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Purpose: Nephron-sparing surgery (NSS) is a mainstream treatment for

localized renal tumors. Segmental renal artery clamping (SRAC) is commonly

used in NSS. Automatic and precise segmentations of renal artery trees are

required to improve the workflow of SRAC in NSS. In this study, we developed a

tridimensional kidney perfusion (TKP) model based on deep learning technique

to automatically demonstrate renal artery segmentation, and verified the

precision and feasibility during laparoscopic partial nephrectomy (PN).

Methods: The TKP model was established based on convolutional neural

network (CNN), and the precision was validated in porcine models. From

April 2018 to January 2020, TKP model was applied in laparoscopic PN in 131

patients with T1a tumors. Demographics, perioperative variables, and data from

the TKP models were assessed. Indocyanine green (ICG) with near-infrared

fluorescence (NIRF) imaging was applied after clamping and dice coefficient

was used to evaluate the precision of the model.

Results: The precision of the TKP model was validated in porcine models with

themean dice coefficient of 0.82. Laparoscopic PNwas successfully performed

in all cases with segmental renal artery clamping (SRAC) under TKP model’s

guidance. The mean operation time was 100.8 min; the median estimated

blood loss was 110 ml. The ischemic regions recorded in NIRF imaging were

highly consistent with the perfusion regions in the TKP models (mean dice

coefficient = 0.81). Multivariate analysis revealed that the feeding lobar artery

number was strongly correlated with tumor size and contact surface area; the

supplying segmental arteries number correlated with tumor size.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.997911/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.997911/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.997911/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.997911/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.997911/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.997911&domain=pdf&date_stamp=2022-10-14
mailto:spf_urology@163.com
https://doi.org/10.3389/fonc.2022.997911
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.997911
https://www.frontiersin.org/journals/oncology


Zhang et al. 10.3389/fonc.2022.997911

Frontiers in Oncology
Conclusions: Using the CNN technique, the TKP model is developed to

automatically present the renal artery trees and precisely delineate the

perfusion regions of different segmental arteries. The guidance of the TKP

model is feasible and effective in nephron-sparing surgery.
KEYWORDS

tridimensional kidney perfusion model, automatic segmentation, deep learning
technique, convolutional neural network, nephron-sparing surgery
Introduction

As a minimally invasive nephron-sparing surgery,

laparoscopic partial nephrectomy (laparoscopic PN) is a

mainstream treatment for cT1a renal tumors (1). In

laparoscopic PN, renal artery clamping induces warm ischemic

injury (WII) (2), which could be minimized by segmental renal

artery clamping (SRAC) technique, converting global

parenchymal ischemia to regional ischemia (3–6). To

implement the SRAC technique, dual-source computed

tomography (DSCT) angiography was applied to reveal a

high-quality three-dimensional vasculature model of the renal

hilum, and identify the target segmental arteries needed to be

clamped if their branches enter or abut the tumor (6, 7).

However, DSCT angiography is unable to provide the details

of the perfusion regions of different segmental arteries, and the

determination of the target arteries is inaccurate occasionally,

which could lead to insufficient clamping and result in arterial

bleeding (5). Therefore, a more precise clamping strategy

is required.

