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Introduction and objective: Despite the improvements in management and

treatment of chordomas over time, the risk of disease recurrence remains high.

Consequently, there is a push to develop effective systemic therapeutics for

newly diagnosed and recurrent disease. In order to tailor treatment for

individual chordoma patients and develop effective surveillance strategies,

suitable clinical biomarkers need to be identified. The objective of this study

was to systematically review all prognostic biomarkers for chordomas reported

to date in order to classify them according to localization, study design and

statistical analysis.

Methods: Using the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines, we systematically reviewed published

studies reporting biomarkers that correlated with clinical outcomes. We

included time-to-event studies that evaluated biomarkers in skull base or

spine chordomas. To be included in our review, the study must have

analyzed the outcomes with univariate and/or multivariate methods (log-

rank test or a Cox-regression model).

Results: We included 68 studies, of which only 5 were prospective studies.

Overall, 103 biomarkers were analyzed in 3183 patients. According to FDA

classification, 85 were molecular biomarkers (82.5%) mainly located in nucleus

and cytoplasm (48% and 27%, respectively). Thirty-four studies analyzed

biomarkers with Cox-regression model. Within these studies, 32 biomarkers

(31%) and 22 biomarkers (21%) were independent prognostic factors for PFS

and OS, respectively.
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Conclusion: Our analysis identified a list of 13 biomarkers correlating with

tumor control rates and survival. The future point will be gathering all these

results to guide the clinical validation for a chordoma biomarker panel. Our

identified biomarkers have strengths and weaknesses according to FDA’s

guidelines, some are affordable, have a low-invasive collection method and

can be easily measured in any health care setting (RDW and D-dimer), but

others molecular biomarkers need specialized assay techniques (microRNAs,

PD-1 pathway markers, CDKs and somatic chromosome deletions were more

chordoma-specific). A focused list of biomarkers that correlate with local

recurrence, metastatic spread and survival might be a cornerstone to

determine the need of adjuvant therapies.
KEYWORDS

Chordoma, prognostic biomarkers, molecular, skull base, spine, systematic review,
multivariate analysis
Introduction

Chordomas are malignant bone tumors, of possible

embryologic origin, arising anywhere along the neuroaxis (1),

that are prone to both local recurrence and systemic relapse.

Successful treatment of chordomas requires an experienced

multidisciplinary team. The median overall survival of patients

with chordoma is between 6.3 and 7.7 years (1, 2) with a 5-year

overall survival around 70% in most series (2–4). For newly

diagnosed patients, primary treatment consists of radical but

safe resection; importantly, the extent of resection directly

impacts outcomes in patients with skull base and spine

chordomas. Over time, treatment of newly diagnosed

chordomas has also evolved to incorporate adjuvant

radiation, commonly with particle therapy (carbon-ion or

proton-ion), particularly for skull base chordomas (5–8).

While outcomes have improved over time, the rates of both

local recurrence and distant metastases remain high.

Ultimately, it is widely accepted that chordoma behaves

across a biological spectrum – ranging from an indolent to a

more aggressive phenotype with poorer survival and increased

risk of local recurrence and metastatic disease. Unfortunately,

there is still an unmet clinical need to develop effective systemic

therapeutic agents that can be incorporated into the treatment

paradigm for newly diagnosed and recurrent disease. To this

end, clinical biomarkers that can be used to better tailor
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treatment and implement surveillance strategies for patients

with chordoma are needed.

To meet this need for clinical biomarkers, several

molecular studies have been conducted to identify

therapeutic targets and prognostic markers in order to

predict outcome (9–12). While many of the identified

biomarkers have been validated in the research laboratory

setting, the challenge lies in creating a biomarker panel that

can be used in the clinical setting to guide real-time decision-

making (13, 14). According to the US Food and Drug

Administration (FDA), a biomarker is defined as a

measurable characteristic that serves as an indicator of

normal or pathological biological processes or responses to

an exposure or intervention. Additionally, biomarkers can

include molecular, histologic, radiographic or physiologic

features (15). To be clinically utilized, there are certain

critical features that any biomarker should include: 1) it

should be non-invasive, easily measured, affordable, and

produce rapid results; 2) it should be accessible from readily

available sources, such as blood or urine; 3) it should have high

sensitivity to allow early detection and have a high specificity in

diseased samples; 4) the expression level of the biomarker

should aid in risk stratification and possess prognostic value

in terms of clinical outcomes; and 5) the biomarker should

provide insight into the underlying disease mechanism (16).

