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Cervical and anal carcinoma are neoplastic diseases with various intraepithelial

neoplasia stages. The underlying mechanisms for cancer initiation and

progression have not been fully revealed. DNA methylation has been shown

to be aberrantly regulated during tumorigenesis in anal and cervical carcinoma,

revealing the important roles of DNA methylation signaling as a biomarker to

distinguish cancer stages in clinics. In this research, several machine learning

methods were used to analyze the methylation profiles on anal and cervical

carcinoma samples, which were divided into three classes representing various

stages of tumor progression. Advanced feature selection methods, including

Boruta, LASSO, LightGBM, and MCFS, were used to select methylation features

that are highly correlated with cancer progression. Some methylation probes

including cg01550828 and its corresponding gene RNF168 have been reported

to be associated with human papilloma virus-related anal cancer. As for

biomarkers for cervical carcinoma, cg27012396 and its functional gene

HDAC4 were confirmed to regulate the glycolysis and survival of hypoxic

tumor cells in cervical carcinoma. Furthermore, we developed effective

classifiers for identifying various tumor stages and derived classification rules

that reflect the quantitative impact of methylation on tumorigenesis. The

current study identified methylation signals associated with the development

of cervical and anal carcinoma at qualitative and quantitative levels using

advanced machine learning methods.
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1 Introduction

Anal carcinoma is a malignant proliferative disease

associated with anal abnormalities (1). With strong sex bias

(females have higher mortality), more than 1000 people die of

anal carcinoma per year in the United States (2, 3). The risk

factors for anal carcinoma include aging, sex (more than two-

thirds of patients are women), smoking, and most importantly

human papilloma virus (HPV) infection (4, 5). Cervical

carcinoma occurs in the cervix, which is located beneath the

uterus and connects to the vagina (6). Smoking, immune

suppression caused by human immunodeficiency virus (HIV)

infection, and HPV infection are the major risk factors for

cervical carcinoma (7). Both anal carcinoma and cervical

carcinoma are malignant diseases associated with HPV

infection. However, HPV cannot directly trigger the initiation

and progression of such malignant diseases. The underlying

mechanisms for HPV-mediated cancer initiation and

progression have not been fully revealed. Therefore, for a long

time, finding potential carcinogenic mechanisms associated with

HPV infection and related biomarkers in anal and cervical

carcinoma have been one of the major challenges in this field.

DNA methylation is a common biological process that

regulates the activity of a DNA segment without changing the

sequence (8, 9). It has been shown to be abnormally regulated

during tumorigenesis in multiple cancer subtypes including anal

and cervical carcinoma (10, 11). The demethylation of oncogenic

genes and the methylation of tumor suppressors have been widely

observed in cancers (8). In anal and cervical carcinoma, a genome-

wide host methylation profiling under HIV infection revealed the

potential associations between abnormal methylation status and

anal and cervical carcinogenesis by monitoring the methylation

alteration from normal to intraepithelial neoplasm and malignant

tumorigenesis (12). Potential epigenetic markers to predict cancer

risk and drive carcinogenesis around genes such as ASCL1,

ATP10A, and CCDC81 have been identified. However, the

quantitative association between biomarkers and disease risk has

not been fully established.

In the present study, the methylation data, retrieved from

Gene Expression Omnibus (GEO) database, on anal and cervical

carcinoma samples was investigated. Three stages: normal

control, intraepithelial neoplasia (also known as stage 0 of

tumorigenesis reflecting the intermediate stage), and tumor,

were included. To reveal the underlying biomarkers for

distinguishing different stages, we applied multiple machine

learning algorithms on the methylation data, which treated

methylation as features. Some essential methylation sites were

extracted, which can be latent biomarkers to distinguish different

stages. Furthermore, some quantitative rules were also

discovered for carcinogenesis monitoring, also indicating the

different methylation patterns on various stages. Finally, some

perfect classifiers were built to identify the stage of samples. All
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in all, this study provided a novel effective computational

analysis for cancer biomarker recognition and progression

monitoring on anal and cervical carcinoma.
2 Materials and methods

2.1 Data

The methylation profiling of 143 anal carcinoma samples

and 28 cervical carcinoma samples was accessed from the GEO

database under the accession number GSE186859 (12). The

three different stages of cancer were involved in the 143 anal

carcinoma samples: 9 normal samples, 13 anal intraepithelial

neoplasia-3 (AIN3) samples, and 121 tumor samples. Similarly,

the 28 cervical carcinoma samples contained 10 normal

samples, 9 cervical intraepithelial neoplasia-3 (CIN3)

samples, and 9 tumor samples. AIN3 or CIN3 is an

intermediate state between normal and tumor. The 485,512

methylation probes were extracted for each anal and cervical

carcinoma sample.
2.2 Boruta feature filtering

Because of the enormous number of original methylation

features and limited methylations related to anal or cervical

carcinomas, Boruta was employed for initial filtering (13–16).