Based on the contrast CT scan, organ segmentation with

different kinds of statistical models were reported in several

abdominal organs over the years (8–10). Previously, in our

center, to meet the requirement of a more precise SRAC

technique, a novel functional three-dimensional perfusion

model was established to determine the target arteries by

depicting the parenchymal perfusion regions of different

segmental arteries using the semi-automatic segmentation of

the kidney and renal arteries (11). Recently, with the

development of medical image processing technology,

convolutional neural network (CNN) as a kind of deep

learning technique has gradually begun to be applied in the

segmentation of organs and vasculature (12). Based on the CNN,

we previously created a series of novel methods, which could

provide a fully automatic segmentation of kidney, tumor, and

renal artery trees (13, 14). In present study, integrating CNN

technique and the distance transformation algorithm, a novel

three-dimensional perfusion model was established, which was

called the tridimensional kidney perfusion (TKP) model.
02
Materials and methods

The establishment procedure of the TKP model was

presented. The accuracy of the TKP model was verified in

porcine models, and the feasibility and efficacy of this model

were assessed in patients undergoing laparoscopic PN

with SRAC.
Establishment of the TKP model

Automatic segmentation of the kidneys
and tumors

Our homemade three-dimensional fully-supervised

convolutional neural (FCN) network with a pyramid-pooling

module (PPM) (3D_FCN_PPM) was proposed for segmentation

of kidneys and tumors previously (13) (Figure 1). During the

establishment of the 3D_FCN_PPM network, the abdominal CT

images of 140 patients were recruited from the department of

radiology after the informed consent was obtained. And the

images were obtained and analyzed in Dicom format. Ninety

images were used for the training set, and the remaining

50 images were used for testing. The 3D_FCN_PPM network

was demonstrated to be efficient and precise in segmentation

with the dice coefficient equal to 0.931 for kidney and 0.802 for

renal tumors.

Automatic segmentation of the renal
artery trees

Integrating the technologies of deep-priori anatomy (DPA),

dense-biased network (DenseBiasNet), and hard-region

adaptation loss (HRA loss), we proposed a fine three-

dimensional renal artery segmentation framework, called

DPA-DenseBiasNet framework (14). The DPA-DenseBiasNet

framework was based on a two-stage CNN, including (1)

autoencoder (AE) network pre-training and (2) DPA features

embedding and DenseBiasNet training. AE is an unsupervised

neural network, which can extract anatomical features (15). In

this framework, AE is applied to acquire the representation
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ability of anatomical features (DPA features) through a big

unlabeled dataset. In stage 2, extracted DPA features from AE

are embedded in the DenseBiasNet system, forming the priori

anatomy information, which can adapt anatomical variations.

Finally, modified by HRA loss function, a precise tridimensional

renal artery segmentation is achieved (Figure 2). During the

establishment of the DPA-DenseBiasNet framework, a total of

196 patients with 392 kidney images were recruited. Fifty-two

labeled images and 236 unlabeled images were used for training,

and 104 labeled images were used for testing. The DPA-

DenseBiasNet was demonstrated to have high predictive

accuracy in renal artery segmentation with a mean dice

coefficient of 0.884.

Estimation of the arterial perfusion regions on
the renal parenchyma

After automatic segmentation, the estimation procedure

based on the two-step algorithm in C++ programming: (1) set

the lobar arteries and their branches to the same category and
Frontiers in Oncology 03
marked with the same color if they branch out from the same

segmental artery (Figure 3A, the arteries with the same color are

the same segmental artery subtree); (2) the distance

transformation algorithm is used to find the closest lobar

arteries or their branches for every voxel point in the renal

parenchyma as its blood supply vessel, and the color of this point

is marked. All voxel points in the renal parenchyma are

categorized according to their colors, and the perfusion

reg ions o f d i ff e ren t s egmenta l a r t e r i e s a re then

depicted (Figure 3B).

By the automatic segmentation and the perfusion region

estimation algorithm, the TKP model is finally established.
Validation in animal models

Subjects preparation
The validation procedure in swine was approved by the

Animal Use and Management Ethics Committee of Nanjing
B

A

FIGURE 1

The 3D_FCN_PPM network is applied in the automatic segmentation of kidney and tumor. (A) the pipeline of kidney and tumor segmentation;
(B) the architecture of the 3D_FCN_PPM network.
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FIGURE 2

The 3D DPA-DensebiasNet framework is applied in the automatic segmentation of renal artery trees. The procedure includes two stages. Stage
1(the upper dotted box): is AE pre-training. The AE is trained by a lot of unlabeled images and DPA features are extracted. Stage 2 (the lower
dotted box): extracted DPA features from AE are embedded in the DenseBiasNet system, forming the priori anatomy information, which can
adapt anatomical variations. And finally, modified by HRA loss function, a precise tridimensional renal artery segmentation is achieved.
BA