Specifically, a prognostic biomarker identifies the likelihood of

a clinical event, disease recurrence, or progression in patients

who have a medical condition of interest (17).

The objective of the present study was to review all

prognostic biomarkers reported to date for chordomas in

order to classify them according to localization, clinical utility,

study design and statistical analysis.
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Methods

Study design

The current systematic review was performed according to

the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines (18). Studies were classified

according to their design as prospective or retrospective. The

level of evidence of each study was determined according to

Oxford Centre for Evidence-Based Medicine (OCEBM)

guidelines (19, 20). A systematic search was conducted in the

PubMed/Medline and Google Scholar databases using the

following terms: “chordoma”, “biomarker”, “overall survival”,

“progression free survival”, “prognosis” and “biological marker”.

Any discrepancies were resolved through consensus. The search

strategy utilized is reported in Figure 1. Inclusion criteria were as

follows: i) the study must have been a prospective clinical trial or

a retrospective case-control/cross sectional study published in

English with no start date restriction and until February 2022

(when analyses for this review were performed); ii) the studies

had to have reported chordomas confirmed by pathology (either

in the skull base, mobile spine or sacrum); iii) the studies must

have been time-to-event studies, which determined Progression

Free Survival (PFS), and/or Overall Survival (OS); iv) the
Frontiers in Oncology 03
outcomes must have been analyzed by employing Kaplan-

Meier (K-M) analysis with log-rank test or a Cox proportional

hazards analysis (Cox model); v) the study must have included a

full biomarker description including the brand name of the assay

used, the source/matrix, the measurement technique and the

assay technology used; vi) studies must not have had

overlapping patients.

Studies using other biomarker categories, such as susceptibility/

risk, diagnostic, monitoring, predictive, pharmacodynamic/

response or safety were excluded.
Data abstraction

The extracted variables of each study include the following:

Type of study, number of patients, localization of the primary

tumor (skull base, mobile spine and/or sacrum), localization of

the biomarker (cellular [nuclear, cytoplasm or cell membrane]

or extracellular [blood or extracellular matrix]), assay technique

for measurement, prognostic variable analyzed, non-parametric

statistical approach, level of significance (p-value), and study

design (prospective or retrospective). For classification purposes,

we divide the biomarker as ‘positive’ or ‘negative’, according to

its correlation with PFS or OS.
FIGURE 1

PRISMA-based flow chart of the study.
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Statistical analysis

The primary goal was to determine whether there was

significant correlation between the biomarker and prognostic

variable analyzed, either using Log-rank univariate analysis or

Cox regression multivariate analysis. All statistical analyses were

performed using Microsoft Excel 365 (Microsoft, Washington,

USA) and GraphPad Prism 9.0 statistical software package (La

Jolla, California, USA). Descriptive statistics was the main

statistical technique. Categorical variables are presented as

proportions and the continuous variables are presented with

mean and standard deviation or median and interquartile range.
Results

Literature review

Sixty-eight studies met predetermined eligibility criteria and

were included for data abstraction (Figure 1). Fourteen studies

used the same cohort of patients with different biomarkers, so a

total number of 1263 patients are duplicated (21–33). Two

studies were multicenter, which includes different populations,

increasing the strength of the study (21, 34). With regard to

study design, 5 studies were prospective (7.3%) (26, 35–38) and

63 studies were retrospective (92.7%) (21–25, 27–34, 39–87).
Identification of pertinent biomarkers

Data for a total of 3183 patients (not duplicated) were

analyzed using different prognostic biomarkers. We excluded

data from patients that was collected from the same hospital and

in the same time frame. Of these, 3150 cases were adult patients

(99%) and 33 were pediatric patients (1%); there were 1595

(50%) skull base chordomas, 1165 (36.6%) sacrococcygeal

chordomas and 423 (13.4%) chordomas in mobile spine

segments. A total of 103 biomarkers were analyzed in the 68

studies included in our analysis. Using the FDA classification

system (15) we divided the biomarkers into 4 groups: molecular

(82.5%; n=85), physiological (9.7%; n=10), histological (6.8%;

n=7) and radiographic biomarkers (1%; n=1) (82).

