). The efficiency of this 12-gene

classifier was confirmed using a testing set and external TCGA

dataset with accuracies of 90.9% and 79.4% (Figure 5D). More

importantly, using the 12-gene classifier, each immune subtype

can be efficiently diagnosed with no bias (Figure 5C). The

summarization of the feature selection process was shown in

Supplementary Table 3. The classification accuracy was no

longer improved by increasing the panel size that incorporated

additional clinical covariates, including histology, tumor stage,

lymph node stage, metastasis stage, etc. (Figure S8C).

Intriguingly, the predicted immune-activated MPMs showed

a better prognosis than the predicted non-immune MPMs

(Figure 5E), demonstrating that the 12-gene classifier is a good

predictor of survival. Multivariate Cox regression analysis

confirmed that the 12-gene classifier was a promising and

independent biomarker set for predicting patient survival

(Figure S9A). To assess the expression patterns of 12 genes, we

correlated their expression levels with immune cell infiltrates

estimated by CIBERSORT. Hence, two gene categories were

identified with distinct expression patterns: genes within

category one (GZMA, APOBEC3G, BTN3A2, TRAT1, HCK,
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BIN2, and SLAMF8) showed a positive relationship with the

abundance of various types of T cells, while category two (TNC,

TNFAIP6, HAS2, SH2B3, and ITGA4) was associated with

myeloid components (Figure S10A).
Discussion

The recently published result of Checkmate743 has

established the position of dual-target immunotherapy in first-

line treatment for MPMs (6). This new therapy pattern raises

demands for predicting patients capable of benefiting from ICIs.

TMB and PD-L1 are two well-recognized biomarkers for

predicting the efficiency of immunotherapy with a wide

application (38, 39). Although KEYNOTE-158 has confirmed

the clinical efficacy of Keytrude in tumors harboring a TMB≥10

across multiple solid tumors including mesothelioma (40), our

analyses revealed a deficiency of TMB with an average

expression around 0.5 (Figure S5D). By contrast, expression of

PD-L1 ranged from 22 to 42% in MPM patients with a variety of

assessment methods (41–43). High PD-L1 expression seemed to

be correlated with adverse clinical outcomes for MPMs (43).

However, the optimal cutoff score used for predicting prognosis

or ICI response remains to be determined. Moreover, there is no

consensus regarding PD-L1’s predictive value in recognizing

potential beneficial patients upon immunotherapy. As a single

biomarker, TMB or PD-L1 is insufficient to cover all the intrinsic

and environmental factors driving immune heterogeneity of

MPMs, and thus has its limitation in being applied to

clinical practice.

From this, we speculate that proposing a subtyping system

for MPM can promote our understanding of TME heterogeneity

and is critical for improving the efficacy of current

immunotherapeutic strategies . Previously , c lassical

classification patterns were defined to stratify the immune

microenvironment of solid tumors into four types based on

the presence or absence of tumor-infiltrating lymphocytes

(TILs) and PD-L1 expression, including Type I cancers (PD-

L1+ TILs+), Type II cancers (PD-L1− TILs−), Type III cancers

(PD-L1+ TILs−), Type IV cancers (PD-L1−TILs+) (44).

Correlating this stratification system with our classification

identified immune-activated MPMs as Type I cancers, which

were more likely to benefit from anti-PD1/anti-PD-L1 therapy.

Similar to previous findings (45), PD-L1 showed greater

expression in immune-activated MPMs accompanied by

infiltration of cytotoxic T-cells (Figure S4A). For the

explanations, the persistent involvement of T cells in tumor

immunity was balanced by PD-L1 engagement, which is induced

by IFN-g as an adaptive mechanism and thus exactly appropriate

for anti-PD1/PD-L1 therapy (46).

Meanwhile, we observed patients within immune-

suppressed MPMs contained substantial myeloid components
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(MDSCs, TAMs) and Tregs responsible for mediating immune

tolerance. To take control of this predicted Type IV cancers-

associated MPMs, we deemed that simple using combination

regiments containing antibodies against PD-L1, CTLA-4, and

other immune checkpoints may not be enough considering the

immune-suppressive status. TAMs can suppress T cell activity

via upregulating checkpoint molecules, indirectly crosstalk with

Tregs, and secreting immunosuppressive cytokines (47), which

eventually results in ICI treatment failure. Thus, immune-
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suppressed MPMs may benefit from inhibiting the CSF1/

CSF1R pathway, a key participant in the proliferation,

differentiation, and recruitment of macrophages (48). The

efficacy of the CSF1/CSF1R antibody, Cabiralizumab,

combined with nivolumab in advanced solid tumors, is

currently being investigated in a phase 2 trial (NCT02526017).

