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Liver cancer is one of the most common cancers in the world, and the rate of

liver cancer is high due to the of its illness. Themain risk factor for liver cancer is

infection with the hepatitis B virus (HBV), but a considerable number of genetic

and epigenetic factors are also directly or indirectly involved in the underlying

pathogenesis of liver cancer. In particular, the apolipoprotein B mRNA editing

enzyme, catalytic peptide-like protein (APOBEC) family (DNA or mRNA editor

family), which has been the focus of virology research for more than a decade,

has been found to play a significant role in the occurrence and development of

various cancers, providing a new direction for the research of liver cancer.

APOBEC3B is a cytosine deaminase that controls a variety of biological

processes, such as protein expression, innate immunity, and embryonic

development, by participating in the process of cytidine deamination to

uridine in DNA and RNA. In humans, APOBEC3B has long been known as a

DNA editor for limiting viral replication and transcription. APOBEC3B is widely

expressed at low levels in a variety of normal tissues and organs, but it is

significantly upregulated in different types of tumor tissues and tumor lines.

Thus, APOBEC3B has received increasing attention in various cancers, but the

role of APOBEC3B in the occurrence and development of liver cancer due to

infection with HBV remains unclear. This review provides a brief introduction to

the pathogenesis of hepatocellular carcinoma induced by HBV, and it further

explores the latest results of APOBEC3B research in the development of HBV

and liver cancer, thereby providing new directions and strategies for the

treatment and prevention of liver cancer.
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Introduction

Liver cancer is one of the most common cancers, and its

fatality rate ranks fourth in the world (1) due to its high degree of

malignancy and hidden disease symptoms. Hepatitis B virus

(HBV) is the leading cause of liver cancer incidence and

mortality globally, particularly in Africa and East Asia where

60% of cases are caused by HBV (2). HBV is a partially double-

stranded DNA virus whose clinical outcomes of infection are

influenced by viral replication and changes in the host immune

system (2). The innate immune system is the first line of defense

of the host immune system, and in recent years, a number of

“limiting factors” with antiviral properties have also been

discovered, including members of the apolipoprotein B mRNA

editing enzyme, catalytic peptide-like protein (APOBEC)

protein family (3, 4). The APOBEC family consists of 11

cytidine deaminase members in humans that function

primarily by inducing DNA or RNA upper cytosine

deamination mutations to defend against retroviral or

retrotransposon transmission, and these members have been

identified as widely involved in various antiviral processes.

APOBEC3B is the most common member of the family, and it

is involved in the development of cancer, including liver cancer

(5), breast cancer (6), gastric cancer (7), chondrosarcoma (8),

kidney cancer (9), colorectal cancer (10), cervical squamous cell

carcinoma (11), lung cancer (12), and bladder cancer (13). In

humans, APOBEC3B has also been reported to be significantly

upregulated in liver cancer, but its role in liver cancer is unclear.

In this article, we mainly review the latest research on the

molecular mechanisms of APOBEC3B in limiting the

pathogenesis of HBV infection and liver cancer to provide a

new therapeutic direction or target for liver cancer treatment.
Manuscript

APOBEC3B: family, localization,
structure, and function

The APOBEC genes belong to a family of cytidine

deaminases that deaminize cytidine to uridine on DNA or

mRNA, and their high mutagenic activity limits viral reverse

transcriptase and promotes instability in the genome of cancer

cells (14). In humans, the APOBEC superfamily consists of 11

members, namely activation-induced cytosine deaminase (AID),

APOBEC1 (A1), APOBEC2 (A2), APOBEC3A-H (A3A, A3B,

A3C, A3D, A3F, A3G, and A3H), and APOBEC4 (A4), all of

which play a key role in the biological processes of cells

(Table 1). The chromosomal locations of the APOBEC family

members are as follows: APOBEC3A-H are concatenated on

chromosome 22; AID and APOBEC1 are concatenated on

chromosome 12; APOBEC2 is localized on chromosome 6;
Frontiers in Oncology 02
and APOBEC4 is localized on chromosome 1, respectively (16,