Localization for each biomarker was different. A total of 40%

were located in the nucleus (n=41), 22% in the cytoplasm

(n=23), 14% in the cellular membrane (n=14), 7% in the

extracellular matrix (n=7), and 16% from blood samples

(n=17). The most common detection technique used was

immunohistochemistry (IHC) in 66% of the studies (n=45)

followed by polymerase chain reaction (PCR), serum protein

analysis, and DNA sequencing in 20% (n=14), 9% (n=6) and 5%

(n=3), respectively.

Three studies did not consider the expression of individual

biomarkers, but instead they described a score using a group of
Frontiers in Oncology 04
biomarkers. One study describes an “miRNA-score”, which

measures the nuclear concentration of different microRNAs

(miR-1290; miR-574-3p; miR-1; miR-1237-3p; miR-155; miR-

140-3p) using PCR-based techniques (42). Another study

describes a “Systemic Inflammatory Index” (SII), which is

obtained by multiplying blood platelet count and neutrophil

count and dividing by lymphocyte blood counts (P x N/L) (41),

and the last study describes an “Immunoscore” based on the

expression of CD3+ and CD8+ cells in the tumor specimen,

using IHC (58).
Correlation of biomarkers with
clinical outcomes

The clinical outcomes commonly evaluated in the selected

studies were Progression free survival (PFS) and overall survival

(OS). Only those biomarkers that demonstrated significant

correlation with clinical outcomes in non-parametric tests

were considered. Significant correlation of biomarkers with

OS, PFS, or both, appeared in 35% (n=24), 23% (n=16) and

40% (n=27) of the studies, respectively. One study found that the

lack of 1p36 LOH correlates with improved OS and PFS but did

not report the HR and/or the CI (60). Because of this, we did not

include their results in the following figures and analysis.

Ultimately, 82 biomarkers were demonstrated to have

statistical correlation in PFS and/or OS.

Elevated expression of 15 biomarkers was found to be

associated with improved PFS and/or OS in chordoma

patients (23, 24, 30, 31, 39, 55, 58, 62, 69, 76, 78, 84, 88).

Among them, five biomarkers correlated with improved OS

(elevated CD8+/Foxp3+ ratio, H-TERT promoter mutations,

and high expression of SNF5 protein, c-MET receptor, and

miRNA-1), eight biomarkers correlated with improved PFS

(high Immunoscore, elevated PD1+ Tumor-Infiltrating

Lymphocytes (TIL), high expression of PHLPP1 protein, Raf-1

and ERK proteins, elevated MMP-9/RECK protein ratio, and the

high nuclear expression of miRNA-1290 and mi-RNA-1237-3p)

and, 2 biomarkers were linked with both PFS and OS (elevated

PD-L1+ TIL and high preoperative serum albumin level).

Increased expression of the remaining biomarkers (82%,

n=67) correlated with poorer PFS and/or OS outcomes.

Among them, the Ki-67 Level Index (LI) was the most

frequent biomarker analyzed across the collection of studies

(n=7, 10.3%). A high Ki-67 LI correlated with a shorter OS or

PFS (even on COX regression analysis) (27, 33, 56).

Thirty-four studies analyzed the correlation between

biomarkers and clinical outcomes using Cox multivariate

regression and found that 35 biomarkers (43%) and 22

biomarkers (27%) were independent prognostic factors for PFS

and OS, respectively. Although these biomarkers demonstrated a

p-value less than 0.05, the confidence intervals (95% CI) varied

greatly, partly due to limited sample sizes. To mention some
frontiersin.org
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examples, in one study, high Brachyury gene expression or

increased number of alterations in chromosome 2p (CNA 2p)

correlated with improved PFS in a sample of 37 patients, but the

CI of both is wide and include the value 1 (45). Furthermore,

other biomarkers like VEGFA and E-cadherin had a CI of almost

1 in a sample size of 151 patients (27).