Boruta is a random forest (RF)-based feature selection

method for confirming whether variables in the classification

are statistically superior to random variables. In a nutshell,

Boruta analysis compares all variables to random variables,

which are duplicates of the original variables by shuffling. RF

is used to evaluate the importance of all variables, including

actual and random variables. Actual variables that outperform

the best random variables are labeled as confirmed, whereas

those that do not outperform the best of the random variables

are labeled as rejected. The above procedures are repeated

numerous times, resulting in a binomial distribution for the

binary outcome (confirmed or denied) of a series of n trials. The

variables in the rejection region of the distribution were

removed, whereas those in the acceptance region are

preserved. To obtain the best classification accuracy, Boruta

selects features that are strongly and weakly important, unlike

wrapper techniques, which strive to discover a few powerfully

relevant features.

The Boruta program used in this study was obtained at

https://github.com/scikit-learn-contrib/boruta_py. It was

performed on anal and cervical carcinoma samples using

default parameters, respectively. Key methylation features for

anal and cervical carcinomas were selected for further

analysis, respectively.
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2.3 Feature ranking algorithms

With Boruta, key methylation features for anal and cervical

carcinomas can be obtained, respectively. However, they

evidently provided different roles to depict anal or cervical

carcinomas. Thus, further investigation was necessary. Here,

three feature ranking algorithms: Monte Carlo feature selection

(MCFS) (17), light gradient boosting machine (LightGBM) (18)

and least absolute shrinkage and selection operator (LASSO)

(19), followed to uncover the importance of features selected by

Boruta. Their brief descriptions were as follows.

2.3.1 Monte Carlo feature selection
In MCFS, the importance of features are determined according

to their roles in multiple decision trees (DTs) (17). This method has

been commonly used to process biological data (20–22). As part of

the current study, t classification trees are built based on m

randomly chosen methylation features and random division of

training and test samples. Such procedures are executed s times.

Consequently, s×t DTs are built, based on which a measurement,

relative importance (RI), is computed for each feature. Such

measurement is determined by how many times it has been

selected in these s×t trees and how much it contributes to

predicting the class of the s×t trees. It can be estimated as follows:

RIg =  o
st

t=1
wAccð Þu o

ng tð Þ
IG ng tð Þ� � no : in   ng tð Þ

no : in   t

� �
v, (1)

where wAcc is the weighted accuracy, IG (ng(t)) is the information

gain (IG) of node ng(t) , (no.in ng(t)) is the number of samples in

node ng(t) , and (no.in t) is the sample sizes in the tree root. u and v

are two settled positive integers.

The MCFS program was downloaded at https://home.

ipipan.waw.pl/m.draminski/mcfs.html, which was executed

using default parameters. According to the decreasing order of

RI values, features were ranked in a list, named MCFS

feature list.
2.3.2 Light gradient boosting machine
The LightGBM algorithm uses a gradient boosting

framework, and it is an improved version of the gradient

boosting DT with the advantages of high efficiency, support

for parallelism, and large-scale data processing (18). The total

number of times each feature participated in the trees is used by

LightGBM to evaluate the importance of features. The higher the

frequency with which features are selected, the more important

they are. Based on this criterion, features can be ranked in a list

with the decreasing order of times.

In this study, we used the LightGBM program (https://

lightgbm.readthedocs.io/en/latest/), implemented by Python. It

was run under default parameters. The feature list generated by

LightGBM was called LightGBM feature list.
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2.3.3 Least absolute shrinkage and
selection operator

LASSO is a classic feature selection method (19). In this

method, L1 paradigm is used to create a penalty function that

selectively eliminates features by imposing a higher penalty on

features with higher coefficients and more prediction errors,

resulting in a model with fewer features and less overfitting. The

coefficients of input features that do not contribute favorably to

the prediction of a machine learning model are scaled down. As

a result, the coefficients of the features are used to rank features

in a list.