The remaining non-immuneMPMs accounted for a large part

and held the characteristics of Type II (PD-L1 negative with no

TIL indicating immune ignorance) or Type III cancers (PD-L1
A

B

D E

C

FIGURE 5

Development and validation of robust classifiers for distinguishing three subtypes of MPMs. (A) The workflow of a multi-step procedure for
identifying classifiers to distinguish three immune subtypes of MPMs. LDA, Linear discriminant analysis; CV, Cross-validation; LOOCV, Leave-
one-out cross-validation; ML, Machine learning. (B) Line graphs illustrate the variation trend of classification accuracy computed by multiple
feature selection algorithms plus stepwise recursive feature elimination (RFE) process. The x-axis suggested a different number of variable
combinations. (C) Receiver operating characteristic (ROC) curves of the 12-gene classifier for classifying each immune subtype separately. The
scores of the area under curve (AUC) are presented in the plot. (D) Percentage of correctly classified samples using the 12-gene classifier in
different MPM datasets. (E) Kaplan-Meier analysis of overall survival of TCGA MPM patients based on classification predicted by the 12-gene
classifier. *, p < 0.05; n.s., Not significant.
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positive with no TIL indicating intrinsic induction). For these

“cold” tumors, enhancing the immunogenicity of tumor cells to

attract more T cell infiltration should be prioritized. To achieve it,

developing therapies to induce exposure to tumor antigens would

be a primary measure to take. As an ideal way to cause

immunogenic cell death and liberate neo-antigens, radiotherapy

has been combined with immunotherapy to enhance CD8 T-cell

responses (49). For the consideration of inducing vascular

normalization, anti-angiogenic therapy allows more TILs to

access the TME and thus improves the efficiency of ICI through

augmenting immune recognition (50). Some treatment guidelines

recommended the addition of the anti-angiogenic agent

bevacizumab to platinum plus pemetrexed chemotherapy as

first-line treatment for selected MPM patients (51, 52). Given

the durable survival benefit seen in CheckMate 743, combining

nivolumab plus ipilimumab with other therapies, including anti-

angiogenic agents, merits further investigation to determine

whether tumor response can be enhanced.

Clinical survival is one of our primary concerns for this

classification scheme. Our work identified that immune-

activated MPM patients exhibited more favourable prognoses

relative to immune-suppressed MPM patients in both two

cohorts, while conflicting data exist regarding the patient

surv iva l of non- immune MPMs. Those seemingly

contradictory data might be attributed to different sample

properties, including TMN staging, histology, and sample size.

For the non-immune MPMs, delineating molecular features

using the NMF algorithm (Figure 1A) has summarized three

distinct functional modules/subclasses: Cell cycle, Epithelial/IFN

response, and ECM subtypes. Further work should investigate

these heterogeneous molecular patterns and their associations

with immune reprogramming and clinical outcome.

The limitation of the current study is the lack of histology

evaluation for each sample. In particular, all the analyses were

solely based on bulk transcriptome and cell type deconvolution.

The recent finding suggested that some SCLC (small cell lung

cancer) cases do contain not low immune cells that were more

immunological sequestrated (53). A tumor-immune

microenvironment is well-organized and structured from

compartmentalized to mixed patterns relating to survival (54).

With the advances in the spatial transcriptome, future work

should pay more attention to the spatial distribution of immune

cells in MPMs, which can help choose appropriate patients to

receive the immunotherapy. Besides, the ability of our immune

subtypes to predict responses to different immunotherapeutic

approaches is worth exploring in clinical trials or real-

world studies.

To sum up, we developed a novel and feasible subtype

classification system for delineating MPM immune features.

We demonstrate that this classification system can be

exploited to guide immunotherapy strategies, providing critical

biological insights into the mechanisms driving tumor
Frontiers in Oncology 12
heterogeneity. A machine learning-based 12-gene classifier was

exploited to simplify classified procedures, holding promise in

clinical translation and prognostic determination.
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