FIGURE 3

The estimation of perfusion regions. (A) The lobar arteries and their branches are extracted, set to the same category and marked with the same
color if they branch out from the same segmental arteries. The distance transformation algorithm is used to find the closest lobar arteries or
their branches for every voxel point in the renal parenchyma as its blood supply vessel, and the color of this point is marked. (B) All voxel points
in the renal parenchyma are categorized according to their colors, and the perfusion regions of different segmental arteries are then depicted.
The TKP model is finally established.
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Medical University. Six domestic female pigs with 11 kidneys

were recruited and the median weight was 39.5 kg (Table 1). All

swine were intramuscularly injected with xylazine (1.5 mg/kg),

atropine (0.02 mg/kg) and diazepam (10 mg) for initial

anesthesia and intravenously injected with propofol (25 mg/kg/
min) for maintaining anesthesia. Tracheal intubation was

conducted and the right femoral artery was punctured.

Validation procedure
All subjects underwent contrast CT scan to establish the

TKP models (Figures 4A–D). One candidate segmental artery in

each kidney was selected and ligated with a double-strand 1/0

suture during open surgery. The ischemia region was revealed

and recorded (Figures 4E, F). To evaluate the accuracy of the
Frontiers in Oncology 05
TKPmodel, a second contrast CT scan was performed after open

surgery to present the actual ischemia region (Figure 4H). Using

the method of dice coefficient, the actual ischemia region from

the second contrast CT scan was compared with the perfusion

region predicted by the TKP model (Figure 4G).
Clinical application in laparoscopic PN

Patients preparation
Laparoscopic PN with SRAC under the TKP model’s

guidance was performed in 131 patients from April 2018 to

January 2020. All the recruited patients signed a written

informed consent form approved by the institutional review

board of Nanjing Medical University. Inclusion criteria were: 1)

a single localized mass ≤4 cm (clinical T1a); 2) normal renal

function (defined as creatinine clearance rate (CCR) ≥90 ml/

min). All patients underwent a contrast CT scan to establish the

TKP model before operation. The R.E.N.A.L scores were applied

to estimate the complexity of tumors, including Radius

(maximum tumor diameter), Exophytic/Endophytic, Nearness

of the tumor to the collecting system, Anterior/Posterior and

Location relative to the polar lines (16, 17). The contact surface

area (CSA) of tumors, as another index predicting the tumor

complexity (18), could be calculated by area element algorithm

according to the model. Additionally, the numbers of target

segmental arteries and feeding lobar arteries of tumors could be

provided from the model.
Precise determination of the target segmental
arteries

In the TKP models, the tumors, segmental renal arteries and

their corresponding perfusion regions were automatically

presented. The target segmental arteries supplying tumors

were determined by the perfusion regions wherein the renal

tumors were confined (Figures 5A, G).

Surgical procedure and follow-up
All surgical procedure were conducted by the same surgeon

(Pengfei Shao). During laparoscopic PN, target segmental

arteries determined by TKP models were clamped by bulldog

clamps. Immediately after clamping, 5 mg indocyanine green

(ICG) was intravenously injected and the absence of perfusion

on renal parenchyma was presented in near-infrared

fluorescence (NIRF) imaging (Figures 5D, J). The similarity

was evaluated between the absence of perfusion in NIRF

imaging and the predicted perfusion region in TKP model by

the method of dice coefficient. Tumor resection was conducted

and the parenchymal defect was closed. Finally, the mass was

retrieved to receive a pathological examination.

The follow-up period was defined as the duration from the

date of operation to the date of the most recent examination. For
TABLE 1 Patient characteristics and the TKP model information.