Here, the LASSO package collected in Scikit-learn (23) was

used. Likewise, default parameters were used. For clear

descriptions, the list yielded by LASSO was termed as LASSO

feature list.
2.4 Incremental feature selection

Based on one feature ranking algorithm, a feature list can be

obtained. However, which features are optimal for classification

is still a problem. This study adopted incremental feature

selection (IFS) method (24–28) to analyze the list and extract

optimal features for a given classification algorithm. In this

method, the feature list with n features is first divided into n

feature subsets, with the number of features differing by 1 in

turn. Subsequently, the feature subsets and target variables are

fed into one classification algorithm to construct classifiers.

Their classification performance is evaluated through 10-fold

cross-validation (29). The optimal feature subset for one

classification algorithm is defined as the subset of features with

the highest classification performance and the classifier with the

optimal feature subset is defined as the optimal classifier.
2.5 Synthetic minority oversampling
technique

Two datasets for anal and cervical carcinomas, respectively,

were investigated in this study. As mentioned in Section 2.1, the

anal carcinoma dataset was imbalanced. In such dataset, tumor

samples were about 13 times as many as normal samples. The

classifiers directly built on such dataset would create bias. It was

necessary to tackle such problem. In this study, synthetic

minority oversampling technique (SMOTE) was adopted

(30–32).

SMOTE is an oversampling method for dealing with

imbalanced problems. It generates new samples for each

minority class until the sizes of all classes are same. The

samples of the minority class are synthesized by first selecting

one sample to serve as a seed sample and then randomly

selecting one of the k -nearest neighbors for linear

combination. The synthesis formula is as follows:
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  s = x + b x − yð Þ, (2)

where x represents the feature vector of the seed sample, y

represents the feature vector of its randomly selected neighbor,

and b is a random value between 0 and 1. In this study, the

SMOTE program downloaded from https://github.com/

scikitlearn-contrib/imbalanced-learn was used. Default

parameters were adopted to execute this program.
2.6 Classification algorithm

To execute IFS method, one classification algorithm was

necessary. Two classic classification algorithms: RF (33) and DT

(34), were attempted in this study as they are widely used in

dealing with biological and medical problems (35–40). The

below text gave the brief descriptions on these two algorithms.

RF is one of the most classic and powerful classification

algorithms in machine learning. In fact, it is an ensemble

algorithm containing multiple DTs. To construct each DT,

samples are randomly selected, with replacement, from the

original dataset and the selected sample number is equal to the

number of samples in the original dataset. Furthermore, features are

also randomly chosen from all features. RF integrates constructed

DTs with majority voting. It is quite interesting that although DT is

quite weak, RF is much more powerful and can avoid overfitting.

Thus, it was adopted in this study to construct efficient classifiers.

Above-mentioned RF is generally much stronger than DT.

However, it also loses the merits of its component DT. It is

widely accepted that DT is a white-box algorithm, which means

that its decision-making process is completely open. This makes

it possible for us to understand the principle of DT. For the

problems investigated in this study, DT can help us uncover

essential methylation differences on three stages of anal and

cervical carcinomas, thereby improving our comprehension on

these two carcinomas. Generally, DT is a tree-like structure.

There are two node types in this structure. One is branch node,

which is in charge of determining which branch a test sample

goes through down. The other is leaf node, which determines the

class of the test sample reaching the leaf node. Besides, DT can

also be represented by a set of classification rules. Each rule is

generated by a path from the root to one leaf node. The

investigation of these rules can uncover the different patterns

of various stages of anal and cervical carcinomas.

To quickly implement DT and RF, related packages in Scikit-

learn (23) were employed. These packages were executed using

default parameters.
2.7 Performance evaluation

The weighted F1 was adopted to assess the overall

performance of classifiers. To calculate such measurement, the
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F1 score on each class should be calculated first, which is defined

as

F1   scorei =
2� TPi

2� TPi + FPi + FNi
, (3)

where TPi is the true positive for the i-th class, FPi and FNi stand

for the false positive and false negative for the i-th class. The

weighted F1 is defined as the weighted mean of F1 scores on all

classes. On the other hand, the direct mean of F1 scores on all

classes defines another measurement, macro F1, which was also

provided in this study.

Moreover, the accuracy (ACC) and Matthew correlation

coefficients (MCC) (41) were also used in this study. ACC is

the most classic measurement, which is defined as the

proportion of correctly predicted samples. MCC is much more

perfect than ACC when the class sizes are quite different. To

compute the MCC, two binary matrices X and Y should be

constructed in advance, where X and Y stores the true and

predicted class of each sample, respectively. Then, MCC can be

calculated by

MCC =
cov X, Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov X, Xð Þcov Y, Yð Þp (4)
3 Results

In the present study, we developed a robust computational

pipeline, which combined several machine learning algorithms.

