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Precise prediction of the
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feasibility of a CT-based
radiomics nomogram
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Objectives: To develop and validate a CT-based radiomics nomogram that can

provide individualized pretreatment prediction of the response to platinum

treatment in small cell lung cancer (SCLC).

Materials: A total of 134 SCLC patients who were treated with platinum as a first-

line therapy were eligible for this study, including 51 patients with platinum

resistance (PR) and 83 patients with platinum sensitivity (PS). The variance

threshold, SelectKBest, and least absolute shrinkage and selection operator

(LASSO) were applied for feature selection and model construction. The

selected texture features were calculated to obtain the radiomics score (Rad-

score), and the predictive nomogram model was composed of the Rad-score

and the clinical features selected by multivariate analysis. Receiver operating

characteristic (ROC) curves, calibration curves, and decision curves were used to

assess the performance of the nomogram.

Results: The Rad-score was calculated using 10 radiomic features, and the resulting

radiomics signature demonstrated good discrimination in both the training set (area

under the curve [AUC], 0.727; 95% confidence interval [CI], 0.627–0.809) and the

validation set (AUC, 0.723; 95% CI, 0.562–0.799). To improve diagnostic

effectiveness, the Rad-score created a novel prediction nomogram by combining

CA125 and CA72-4. The radiomics nomogram showed good calibration and

discrimination in the training set (AUC, 0.900; 95% CI, 0.844-0.947) and the

validation set (AUC, 0.838; 95% CI, 0.534-0.735). The radiomics nomogram

proved to be clinically beneficial based on decision curve analysis.
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Conclusion: We developed and validated a radiomics nomogram model for

predicting the response to platinum in SCLC patients. The outcomes of this

model can provide useful suggestions for the development of tailored and

customized second-line chemotherapy regimens.
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1 Introduction

Small cell lung cancer (SCLC), the most aggressive kind of lung

cancer, accounts for approximately 14% of all lung cancer types and

has a 5-year overall survival (OS) rate of just 6.7%. Due to its strong

invasiveness, medication resistance, and the fact that no new,

effective treatments have been developed in recent years (1, 2).

Etoposide and platinum (EP) chemotherapy are the standard first-

line therapies for SCLC, with initial response rates of 70–80% and

high chemotherapeutic sensitivity. However, almost all patients will

experience progression (3, 4). According to current studies,

platinum-sensitive (PS) patients have a 15% to 20% better

response rate to conventional second-line platinum chemotherapy

than platinum-resistant (PR) patients, and their OS can be

increased by 2-3 months (2, 5–7). For PS patients, the median

PFS from the time of EP rechallenge as second-line treatment was

5.5 months, but PR patients had limited efficacy. Therefore,

platinum reactivation is recommended for PS patients as second-

line treatment, while PR patients are recommended to undergo

topotecan treatment and other clinical trials. Thus, individualized

second-line therapy based on an evaluation of platinum sensitivity

is essential for improving the overall survival of SCLC patients

(8–12).

Several studies have sought to use serum indicators and genetic

tissue features to predict the responses to platinum in SCLC. SCLC is

composed of four distinct subtypes, each of which reacts differently to

platinum-based chemotherapy. The percentage of each subtype in the

tumor influences how sensitive it is to platinum-based chemotherapy

as a whole. However, the majority of SCLC tissue test samples are

collected using needle biopsy, which unavoidably results in test

variance and instability of prediction results (13). Other studies have

attempted to use peripheral blood indices such as LDH and the

systemic immune-inflammation index to predict the OS and PFS of

SCLC (14, 15). However, the basic peripheral blood information is

unconvincing, and these studies do not account for the tumor’s size,

shape, location, or other relevant factors. Compared with the above

methods, radiomics nomograms can be combined with radiomic and

clinical features for noninvasive diagnosis, prognosis evaluation, and

treatment response prediction. Previous studies have demonstrated

that features based on radiomics are inextricably linked to underlying

genomic patterns across a range of cancer types (16–18). Several studies

using radiomics to predict platinum resistance in non-small cell lung
02
cancer have been reported, and their radiomics models have shown

excellent diagnostic efficacy (19–23). Nonetheless, there is no radiomics

model for predicting platinum resistance in SCLC.