Variables
Patient characteristics

Patients, no. 131

Age, yr, mean±SD 56.3±11.4

Male, no. (%) 97 (74.0)

BMI, kg/m2, mean±SD 25.1±3.3

Hypertension, no. (%) 53 (40.5)

Diabetes mellitus, no. (%) 24 (18.3)

The TKP model information

R.E.N.A.L score, mean±SD 6.4±1.4

Radius of tumor (maximal diameter), cm, mean±SD 2.5±0.8

Exophytic/endophytic properties, no. (%)

≥50% 68 (51.9)

<50% 53 (40.5)

Entirely endophytic 10 (7.6)

Location relative to the polar line, no. (%)

Entirely upper or lower polar 61 (46.6)

Lesion crosses polar line 45 (34.4)

Middle polar (>50% crosses polar line) 25 (19.1)

Nearness to UCS/sinus, no. (%)

≥7mm 25 (19.1)

<7mm and >4mm 64 (48.9)

≤4mm 42 (32.1)

Contact surface area (CSA), cm2, mean±SD 13.5±11.3

Feeding lobar artery number, no. (%)

1 21 (16.0)

2 56 (42.7)

3 43 (32.8)

4 10 (7.7)

5 1 (0.8)

Target segmental artery number, no. (%)

1 79 (60.3)

2 49 (37.4)

3 3 (2.3)
TKP, tridimensional kidney perfusion; BMI, body mass index; SD, standard deviation;
UCS, urinary collecting system.
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FIGURE 4

animal validation of the TKP model. (A–D) The TKP model of a porcine kidney is automatically established based on the first CT scan, and a
candidate segmental artery is selected. (E, F) The ischemic line on renal parenchyma is visible and recorded after the candidate segmental artery
is ligated. (G, H) The second CT scan is performed and the similarity between the actual ischemia region from the second CT scan and the
perfusion region from the TKP model is calculated using the algorithm of dice coefficient. In this case, the dice coefficient is 0.77.
FIGURE 5

the clinical application of TKP model. (A–F) Case 1: a male patient with 3.8 cm tumor on the posterior part of the right kidney. The R.E.N.A.L
score is 9. (G–L) Case 2: a female patient with 3.1 cm tumor on the upper polar of the right kidney. The R.E.N.A.L score is 5. (A, G) The TKP
model is automatically established based on contrast CT scan and the target segmental artery is determined. (D–F, J–L) ICG is injected
immediately after clamping, and the absence of perfusion on the renal parenchyma was confirmed with NIRF imaging. (C vs. F, I vs. L) The
algorithm of dice coefficient is applied in assessing the similarity, and the dice coefficient is 0.92 and 0.81, which indicates that the ischemic
region recorded in NIRF imaging is highly consistent with the perfusion region predicted in the TKP model.
Frontiers in Oncology frontiersin.org06
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follow-up and surveillance, abdominal plain CT scan was

performed at 3 and 6 months and every 6 months. Chest CT

scan and abdominal contrast CT scans were performed every 6

and 12 months, respectively.
Statistical analysis

Categorical variables were presented as frequencies and

percentages. Continuous variables were reported as mean ±

SD (normal distribution) or medians and ranges (abnormal

distribution). Complications were analyzed according to the

Clavien–Dindo system (19). Logistic regression analysis was

used to test the correlation of tumor characteristics and the

number of arteries supplying the tumor. All statistical analyses

were conducted using IBM SPSS v.22 (SPSS Inc., Chicago, IL,

USA), and two-sided p < 0.05 was considered to be statistically

significant. Dice coefficient was applied to evaluate the similarity

of regions or volumes in two images, and high similarity was

defined as dice coefficient > 0.7.
Results

Of 11 porcine kidneys, the median number of segmental

arteries was 3. After clamping, the ischemic regions were located

on the upper, middle, and lower polar in three, one, and seven

kidneys, respectively (Table 1). As shown in Figure 4, the

boundaries of the perfusion regions in the TKP models were

consistent with the ischemic lines recorded intraoperatively. It

was demonstrated to have high similarity between the actual

ischemia region from the post-operative CT scan and the

perfusion region from the TKP model (dice coefficient =

0.82) (Table 1).