The entire procedures are illustrated in Figure 1. The detailed

results were listed as below.
3.1 Results of Boruta and feature
ranking algorithms

As lots of methylation features were used to represent each

sample. Boruta was adopted for preliminary feature filtering. On

anal carcinoma dataset, 571 methylation features were selected

by Boruta, whereas 26 features were selected on the cervical

carcinoma dataset. The selected features on two datasets are

provided in Supplementary Table S1.

Subsequently, three feature ranking algorithms were

used on both datasets to rank the filtered features by their

importance. On each dataset, three feature lists were

obtained, which are available in Supplementary Table S1.

On the anal carcinoma dataset, three features were

assigned RI values 0 by MCFS method. Thus, they were

removed from the MCFS feature list. Furthermore, a

biological analysis of how the top-ranked features

affected the development of anal or cervical carcinomas

would be given in Section 4.1.
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FIGURE 1

Flow chart of the entire analysis process. The 485,512 methylation probes in the anal or cervical carcinoma dataset are filtered by Boruta and
ranked according to feature importance by using three feature ranking algorithms, namely, MCFS, LightGBM, and LASSO. Afterward, each of
three feature lists is fed into the incremental feature selection (IFS) computational framework containing two efficient classification algorithms
(decision tree, random forest) to extract essential methylations, construct efficient classifiers and classification rules.
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3.2 Results of IFS method

Based on the three feature lists on each dataset, IFS method was

executed using RF or DT as the classification algorithm. All possible

feature subsets were constructed and RF or DT classifier was built on

each of them, which was evaluated by 10-fold cross-validation. The

cross-validation results are provided in Supplementary Table S2.

On the anal carcinoma dataset, the performance of classifiers,

measured by weighted F1, was illustrated by six IFS curves, as

shown in Figure 2A, in which weighed F1 was set as Y-axis and

number of features was defined as X-axis.When DTwas used in the

IFS method, the highest weighted F1 values on the LASSO, MCFS

and LightGBM feature lists, were all 0.993. Such performance was

obtained by using top 215, 17 and 6 features in three feature lists,

respectively. These features also comprised the optimal feature

subsets for DT, on which three optimal DT classifiers were

constructed. Their overall performance, measured by ACC, MCC

and Macro F1, is listed in Table 1. Interestingly, their performance

was same with ACC of 0.993, MCC of 0.975 and macro F1 of 0.981.

Furthermore, the performance (F1 score) of these three DT optimal

classifiers on three stages (normal, AIN3 and tumor) is shown in

Figure 3A. The three classifiers also provided equal performance on

three stages (0.947 on normal, 1.000 on AIN3 and 0.996 on tumor).

Above results indicated the good performance of three optimal DT

classifiers. As for the IFS results with RF, three curves were also

plotted, as shown in Figure 2A. RF provided the perfect

performance (weighted F1 = 1) on all three feature lists when top

13, 15 and 5 features in the LASSO, MCFS and LightGBM lists,

respectively, were used. These features constituted the optimal

feature subsets for RF on different lists. Accordingly, three

optimal RF classifiers were set up with the optimal feature

subsets. The ACC, MCC and macro F1 values of these classifiers

are listed in Table 1 and their performance on three classes is shown

in Figure 3A. All measurements were equal to 1.000, also suggesting

the perfect performance of three optimal RF classifiers.

On the cervical carcinoma dataset, the same IFS procedure

was conducted. Three curves for DT and RF, respective, are

plotted, as shown in Figure 2B. For IFS results with DT, the

highest weighted F1 on the MCFS feature list was 1.000 and it

was 0.964 on other two lists. The optimal feature subsets were

constructed by picking up top 19, 4 and 18 features in the

LASSO, MCFS and LightGBM lists, respectively. On these

feature subsets, three optimal DT classifiers were set up. Their

ACC, MCC and macro F1 values are listed in Table 2. Clearly,

the optimal DT classifier on MCFS feature list provided perfect

values on three measurements and the other two classifiers gave

lower performance with ACC of 0.964, MCC of 0.948 and macro

F1 of 0.965. Their performance (F1 score) on three stages

(normal, CIN3 and tumor) is illustrated in Figure 3B. Again,
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the optimal DT classifier on MCFS feature list provided the

perfect performance on all three stages and the other two

classifiers yielded the same performance on three stages (0.952

on normal, 0.941 on CIN3 and 1.000 on tumor). Evidently, all

three optimal DT classifiers generated perfect or nearly perfect

performance. As for IFS results with RF, when top 5, 4, and 19

features in the LASSO, LightGBM and MCFS lists were adopted,

RF produced perfect performance. The optimal feature subsets

were constructed using these features and three optimal RF

classifiers were built with them. These classifiers also provided

perfect performance measured by other measurements (Table 2

and Figure 3B).