Forest plots in Figures 2 and 3, help to clearly differentiate

those studies with more statistical strength. Overall, 13

biomarkers (19%) had significant correlation with both clinical

outcomes (Table 1).
Discussion

There is increasing recognition of the need for predictive

biomarkers to assist in the management of chordomas. To the

best of our knowledge, this is the first comprehensive review that

summarizes prognostic biomarkers in chordoma that have been

reported to date. The mainstay of treatment for localized

chordomas is extensive resection with negative margins, but

local recurrence and systemic metastases are common. Clinically

reliable prognostic biomarkers that could aid in determining

whether a particular chordoma is likely to recur would impact

clinical decision-making, particularly with regard to the need for
Frontiers in Oncology 05
adjuvant therapy, the early incorporation of systemic therapy

agents, and surveillance strategies.

PFS is a surrogate for OS (89). However, OS in diseases with

more than 12 months of survival after disease progression/

recurrence (like chordomas) is not a reliable endpoint, and a

very large number of patients is required to power studies to detect

statistically significant differences in solely in OS (90). Therefore,

we focused on studies of biomarkers with a significant correlation

for both endpoints. Because most of these studies are

retrospective, potential confounders must be unmasked and

multivariate analysis is an effective method of ranking various

prognostic factors (91, 92). We found 13 biomarkers which are

independently prognostic for both PFS and OS with statistical

significance (Table 1). In each case, we compared the Hazard ratio

(HR) and the Confidence Interval (CI). As a rule, the width of the

CI correlates inversely with the precision of the biomarker. In

other words, some biomarkers have a significant p-value, but the

CI could be wide or includes the value of 1 (Figures 2 and 3). This

situation decreases the precision of the biomarker when compared

with others and is therefore an important consideration. We

further discuss some of the 13 biomarkers below.

The expression of Programmed Death-1 (PD-1) receptor, its

ligand, and the immune microenvironment in chordoma have

been widely studied (30, 58). The PD-1/PD-L1 pathway is
FIGURE 2

Forest plot showing biomarkers associated with PFS benefit on multivariate analysis. Those biomarkers with benefit in PFS and OS are marked in
red. Prospective studies are marked in yellow. AS (Anatomic Site), TECH (Assay technique used), N (number of patients), LOC (Biomarker
localization), SB (Skull base), S (Spine), IHC (Immunohistochemistry), PCR (Polymerase chain reaction), DNA Seq (DNA sequencing), FISH
(fluorescence in situ hybridization), ECM (extracellular matrix), CM (Cell Membrane), TSR (Tissue-stroma ratio), PD-L1 TIL (Programmed death
ligand 1, Tumor infiltrating lymphocytes), CDK (Cyclin-dependent kinase), TGFa (Tumor Growth Factor a), RDW (Red cell distribution width),
CNA (copy number alterations), N/A (Not available).
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responsible for modulating T-cell activation (anti-tumor

response) and exhaustion in cancer (93). Tumor cells express

PD-L1 as an adaptive immune mechanism to escape this anti-

tumor environment with a high number of CD8+ cells

(Immunoscore) (58) or a high CD8+/Foxp3 ratio (30),
Frontiers in Oncology 06
consistently analyzed in our review. The blockade of this