17) (Figure 1). The genes in this family encode a cytidine

deaminase, containing one or more conserved cytidine

deaminase domains (CDAs), which are zinc-dependent

catalytic domains that contain the common amino acid

sequence of H-X-E-X23-28-P-CX2-4-C (X represents any

amino acid) (18). These enzymes transmute DNA by a zinc-

mediated hydrolysis mechanism to deaminize cytosine to uracil

or convert cytosine to guanine (C to G) (19, 20). This pattern of

mutations is the most common in cancer, second only to those

that are attributed to aging (C-to-T in the CG dinucleotide

motif, most likely due to water-mediated methylcytosine

deamination). A1 was firstly discovered as an RNA-editing

enzyme to deaminate at specific locations in mRNA to

produce early stop codons, and it has been shown that A1 has

strong deamination activity at the DNA level (21, 22). The

function of A2 and A4 in humans remains unclear as no

enzymatic activity has been demonstrated thus far. The seven

A3 members are generally considered to be important barriers to

viral replication and transcription, playing an important role in

acquired immunity, unlike the basic function of AIDS, which is

innate immunity (23). The A3 members are closely involved in

immunity in a variety of ways and are a powerful force against

endogenous and exogenous viruses. For example,A3G acts as a

DNA editor to resist virus replication and transcription, and

A3G also facilitates CD8+ cytotoxic T lymphocyte (CTL)

recognition of infected T lymphocytes and limits marginal

band B cells to transform rapid immune responses into more

long-lasting B cell responses in germination centers (24). In

addition, a recent study has suggested that inflammation-related

factors induce A3A to edit the mRNAs of viral disease-causing

genes in a large number of macrophages and monocytes,

suggesting that A3A also plays an important role in the

immune microenvironment (25). In particular, as the most

involved member of this family in the cancer pathophysiology

process, APOBEC3B limits viral reverse transcriptase by editing

complementary DNA (cDNA) intermediates by relying on the

action of cytidine deaminase (26), and it is also involved in

promoting the biological occurrence and evolution of cancer

through its role as a dependent or independent cytidine

deaminase in the immune microenvironment (6, 11, 27).

Analysis of The Cancer Genome Atlas (TCGA) mutation

data has shown that APOBEC cytidine deaminase mutation

patterns lead to genomic instability and are thus involved in

carcinogenic somatic mutations (28, 29). In this family, all

APOBEC3s, except for APOBEC3B, APOBEC3D, APOBEC3F,

and APOBEC3G, contain only one CDA, which may explain

why APOBEC3B is an epigenetic factor in many cancers

(Figure 1) (20, 30). It remains controversial whether the two

CDA structures in APOBEC3B are deaminated. Recent studies

have suggested that only the end of the carboxyl group in the

CDA show deamination activity, while the CDA at the N-

terminus does not have deamination activity (31). There is
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increasing evidence that APOBEC3B-catalyzed genomic

cytidine deaminase mutation patterns are the leading cause of

dispersion and aggregation mutations in variouscancers (11). In

addition, the expression level of APOBEC3B in normal human

organ tissues is relatively low, but the expression level of

APOBEC3B in different tumors tissue and cell lines is

abnormally elevated (32, 33). Moreover, the unique nuclear

localization of APOBEC3B also facilitates mutations to

promote tumor development (34). Previous studies have

indicated that APOBEC3B is uniquely enriched in cervical,

breast, lung, and bladder cancers (35). In particular,

APOBEC3B has been shown to be a prognostic marker in

estrogen receptor (ER)+ breast cancer, and that it plays a key

role in the progression of breast cancer (7). Furthermore,
Frontiers in Oncology 03
APOBEC3B has been reported to be significantly elevated in

liver cancer tissues relative to normal tissues, suggesting that it

also plays an essential role in the occurrence and development of

liver cancer (5). However, the role of APOBEC3B in liver cancer

remains unclear, thereby requiring further investigation.
HBV and liver cancer

Liver cancer is one of the most prevalent malignant tumors,

and it has characteristics of late detection and high fatality rate

(36). The progression of liver cancer is driven by a combination

of factors including genetic predisposition, lifestyle and

environmental factors, as well as chronic HBV and hepatitis C
TABLE 1 Genomic structure, function and sequence specificity of APOBE3C family (1, 15) (Partial data source: genecard).