With the above IFS results, the optimal RF classifiers

generally provided better performance than the optimal DT

classifiers. All optimal RF classifiers yielded perfect performance,

suggesting that they can be efficient tools to classify anal or

cervical carcinoma samples.
3.3 Classification rules

One of the main purposes of this study was to depict the

methylation patterns for two carcinomas on different stages. On

anal carcinoma dataset, the top features in the LightGBM feature

list were selected as they yielded the highest performance and

they were least. The DT was applied on all anal carcinoma

samples represented by these five features, yielding four rules, as

listed in Table 3. Two rules were for identifying tumor samples

and one rule was for predicting AIN3 and normal samples,

respectively. Similarly, on the cervical carcinoma dataset, we

selected the top four features in the MCFS feature list to

construct the classification rules. Three rules were generated,

as shown in Table 4. Each stage was assigned one rule. These

rules would be discussed in detail in Section 4.2.
4 Discussion

By employing multiple machine learning algorithms,

methylation datasets on anal and cervical carcinomas were deeply

analyzed. Three feature lists, generated by three feature ranking

algorithms, were obtained for each dataset. The methylation

features with high ranks in three lists may be essential for two

carcinomas, which can be novel methylation biomarkers associated

with carcinoma progression from normal to precancerous lesions

and from precancerous lesions to malignant cancer in anal and

cervical carcinomas. Some of them were discussed in this section.

Furthermore, some rules were set up for anal and cervical

carcinomas, respectively. They were also discussed in the section.
frontiersin.org

https://doi.org/10.3389/fonc.2022.998032
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jian et al. 10.3389/fonc.2022.998032
B

A

FIGURE 2

IFS curves to show the performance (weighted F1) of decision tree (DT) and random forest (RF) under different feature subsets in the anal and
cervical carcinoma datasets. (A) IFS curves for the anal carcinoma dataset. (B) IFS curves for the cervical carcinoma dataset.
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FIGURE 3

Performance of the optimal classifiers on three stages for anal or cervical carcinoma datasets. (A) Performance on the anal carcinoma dataset.
(B) Performance on the cervical carcinoma dataset.
TABLE 1 Performance of the optimal classifiers on anal carcinoma dataset.

Feature ranking algorithm Classification algorithm Number of features ACC MCC Macro F1 Weighted F1

MCFS DT 17 0.993 0.975 0.981 0.993

RF 15 1.000 1.000 1.000 1.000

LightGBM DT 6 0.993 0.975 0.981 0.993

RF 5 1.000 1.000 1.000 1.000

LASSO DT 215 0.993 0.975 0.981 0.993

RF 13 1.000 1.000 1.000 1.000
Frontiers in Oncology
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4.1 Methylation biomarkers for anal and
cervical carcinoma

The first methylation marker for anal carcinoma is cg23197559,

near functional gene PTMA. According to recent publications, no

direct reports confirm the association between PTMA and anal

carcinoma. However, a recent study confirmed that in anal cancer

and esophageal carcinoma, the methylation of a calcium-binding

protein, S100A7, and PTMA has been shown to have specific

methylation-mediated protein overexpression, validating the

specific role of PTMA-related methylation alteration during anal

carcinoma (42). The next probe cg07713411 is near gene MGA.

MGA has been widely reported to be associated with tumor

invasion (43) and progression (44). MGA has also been reported

to contribute to MYC-mediated pathway in colorectal cancer cell

lines. Considering the similarities between colorectal cancer and

anal carcinoma, such gene regulated by our predicted methylation

marker may also participate in the regulation of anal carcinoma,

validating our prediction (44). The next probe cg25578064 regulates

gene SFRS6, which is also a key driver gene for multiple

gastrointestinal cancer subtypes (45), although it has no direct

link with anal cancer. No functional genes were annotated around

probe cg18954144 but the CpG site has been reported to be a

typical signature for cancer overall survival (46), indicating that

such probe may also be valuable for anal carcinoma monitoring.