immune checkpoint signal has the potential clinical benefit of

increasing the sensitivity of chordoma cells to T-cell mediated

lysis. In this sense, PD-L1+ is currently a prognostic and

therapeutic biomarker (10, 94). FDA-approved monoclonal
FIGURE 3

Forest plot showing biomarkers associated with OS benefit on multivariate analysis. Those biomarkers with benefit in PFS and OS are marked in
red. Prospective studies are marked in yellow. AS (Anatomic Site), TECH (Assay technique used), N (number of patients), LOC (Biomarker
localization), SB (Skull base), S (Spine), IHC (Immunohistochemistry), PCR (Polymerase chain reaction), DNA Seq (DNA sequencing), FISH
(fluorescence in situ hybridization), ECM (extracellular matrix), CM (Cell Membrane), TSR (Tissue-stroma ratio), PD-L1 TIL (Programmed death
ligand 1, Tumor infiltrating lymphocytes), RDW (Red cell distribution width), PDW (Platelet distribution width), LncRNA (Long non coding RNA).
TABLE 1 List of reported biomarkers with independent prognostic impact in PFS and OS (with Cox multivariate analysis).

Biomarker Level of evi-
dence

N Localization Assay
Technique

HR
os

OS 95%
CI

p-value
OS

HR
PFS

PFS 95%
CI

p-value
PFS

22q del IIb 80 Nucleus DNA
sequencing

5.88 1.85-18.68 0.046 3.74 1.89-7.38 0.0024

Cbl-B IIb 70 Cytoplasm IHC 0.32 0.234-0.734 0.018 0.32 0.20-1.054 0.037

C-Cbl IIb 70 Cytoplasm IHC 0.34 0.153-0.771 0.01 0.42 0.20-0.92 0.025

CDK-12 IIb 56 Nucleus IHC 3.09 1.04-9.19 0.043 2.89 1.42-5.9 0.003

Ciclin E1 Ib 75 Nucleus IHC 0.5 0.27-0.93 0.029 0.45 0.22-0.95 0.035

Immunoscore (Cd3
+/Cd8+)

IIb 54 Extracellular
matrix

IHC 0.28 0.08-0.98 0.046 0.35 0.14-0.88 0.026

mi-RNA Score IIb 54 Nucleus PCR 2.37 1.13-4.94 0.021 2.81 1.08-7.31 0.034

PBRM1 IIb 80 Nucleus DNA
sequencing

4.79 1.57-14.59 0.006 5.72 2.68-12.19 0.00006

PD-L1+ TIL IIb 54 Extracelullar
matrix

IHC 0.188 0.051-0.69 0.01 0.3 0.10-0.91 0.033

RDW IIb 187 Blood sample Hemocytometry 2.757 1.67-4.53 0.001 1.85 1.26-2.7 0.001

Survivin (mRNA) IIb 50 Nucleus PCR 1.23 1.06-1.43 0.008 1.17 1.03-1.33 0.018

Tissue-Stroma Ratio IIb 54 Extracellular
matrix

IHC 0.12 0.03-0.51 0.004 3.66 1.42-9.43 0.007

D-Dimer IIb 224 Serum sample Serum analysis 3.7 1.81-7.55 0.001 2.68 1.58-4.55 0.001
fro
Le (Level of evidence); N (Number of Patients); PCR (Polymerase Chain Reaction); ihc (Immunohistochemistry); RDW (Red Cell Distribution Width); CDK (Cyclin-Dependent Kinase).
Bold letters mean statistical significance.
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antibodies currently used to block the PD-1/PD-L1 pathway

include Pembrolizumab, Nivolumab, and Avelumab.

Additionally, Nivolumab is currently being evaluated amongst

rare CNS cancers including chordoma in 3 open clinical trials

(NCT03173950, NCT02989636, NCT03623854). Even though

the PD-1/PD-L1 pathway appears to be a very promising

therapeutic and prognostic marker, the clones of anti-mouse

PD-1 antibodies used are not consistent, and validation of them

is needed to reach a wide reproducibility.

MicroRNA are small noncoding RNAs that play important

roles in transcriptional gene regulation. Different miRNAs have

been implicated in several cancers, including chordomas (30, 31,

42, 69, 88). Multiple proteins are involved in chordomagenesis,

therefore it is unlikely that a single miRNA would provide optimal

information regarding prognosis. Rather than focusing on a single

miRNA, Huang et al. identified 6 prognostic miRNAs and

developed a miRNA score (miRscore) based on integrated data.