Gene Genetic
information

(location/exons)

Tissue
expression

Cellular
localization

Deaminase
substrate

Target sequence
(C=edit site)

Disorder

AID 12p13/5 Activated B cells Cell wide ssDNA, RNA 5’-WRC-3’ (W = A or T;
R = A o r G)

None

APOBEC1 12p13.1/5 Gastrointestinal
tract

Cell wide ssDNA, RNA 5’-AC (n4–6)
UGAUnnGnnnn-3’
(for n, A and U
preferred)

Neurofibromatosis,
Immunodeficiency with hyper-lgm

APOBEC2 6p21/3 Heart, skeletal
muscle,
TNF/activated
liver cells

Cell wide ? ? Immunodeficiency with hyper-lgm

22q13.1/5 Monocytes/
macrophages,
non-progenitor
cells

Cell wide ssDNA, RNA 5’-TC-3’ Plantar wart,
Bone leiomyosarcoma,
Psoriasis

APOBEC3B 22q13.1/8 PKC-induced
cancer cells,
IFN/-activated
liver cells

Nuclear ssDNA 5’-TC-3’ Bone leiomyosarcoma,
Recessive dystrophic epidermolysis
bullosa

APOBEC3C 22q13.1/4 Immune centers,
peripheral
blood cells

Cell wide ssDNA 5’-TC-3’ Plantar warts

APOBEC3D 22q13.1/7 Immune centers,
peripheral
blood cells

Cytoplasmic ssDNA 5’-TC-3’ None

APOBEC3F 22q13.1/8 Immune centers,
peripheral
blood cells, IFN/-
activated
liver cells

Cytoplasmic ssDNA 5’-TC-3’ Immune deficiency disease,
Aids

APOBEC3G 22q13.1/8 Immune centers,
peripheral
blood cells, IFN/-
activated
liver cells

Cytoplasmic ssDNA 5’-CC-3’,5’-TC-3’ Hepatitis B,
Immunodeficiency disease,
Aids

APOBEC3H 22q13.1/5 Immune centers,
peripheral
blood cells

Cell wide ssDNA 5’-TC-3’ Plantar warts,
Recessive dystrophic epidermolysis
bullosa,
Aids

APOBEC4 1q25.3/2 . . . . Immunodeficiency with hyper-lgm
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virus (HCV) infections. In particular, HBV infection is the most

important cause of the high incidence of liver cancer in Asian

populations (37, 38). There are approximately 240 million long-

term HBV infections in the world, and uncontrolled chronic

HBV infection can further evolve into life-threatening end-stage

chronic liver diseases such as cirrhosis and liver cancer (39, 40).

Previous studies have suggested that normal hepatocytes are be

converted into hepatocellular carcinoma cells through chronic

inflammation, DNA damage, chromosomal instability,

epigenetic modification, and early neovascularization after

HBV (41).

HBV, which belongs to the Hepadnaviridae family, is a

relaxed circular double chain DNA virus with a molecular

weight of 3.2Kb, and it replicates mainly through RNA

intermediates (42, 43). In the human liver, 90% of the liver is

comprised of hepatocytes, and HBV enters liver cells through

Na+/taurocholate cotransporter polypeptide (NTCP) (44). With

entry into hepatocytes, the relaxed circular DNA (RC DNA) of

HBV is converted into covalent closed circular DNA (cccDNA)

within the nucleus, which in turn evolves into a template for

transcription of all viral RNAs (pregenomic RNA, pgRNA; and

subgenomic RNA) (41). HBV synthesizes proteins, including P,

core, precore, and X proteins (45). It is worth mentioning that P

protein, also known as DNA polymerase, is translated from

pgRNA and can function as reverse transcriptase, DNA-

dependent DNA polymerase, and RNaseH (46). PgRNA is

important in viral replication, and it can be reversed by the P

protein into new viral rcDNA, which is then retransmitted into

the nucleus to form a pool of cccDNA or secreted as an infectious

virion with envelope proteins (47). In contrast, HBX (the X

protein), as a key oncovirus gene protein, promotes the

occurrence and development of hepatocellular carcinoma by

regulating the cell cycle, cell signaling pathways, and DNA

repair (48, 49). Surprisingly, HBX also participates in the
Frontiers in Oncology 04
replication of HBV by recruiting CBP, P300, and PCAF

proteins into the hidden pathway of cccDNA (50).