The final biomarker probe cg01550828 regulates a functional gene

RNF168, encoding a ring finger protein. RNF168 has been selected

as a candidate associated with HPV-related anal cancer (47),

validating the efficacy and accuracy of our prediction.

As for biomarkers for cervical carcinoma, the first probe

cg10417457 has been listed as a functional probe for cancer status

monitoring according to a recent patent describing a systematic

method to monitor cancer status established on 126 tumors (48).

Therefore, such probe may also be functional to monitor cervical
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carcinoma. No reports associated with cg02871554 have been

found. As for the probe cg27012396 near a functional gene

HDAC4, various publications have confirmed that HDAC4

regulates the glycolysis and survival of hypoxic tumor cells in

cervical carcinoma (49–51). Therefore, it is reasonable for us to

predict that such probe may be a biomarker for cervical carcinoma.

The next biomarker is cg05713971 near an effective gene called

HERPUD1 Antineoplastic activity has been shown to be associated

with gene HERPUD1 and further related to human cervical

carcinoma according to a recent in vitro experiment (52). Such

gene has also been detected to be regulated by functional microRNA

miR-375 and further contributes to HPV-positive cervical cancer,

validating our prediction (53).
4.2 Quantitative rules for anal and
cervical carcinoma

For monitoring the status of anal carcinoma, three rules for

recognizing three different clusters separately include the

functional probes cg01550828 and cg18954144, both of which

are associated with anal tumorigenesis as we have discussed

above. According to our rules, a higher methylation level of

cg01550828 and a lower methylation level of cg18954144

indicate a pathogenic status of anal carcinoma, consistent with

previous studies (46, 47). Interestingly, we also identified lower

methylation of cg01550828, associated with gene RNF168 as a

biomarker for pathogenesis of intermediate status (precancerous

lesions/intraepithelial neoplasia), providing a novel approach for

predicting the precancerous lesion stage. As we have discussed

above, all the top rules are established based on our qualitative

biomarkers, indicating the consistency between different

machine learning models and validating the efficacy and

accuracy of our prediction.
TABLE 3 Classification rules on anal carcinoma.

Index Condition Result

Rule 1 (cg01550828>0.0817) and (cg18954144>0.8291) Tumor

Rule 2 cg01550828 ≤ 0.0817 AIN3

Rule 3 (cg01550828>0.0817) and (cg18954144 ≤ 0.8291) and (cg01550828>0.4363) Normal

Rule 4 (cg01550828>0.0817) and (cg18954144 ≤ 0.8291) and (cg01550828 ≤ 0.4363) Tumor
frontie
TABLE 2 Performance of the optimal classifiers on cervical carcinoma dataset.

Feature ranking algorithm Classification algorithm Number of features ACC MCC Macro F1 Weighted F1

MCFS DT 4 1.000 1.000 1.000 1.000

RF 4 1.000 1.000 1.000 1.000

LightGBM DT 18 0.964 0.948 0.965 0.964

RF 19 1.000 1.000 1.000 1.000

LASSO DT 19 0.964 0.948 0.965 0.964

RF 5 1.000 1.000 1.000 1.000
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For monitoring the status of cervical carcinoma, the top

rules for normal control, precancerous lesion, and tumorigenesis

prediction include the same group of features: cg10417457

and cg02871554. Although no direct association between

cg02871554 and tumors has been recognized, cg10417457 has

been validated to be an effective cancer-associated biomarker.

Therefore, it is reasonable for our rules to summarize that a

higher methylation of such probe may indicate a malignant

change of cervical tissues. Further annotation on cg02871554

may be needed to explain its capacity for distinguishing

precancerous lesions from malignant cancers.
5 Conclusion

In the present study, efficient feature selection algorithms,

namely, Boruta, MCFS, LightGBM, and LASSO, were used to

identify methylation signals associated with anal and cervical

tumorigenesis. Subsequently, advanced machine learning

algorithms were used to evaluate the performance of the filtered

features for distinguishing different stages of anal or cervical

carcinomas. Moreover, a DT was built to mine the classification

rules for anal and cervical tumorigenesis. Taken together, this study

provided a novel analysis to recognize keymethylations for anal and

cervical tumorigenesis qualitatively and quantitatively. The

identified biomarkers and rules not only established an accurate

and effective guideline for cancer differential diagnosis and

progression stage monitoring, but also revealed potential

mechanisms for the initiation and progression of anal and

cervical tumorigenesis, indicating the specific roles of some

methylations during the pathogenesis of these two diseases.
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