In clinical procedure, basic characteristics are shown in

Table 2. There were 97 males and 34 females, aged 56.3 ± 11.4

years, with a mean body mass index of 25.1 kg/m2. The mean

tumor size (radius of the tumor as maximal diameter) was

2.5 cm, and the R.E.N.A.L score was 6.4 ± 1.4. According to

the TKP model, the CSA was 13.5 ± 11.3 cm2. There were 79, 49,

and 3 patients with tumors supplied by one, two, and three target

segmental arteries, respectively. Furthermore, subclassified by

the numbers of feeding lobar arteries, there were 21, 56, 43, 10,

and 1 patients with tumors supplied by one, two, three, four and

five lobar arteries, respectively.

Laparoscopic PN with precise SRAC was successfully

performed under the TKP models’ guidance in all patients.

The mean operation time was 100.8 min, with a mean warm

ischemic time (WIT) of 27.0 min. The median estimated blood

loss (EBL) was 110 ml (40 - 400 ml). There were no patients

converting to main renal artery clamping, radical nephrectomy,

or open surgery. No arterial bleeding or uncontrolled

hemorrhage from the tumor bed occurred during tumor
Frontiers in Oncology 07
resection (Table 3). The ischemic regions recorded by ICG

with NIRF imaging were highly consistent with the perfusion

regions in the TKP models, with the dice coefficient of 0.81

(0.72–0.94) (Figure 5 and Table 3). The median length of stay

after the operation was 7 days. Postoperative complications

occurred in eight (6.1%) patients, including five patients with

grade 1 complication (hematuria not requiring intervention),

two patients with grade 2 complication (hematuria requiring

blood transfusion), and one patient with grade 3a complication

(bleeding requiring embolization intervention under local

anesthesia). Pathology and follow-up results were also revealed

in Table 3. At a median follow-up of 21 months, no patient had

tumor recurrence or metastasis.

According to the number of tumor supplying arteries,

subjects were divided into subgroups with one and two or

more supplying segmental arteries or subgroups with 1–2 and

3–5 supplying lobar arteries. The comparisons of tumor

characteristics between these subgroups are conducted in

Table 4. Furthermore, logistic regression analysis is applied

and presented in Table 5. On multivariate analysis, the

numbers of both supplying segmental and lobar arteries

strongly correlated with tumor size (OR = 5.92, p = 0.000 for

segmental arteries and OR = 4.84, p = 0.002 for lobar arteries).

The larger the tumor size, the more the number of supplying

segmental and lobar arteries. The CSA of the tumor had

correlation with the number of supplying lobar arteries (OR =

1.11, p = 0.014), instead of segmental arteries (p = 0.815). None
TABLE 2 Perioperative outcomes and follow-up.

Variables

Dice coefficient (NIRF imaging vs. TKP model) 0.81 (0.72-
0.94)

Operation time, min, mean±SD 100.8±11.2

Warm ischemic time, min, mean±SD 27.0±5.2

EBL, ml, median (range) 110 (40-
400)

LOS after operation, days, median (range) 7 (3-17)

Post-operative complications, no. (%) 8 (6.1)

Grade 1 (hematuria not requiring intervention) 5 (3.8)

Grade 2 (hematuria requiring blood transfusion) 2 (1.5)

Grade 3a (bleeding requiring embolization intervention
under local anaesthesia)

1 (0.8)

Pathology, no. (%)

Clear cell carcinoma 112 (85.5)

Perivascular epithelioid cell tumor 7 (5.3)

Papillary renal cell carcinoma 6 (4.6)

Oxyphilic adenoma 3 (2.3)

Chromophobe renal cell carcinoma 3 (2.3)

Follow-up, mo, median (range) 21 (13-33)