Using this approach, the miRscore was able to predict clinical

outcome in chordoma (42). However, the main limitation of using

this biomarker in clinical practice is the affordability along with

ease and consistency of measurement using RT-PCR. An

alternative approach is miRNA-seq but that is also hampered by

technical complications limiting broad adoption (95).

Survivin is an apoptosis inhibitor protein widely expressed in

tumors and non-terminally differentiated tissues (96). Ma et al.

evaluated the expression of survivin in primary versus recurrent

chordomas and demonstrated that survivin expression is elevated

in recurrent tumors. Additionally, they found survivin levels were

increased in recurrent tumors collected from the same patient,

and expression of survivin was found to be an independent

prognostic factor for progression (44). However, the lab

technique used to quantify survivin expression was quantitative

RT-PCR which is not practical assay from a clinical testing

standpoint, although the use of survivin as a biomarker offers

the advantage of measuring a single molecule as compared with

the use of miRscore which measures 6 different miRNAs (42).

The Cyclin-dependent kinases (CDKs) are serine/threonine

nuclear protein kinases involved in DNA transcription and cell

cycle progression. In chordoma, CDK overexpression induces

migration of tumor cells, proliferation, and tumor growth. In

particular, the CDKN2A/p16INK4a/CDK4-6/RB pathway is a

well-known cascade involved in tumor cell proliferation across

multiple cancer types (97). The CDKN2A gene, and its protein

product p16INK4a, have an inhibitory role over CDK4 and 6,

decreasing cell proliferation. Mutations in CDKN2A gene have

been studied as a prognostic biomarker in independent studies

(38, 43, 50), but none have found a significant correlation with

clinical outcomes. Only Sommer et al. (50) found that CDKN2A

gene expression level correlated with a higher PFS (p=.03);

however, this correlation was not significant in multivariate

analysis. CDK4 expression was found to be significantly

associated with OS in a study by Yakkioui et al. (83), however,

this was only in univariate analysis (p=.021). These data suggest
Frontiers in Oncology 07
that this pathway has an unclear prognostic role in chordoma

PFS or OS. Despite these uncertain results, the pathway is

currently being evaluated for chordoma therapy. For example,

palbociclib is an approved CDK4/6 inhibitor for chordomas with

CDKN2A gene loss (98) and is currently being evaluated in a

clinical trial (NCT03110744).

CDK12 overexpression increases the phosphorylation of

antiapoptotic proteins, including Survivin and MCL-1 and

correlates with shorter overall survival in breast cancer,

ovarian cancer and gastric cancer (99, 100). Pichaya et al.

measured the expression of CDK12 in tumor tissue in a cohort

of 56 spine chordoma patients using immunohistochemistry,

and grouped chordomas as those with low CDK-12 expression

(less than 75% of the cells with positive nuclear staining) and

those with high CDK-12 expression (more than 75% of the cells

with positive nuclear staining) (52). The statistical analysis

demonstrated a negative effect of this CDK in prognosis,

however the results need to be interpreted with caution

because the wide CI indicates lack of precision and little

knowledge about the effect. While a study with a larger sample

is required, the strength of this biomarker lies in the relatively

easy assay technique, affordability and it resides upstream of

other biomarkers implicated in poor clinical outcomes.