HBV mainly drives the occurrence and development of liver

cancer through indirect inflammatory liver damage and direct

carcinogenic potential. Because HBV is a non-cytopathic virus,

the specific immunity mediated by CD4+ and CD8+ T cells as

well as the non-specific immunity produced by B cells are used

to control the virus after invading the body, of which CD8+ T

cells play a leading role (51–53). In addition, some cytokine

responses (upregulation of IL-10 or TGF-b) regulatory T cells

(Tregs) also play a role in liver damage (52, 54, 55). In acute

injury, the liver can restore its initial liver function and size

through regeneration of normal hepatocytes; however, chronic

inflammatory liver injury and repeated compensatory

proliferation of liver cells associated with persistent viral

infection in chronic hepatitis B can lead to hepatic fibrosis or

hepatic sclerosis and hepatocellular carcinoma (56, 57). Previous

experiments have provided evidence for compensatory

proli feration (58), chronic inflammation (52), and

concomitant changes in molecular signaling pathways (59)

associated with HBVinfection that drive the occurrence and

development of liver cancer. However, occult HBV (the virus

persists in the state of rcDNA or cccDNA in HBs Ag-negative

patients) with the absence of inflammation, severe liver damage,

and direct carcinogenic viral factors, or cancer supports the

hypothesis of the direct carcinogenic potential of the HBV (60).

The existing mainstream hypothesis about the direct

carcinogenic mechanism of HBV mainly includes the

following three aspects: a) HBV integrates tumor genes of the

host through its own reverse transcription pathway; b) genomic

is instability caused by HBV retroreplication when integrating

the host genome group; and c) HBV directly affects cellular

function or activates oncogenic signaling pathways through its

own oncovirus gene proteins (HBx and PreS) (37). Hence,
FIGURE 1

Spatial location distribution of genes among members of the APOBEC3 family. The seven members of APOBEC3 are arranged in tandem on
chromosome 22, of which APOBEC3B, APOBEC3D, APOBEC3F, and APOBEC3G have two zinc catalytic enzyme structures, while the others
have only one. APOBEC1 and AID are connected in tandem on chromosome 21, respectively. APOBEC2 and APOBEC4 are present on
chromosome 6 and chromosome 1, respectively.
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controlling HBV infection is important in the prevention and

treatment of liver cancer.
A molecular mechanism of APOBEC3B
restriction in HBV virus infection

HBV is a partial double-stranded DNA virus that is

replicated by retrotransmission within the cytoplasmic viral

core particles, and its continuous replication within the host is

a high-risk factor for the development of liver cancer. In the past,

the treatment of HBV infection has involved the inhibition of its

replication, resulting in reduced risk of liver sclerosis or liver

cancer, but, cccDNA remains in the nucleus. Therefore, these

treatments do not completely eliminate the infection of the

HBV. Recent reports have suggested that the APOBEC3B

cytidine deaminase family member is the “limiting factor” of

HBV because it edits HBV cccDNA within the nuclear DNA,

resulting in its degradation, which completely eliminates the

HBV (61). Moreover, reports have suggested that lymphotoxin-

b receptors upregulate APOBEC3B, resulting in cytidine

deamination-dependent cccDNA degradation (62). Hence, it is

important to explore the molecular mechanism of APOBEC3B

in the degradation of ccc DNA to provide a new therapeutic

direction for the treatment of hepatitis B.

APOBEC3 is involved primarily in antiviral molecular

mechanisms through both dependent and independent

deaminases (4). APOBEC3B has been reported to integrate

HIV-1 particles in HIV viruses as a nucleoplasmic shuttle

protein to limit its replication (63), but its mechanism remains

unclear. Lucifora et al. proposed a mechanistic model of

APOBEC3B degradation of ccc DNA, in which APOBEC3B

participates in the degradation of cccDNA by co-localizing or

interacting with HBV cores in the nucleus (62). ccc DNA is
Frontiers in Oncology 05
deaminated by APOBEC3B in a state of temporary single-