Tumor recurrence and metastasis 0
frontiers
NIRF, near-infrared fluorescence; TKP model, tridimensional kidney perfusion model;
SD, standard deviation; EBL, estimated blood loss; LOS, length of stay.
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of the correlations was found between the other tumor

characteristics and the number of supplying arteries.
Discussion

Traditionally, DSCT angiography was utilized to reveal the

three-dimensional hilar vasculature during SRAC procedure (5). In

DSCT angiography, the target arteries were determined manually,

leading to the underestimation of artery branches feeding both

tumor and the surrounding normal tissue (7). Someasurement bias,

insufficient clamping, arterial bleeding or even converting to the

main artery clamping during resection might occur. For a more

efficient and precise SRAC technique, the TKP model was

established using a homemade CNN technology, becoming an

automatic tool in the surgical strategy-making of the SRAC
Frontiers in Oncology 08
during nephron-sparing surgery (14). ICG with NIRF imaging, as

an empirical technique of fluorescence guidance (20), was

introduced in this study to delineate the real ischemic area after

clamping. Our results confirmed that the perfusion regions

predicted in the TKP model were highly consistent with the real

ischemic area in NIRF imaging during operation. In this study,

under the guidance of the TKPmodels, all surgical procedures were

performed successfully, and there was no occurrence of

uncontrolled bleeding during tumor resection.

Recently, by constructing various models, researchers have

been exploring the navigation technique in PN with SRAC.

Ukimura et al. established a 3D model that could present opaque

tumors and renal arterial trees by making the renal parenchyma

semitransparent (21). By manually segmenting kidney shape,

vasculature, collecting system, and tumor, Porpiglia proposed a

hyperaccuracy 3D model (22), which used an augmented reality
TABLE 3 Validation results of TKP model in porcine models.

Variables

Subjects/kidneys, no.
Weight, kg, median (range)

6/11
39.5 (28-42)

Number of segmental arteries per kidney, median (range)
Location of the perfusion regions of the candidate arteries, no. (%)
Upper polar
Middle polar
Lower polar

Dice coefficient (TKP model vs. postoperative CT scan)

3 (2-4)

3 (27.3)
1 (9.1)
7 (63.6)

0.82 (0.63-0.88)
TKP model, tridimensional kidney perfusion model.
Bold value, dice coefficient showed high similarity.
TABLE 4 Relationship between the tumor characteristics and the number of feeding arteries.

Variables Target segmental artery, no. P Feeding lobar artery, no. P

1 2-3 1-2 3-5

Patients no. 79 52 77 54

R.E.N.A.L score 6.3 ± 1.4 6.6 ± 1.3 0.270 6.0 ± 1.3 7.0 ± 1.3 0.000

Radius, cm, mean ± SD 2.2 ± 0.7 3.1 ± 0.7 0.000 2.1 ± 0.7 3.2 ± 0.6 0.000

Growth pattern, no. (%) 0.212 0.035

Exophytic 43 (54.4) 25 (48.1) 46 (59.7) 22 (40.7)

Mesophytic 28 (35.4) 25 (48.1) 24 (31.2) 29 (53.7)

Endophytic 8 (10.1) 2 (3.8) 7 (9.1) 3 (5.6)

Nearness to UCS/sinus, no. (%) 0.194 0.001

≥7 mm 19 (24.1) 6 (11.5) 22 (28.6) 3 (5.6)

<7 mm and >4 mm 37 (46.8) 27 (51.9) 37 (58.1) 27 (50.0)

≤4 mm 23 (29.1) 19 (36.5) 18 (23.4) 24 (44.4)

Location of tumor, no. (%) 0.862 0.019

Entirely at the polar 38 (48.1) 23 (44.2) 42 (54.5) 19 (35.2)

Mostly at the polar 27 (34.2) 18 (34.6) 26 (33.8) 19 (35.2)

Mostly between polar lines 14 (17.7) 11 (21.2) 9 (11.7) 16 (29.6)

CSA, cm2, mean ± SD 9.2 ± 8.2 20.0 ± 12.4 0.000 7.6 ± 5.8 22.0 ± 12.0 0.000
frontiers
SD, standard deviation; UCS, urinary collecting system; CSA, contact surface area.
Bold value, p value < 0.05.
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(AR) technique to guide surgeons during operation (23).