Somatic chromosome deletions have been studied as a type of

genomic driver event in chordomas. Bai et al. conducted whole-

genome sequencing of 80 skull base chordomas and evaluated the

prognostic value of 17 somatic chromosomal events including

gains of chromosomes 1q, 7p, and 7q, and deletions of 1p, 3, 4, 9,

10, 13q, 14q, 18, and 22q (43). Of these, the hemizygous deletion

of 22q, where SMARCB1 gene is located, demonstrated a strong

association with clinical outcomes. The homozygous deletion of

SMARCB1 is a hallmark of poorly differentiated chordoma (101),

but this finding suggests that even partial inactivation of

SMARCB1 in conventional chordoma could be used as a

prognostic biomarker. Nevertheless, the wide CI in this study

highlights the need for validation with a larger sample. Although

genome sequencing is an expensive and highly specialized assay

technique, chromosomal deletion can be assessed with

Fluorescence in situ hybridization (FISH) or spectral

karyotyping (SKY) (102). In this regard, it is worth mentioning

that Zenonos et al. present one of the few prospective studies with

a strong statistical design (36). Using FISH, they found that skull

base chordoma patients with a threshold percentage of cells with

1p36 and 9p21 deletions (more than 15% for 1p36 and more than

4% for 9p21) have a shorter PFS. Despite being a prospective

study with thorough statistical design and promising HR, we did

not include in Table 1 because the study did not include OS and

CIs in the analysis.

The last two biomarkers were assessed in blood samples and

are the most promising in terms of affordability, limited

invasiveness, reproducibility, assay technique, and required

sample size (22, 46). Other studies have reported that

increased levels of RDW or D-dimer are observed in many
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types of cancers and act as useful markers of adverse prognosis

(103–106). In chordoma patients, a preoperative measurement

above the cut-off values of 12.7 for RDW (in a spine chordoma

population) and 840 mg/L for D-dimer (in a skull base chordoma

population) were associated with a poor prognosis. However,

these biomarkers do not provide an insight about the underlying

disease mechanism, and they lack specificity (106–108).

After analyzing all of the available information gathered for

this review, Table 1 presents a set of biomarkers that have been

demonstrated to correlate with both PFS and OS. While

additional studies are needed to validate a narrower list of

biomarkers with the strongest prognostic value, this proposed

panel serves as a starting point. Given the techniques employed

and the already available testing, there are biomarkers that can

be readily incorporated into routine clinical setting. For example,

preoperative D-dimer can be readily integrated as a potential

prognostic biomarker due to its low-invasiveness, accessible

measurement technique, and affordability. Also, the D-dimer

study collected a significant cohort of patients (n=224) when

compared with other biomarker studies and reported results

using multivariate analysis with narrow CI (PFS, HR 2.68 [1.58,

4.55], p=.001; OS, 3.70 [1.81, 7.55], p=.001).

Furthermore, our inferential statistical analysis of the data has

limitations because chordoma has intrinsic low incidence. Most of

the studies report a limited patient cohort, making it difficult to

assess the multivariate analysis of each biomarker. It is worth

mentioning that none of the biomarkers met all the criteria

mentioned in the introduction of this manuscript. They need to

be validated in prospective studies with a larger sample size, and

across multiple institutions. Affordability is one of the most

important factors to consider for a biomarker that can be tested

ubiquitously. The less expensive techniques used were serum

prote in ana ly s i s or hemocytometry , fo l lowed by

immunohistochemistry and finally, some of the studies used

expensive measurement techniques such as DNA sequencing

(21, 43, 62), DNA microarrays (60, 86) and FISH (36, 45, 74).

Also, when the lab technique is expensive or difficult to use, the

studies are concentrated among the same centers, resulting in

limited widespread integration. In order to use biomarker

information to evaluate chordoma patients and enable clinical

decision-making, high-quality prospective studies to evaluate the

known potential biomarkers with strong biological underpinnings

in chordomas are warranted. While retrospective studies remain

useful in identifying potential new biomarkers, prospective trials

with larger cohorts are essential for the eventual clinical

translation of biomarkers.
Conclusion

In this study we gathered all the prognostic biomarker studies

reported to date according to PRISMA guidelines. More than a

hundred biomarkers have been analyzed. The information is
Frontiers in Oncology 08
assorted, heterogenous, and lacks consistency in terms of

markers used and tests performed. There is an increasing need

to gather all these results to guide future validation studies to

determine its clinical utility. A comprehensive understanding of

this information can eventually help determine adjuvant

treatments and surveillance strategies for patients with the worst

prognosis. Further work is needed to validate a narrower list of

biomarkers that correlate with overall survival, local recurrence,

and metastatic spread with the strongest significance. Taken

collectively, we encourage the comprehensive centers that

evaluate and treat chordoma patients to collaboratively work to

create a panel of prognostic biomarkers that can then be

applied universally.
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