stranded cc DNA, and DNA glycosyl deaminase then

recognizes the uracils that excise ccc DNA to produce AP

sites, which are then are recognized and degraded by AP

endonucleases (64) (Figure 2). However, the APOBEC3B

protein contains two cytidine deaminase structures, namely,

CD1 and CD2, at the C terminus, and the antiviral activity of

these two structures has been explored. Fu et al. demonstrated

that H66 mutations in CD1 have no effect on deamination and

antiviral activity, and they also demonstrated that H253 and

D316 in the CD2 region are primarily responsible for this

process (31, 65). Furthermore, Yanmeng et al. explored

whether the APOBEC3B protein encodes HBV-related DNAs

during reverse transcription in HBVs (65); they found that the

antiviral mechanism of APOBEC3B differs from the activation-

induced cytidine deaminase (AID), which primarily edits HBV

RNA and single-stranded DNA during reverse transcription,

while APOBEC3B primarily edits negative and positive stranded

DNA of HBV (excluding pgRNA) (66). This protein can be in

the nucleus or in the cytoplasm by interacting with the core

protein or capsidprotein during the deamination process of

DNA in the capsid, and DNA after deamination has more

exposed AP sites, which are then recognized by DNA

glycosylases and degraded by the base excision repair (BER)

pathway (67). Thus, these findings suggest a new antiviral

mechanism of APOBEC3B, involving core correlation in

addition to targeting the degradation of ccc DNA within

nuclear DNA.

There are still some unknown aspects of APOBEC3B in the

mechanism of limiting HBV replication. For example, it is

unknown why ccc DNA or associated DNA is degraded rather

than repaired by cellular DNA repair mechanisms. Studies have

reported that APOBEC3B also mutates the HBX protein of HBV

to promote the development of liver cancer. Thus, it remains
FIGURE 2

APOBEC3B-induced molecular mechanism model of degradation of HBV cccDNA.
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unclear whether, the mutation effect of APOBEC3B on HBV

promotes liver cancer or inhibits liver cancer. Previous studies

have suggested that cellular DNA repair mechanisms, such as

UNG (uracil DNA glycosylase), resist the degradation

mechanisms of ccc DNA by some APOBEC3B proteins but

that these repair mechanisms do not affect the overall process of

APOBEC3B restriction of HBV replication (68). In contrast, the

basis for APOBEC3B mutation of the HBX protein of HBV is to

promote the development of liver cancer in liver cancer cells (i.e.,

after liver cancer has occurred) (69), which does not contradict

our hypothesis that APONEC3B inhibits the occurrence of liver

cancer at the stage of HBV infection by degrading ccc DNA

and DNA.
APOBEC3B role in liver cancer and its
molecular mechanisms

APOBEC3B, as a cytidine deaminase, has significant

contributions to variouscancers (70). However, relatively little

has been reported in highly fatal liver cancers, but there are still

reports of APOBEC3B upregulation in liver cancer patients,

contradicting the restriction of HBV infection and liver cancer

by APOBEC3B via degrading the HBV genome (69, 71).

Therefore, it is important to fully understand the role and

molecular mechanisms of APOBEC3B in liver cancer.

Scientists have also speculated whether APOBEC3B promotes

the development of liver cancer by mutating the genome of liver

cells, but previous studies have reported lack of mutation

patterns of APOBEC3B in liver cancer (72). Although recent

reported mutational signals for APOBEC3B during replication

and transcription, overexpression of APOBEC3B does not affect

genomic DNA (62, 73, 74). Therefore, further exploration of the

role of APOBEC3B in liver cancer is required.

It is well known that the inflammatory process in the tumor

microenvironment and the complex interaction between

immune cells and cancer cells are considered to be the drivers

and determinants of tumor disease outcome. In addition, the

most common cause of hepatocellular carcinoma is underlying

chronic liver inflammation and altered immune response (75).

Recent studies have found that APOBEC3B provides a potential

link among inflammation, cancer, and immune processes, which

may be a novel finding for the non-enzyme-dependent function of

APOBEC3B (76). There are many myeloid-derived suppressor

cells (MDSCs) and tumor-associated macrophages (TAMs) in the

microenvironment of liver cancer. These cells release oxidative

molecules and stimulate other immunosuppressive cells to inhibit

the function of CD8+ T cells, resulting in a better prognosis of liver

cancer (77). Importantly, it has been reported that there is a

positive feedback loop in the presence of chemotaxis between IL-6

and APOBEC3B in hepatoma cells (78), i.e., APOBEC3B

promotes IL-6 to recruit MDSCs and TAMs to promote the

development of liver cancer. Regarding molecular mechanisms of
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interaction between chronic hepatitis and liver cancer, it has been

reported that triggering the classical and non-classical NF-kB
signaling pathways leads to the promotion of chronic hepatitis to

liver cancer (79, 80), such as the lymphatic toxin, LTa1b2, which
is significantly upregulated in liver cancer. Moreover, Duowei

et al. discovered and identified that nonclassical NF-kB signaling

pathways stimulate the APOBEC3B-binding promoter through

the RelB/p52 complex to increase the transcriptional expression of

APOBEC3B, while an increase in the expression of APOBEC3B

significantly increases the CCL2 chemokine, thus recruiting

MDSCs and TAMs to contribute to the development of liver

cancer (81). The role of APOBEC3B in inflammation, cancer, and

immunity suggests that– APOBEC3B may be used as an

immunomodulatory factor to promote tumor progression by

altering the immune microenvironment (76).