Additionally, the goal of purely automatic segmentation of

different organs and even renal artery trees using CNNs was

achieved (24–26). We had developed a series of novel CNNs,

including 3D_FCN_PPM and DPA-DenseBiasNet, providing a

precise segmentation of kidney, tumors, renal arteries and their

branches (distal to interlobar arteries) (13, 14). These homemade

CNNs, along with the distance transformation algorithm, made

the establishment of the TKP model fully automated. And the

automatic procedure could reduce the manual workload of

delineation in the radiological process and significantly

improve the efficiency of the preoperative plan of laparoscopic

PN with a precise SRAC technique.

Using CNN techniques, automatic segmentation could be

accurate to distal interlobar arteries, facilitating a more precise

estimation of the arterial perfusion regions. In the future, in

combination with the AR technique, it is expected that the TKP

model could be implanted into the surgery console and become

visual and synchronous. It is beneficial for improving the

accuracy and efficacy of SRAC technique and tumor resection.

Leslie and his colleagues presented the CSA as a novel

parameter to predict the complexity of renal tumors (18). In

our study, tumor size and CSA strongly correlated with the

number of feeding arteries. Larger CSA was accompanied by

more feeding lobar arteries, instead of the target segmental

arteries. In the future, the number of lobar arteries feeding the
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tumor is expected to predict renal tumor complexity and become

an indicator in the scoring system to evaluate the difficulty of PN.

This study is not devoid of limitations. Firstly, we still lack a

multi-center research. Secondly, we lack a randomized controlled

study to compare the TKP model and the traditional DSCT

angiographymodel since the former is anewlydeveloped technology.

Notwithstanding these limitations, the TKP model was more

than satisfactory because of the hyperaccuracy verified during

operation. It is expected to become a comprehensive tool with

multiple functions, such as preoperative assessment of tumor

complexity, automatic planning of surgical strategy and real-

time navigation of selective clamping and tumor resection.

Conclusions

Using the CNN technique, the TKP model is developed to

automatically present the renal artery trees and precisely

delineate the perfusion regions of different segmental arteries.

The guidance of the TKP model is feasible and effective in

nephron-sparing surgery.
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TABLE 5 Logistic regression analysis on the numbers of target segmental arteries and feeding lobar arteries.

Variables Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P

TSA no. (2-3 vs 1)

Radius 6.43 3.32-12.43 0.000 5.92 2.29-15.30 0.000

CSA 1.10 1.06-1.15 0.000 1.01 0.95-1.07 0.815

FLA no. (3-5 vs 1-2)

Radius 11.88 5.26-26.85 0.000 4.84 1.76-13.29 0.002

Growth pattern 0.037 0.326

Exophytic ref

Mesophytic 2.53 1.20-5.31 0.014

Endophytic 0.90 0.21-3.80 0.882

Nearness to UCS/sinus 0.004 0.784

≥7 mm ref

<7 mm and >4 mm 5.35 1.45-19.72 0.012

≤4 mm 9.78 2.53-37.80 0.001

Location of tumor 0.023 0.318

Entirely at the polar Ref

Mostly at the polar 1.62 0.72-3.60 0.241

Mostly between polar lines 3.93 1.48-10.47 0.006

R.E.N.A.L 1.76 1.31-2.36 0.000 0.495

CSA 1.20 1.12-1.29 0.000 1.11 1.02-1.20 0.014
frontiers
TSA, target segmental artery; FLA, feeding lobar artery; CSA, contact surface area; UCS, urinary collecting system; OR, odd ratio; CI, confidence interval. Bold value, p value < 0.05.
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