Duowei et al. explored how APOBEC3B promotes the

upregulation of chemokine expression and thus the recruitment

of MDSCs and TAMs to promote the occurrence and

development of liver cancer; they reviewed previous studies and

found that chemokine expression is regulated by genetic and

epigenetic mechanisms inherent in cancer, such as DNA

methylation and polycomb repressive complex 2 (PRC 2) (82).

Furthermore, PRC2 regulates the expression of certain genes by

participating in H3K27 methylation (83). In addition, studies have

also shown that inhibiting the expression of histone H3 lysine 27

trimethylation (H3K27me3) promotes the upregulation of

chemokines such as CCL2, IL-8, and CCL-2, in breast cancer

(84), thereby establishing and validating a molecular mechanism

for APOBEC3B as an immunomodulatory factor to regulate

chemokine expression (81). In this mechanism, APOBEC3B

binds to the three core proteins of PRC2, namely, EED, EZH2,

and SUZ12, to inhibit PRC2 HMT activity, thereby inhibiting

H3K27me3 to upregulate the expression of chemokines, including

CCL2, IL-34, and BMP7 (81) (Figure 3). Among these

chemokines, CCL2 has been established to play a key role in the

occurrence and development of liver cancer by aggregating

monocytes and macrophages into tumor tissue as well as

stimulating tumor cell survival and immune escape (85). In

addition, previous studies have shown that EZH2 deficiency

promotes cancer formation and increases inflammatory factors

to exacerbate the inflammatory response (86, 87). Therefore, the

non-enzyme-dependent function that interferes with APOBEC3B

inhibits the immunosuppressive microenvironmentmediated by a

variety of chemokines, thereby inhibiting the occurrence and

development of liver cancer.

The high expression of APOBEC3B in liver cancer has been

validated, but it remains unclear whether it is upregulated in

liver cancer as a lagging upregulation. It has been established

that APOBEC3B plays a key role in liver cancer. APOBEC3B

overexpression promotes the development of liver cancer in vivo

and in vitro, while APOBEC3B knockout inhibits the

development of liver cancer (76). Thus, regulating APOBEC3B

is a potential treatment strategy for liver cancer. Moreover, in the
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APOBEC family, APOBEC1, AID, and APOBEC3B are also

closely related to cancer (1), but their related molecular

mechanisms still need to be further explored. The present,

review of the molecular mechanisms associated with

APOBEC3B in liver cancer provides a new possibility for

these mechanisms.
Discussion

In summary, APOBEC3B plays different roles at various

stages of liver cancer formation, either by restricting viral

replication and transcription through enzyme-dependent

functions at the stage of viral infection, or by recruiting

MDSCs and TAMs in the tumor microenvironment through

non-enzyme-dependent functions in terms of cancer drivers and

initiators to stimulate tumor cell survival and immune escape.

Although there are still few reports of APOBEC3B in the

occurrence and development of liver cancer, it has been

established that APOBEC3B plays a key role in liver cancer.

Thus the occurrence of liver cancer may be mediated by

treatment with APOBEC3B agonist therapy at the HBV stage

by restricting viral replication or inhibiting the development of

liver cancer by interfering with the non-enzyme-dependent

function of APOBEC3B in the early stages of liver cancer. In

addition, specific mutation signals and the role of APOBEC3B,

as a cytidine deaminase, have been established in the occurrence

and development of cervical cancer, breast cancer, lung cancer,

and other cancers. Although the mutation signals found in liver

cancer do not appear to affect genomic DNA, there may be
Frontiers in Oncology 07
other roles of the nuclear-localized APOBEC3B cytidine

deaminase in hepatocellular carcinoma cells, thus requiring

additional exploration.
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