In this study, we aimed to develop and validate a CT-based

radiomics nomogram that can provide individualized pretreatment

prediction of the response to platinum treatment in SCLC, while

effectively integrating image texture features and clinical factors.

Using this nomogram, clinicians can enhance the treatment plan

before initiating platinum-based chemotherapy and direct second-

line therapy, optimize existing treatment combinations, and

increase patient survival.
2 Materials and methods

2.1 Patients

The study was approved by the Institutional Review Board and

Human Ethics Committee of the Fifth Affiliated Hospital of

Wenzhou Medical University, and the requirement for informed

consent was waived. Patients who were diagnosed with

pathologically confirmed SCLC from February 2014 to November

2021 were enrolled. A total of 134 patients were included according

to the following inclusion criteria: (1) they underwent a CT

examination before treatment; (2) they used platinum derivatives

on a regular basis in first-line chemotherapy and had never received

any other treatment before; (3) dynamic CT follow-up was

performed during treatment; and (4) endpoint events occurred. A

total of 133 patients were excluded due to the following factors: (1)

they were not treated in our hospital (n = 74); (2) they underwent

other chemotherapy regimens or treatments (n = 30); (3) they

underwent surgical resection (n = 16); (4) there was no follow-up

after treatment (n = 9); and (5) no endpoint events occurred during

follow-up (n = 4). Finally, 134 patients were selected for the present

study. The flow of the case identification process is shown

in Figure 1.
2.2 Endpoints

We evaluated the tumor response of SCLC patients who

received CT examinations during platinum chemotherapy based
frontiersin.org
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on the modified Response Evaluation Criteria in Solid Tumors

(mRECIST). The corresponding mRECIST responses were as

follows: (1) complete response (CR): complete tumor

disappearance; (2) partial response (PR): a minimum of 30%

decrease in the sum of target lesion diameters; (3) progressive

disease (PD): a minimum of 20% increase in the sum of target

lesion diameters; and (4) stable disease (SD): neither PR nor PD. In

this study, all patients underwent CT before and after platinum

treatment, and the endpoint event was defined as the occurrence of

PD. The patients were divided into PR and PS groups according to

whether the time from platinum chemotherapy to the first PD was
Frontiers in Oncology 03
within 6 months. Representative CT images for PR and PS patients

are shown in Figure 2.
2.3 CT image acquisition and interpretation

The patients underwent nonenhanced CT scans with a 256-slice

Philips Brilliance iCT system prior to treatment (Philips Medical

Systems). The following are the detailed acquisition parameter

settings: tube voltage 120 kV, reference tube current 113 mAs,

automatic millisecond technology, scanning field of view (SFOV)

15-20 cm, tube rotation time 0.75 s/circle, collimation width 80 mm

(128×0.625 mm), reconstruction thickness 0.9 mm, reconstruction

interval 0.45 mm, reconstruction matrix 1024× 1024, using the

iDose3 iterative reconstruction algorithm.

Two thoracic radiologists with 5 and 15 years of experience (Y.S.

and C.L.) independently conducted retrospective reviews.

Disagreements were settled by a third radiologist who had 25 years

of experience (J.J.). The image features included the following: (1)

number of lesions and (2) volume, measured using the Extended

Brilliance Workspace and Lung Nodule Assessment software (Philips);

(3) location: central or peripheral; (4) morphology: regular or irregular;

(5) shape: regular or irregular; (6) lobulation (present/absent); (7)

necrosis (present/absent); (8) hydrothorax (present/absent); (9)

intratumoral calcification (present/absent); (10) staging (limited-

stage/extensive-stage); and (11) metastasis (lymph den/bone/

parenchyma organ/cardiovascular/pleural and pericardium).
B

A

FIGURE 2

Representative CT images for PR and PS of SCLC patients according to the mRECIST criteria. (A) A 65-year-old female SCLC patient with a lesion
diameter of 71 mm underwent CT scanning 1 week before EP chemotherapy, followed by CT scanning 2 months later. The lesion diameter
increased to 97 mm, and the results showed that the patient presented with PR. (B) A 54-year-old male SCLC patient with a lesion diameter of
95 mm. CT scanning was performed 1 week before EP chemotherapy, and follow-up CT examinations were performed regularly after EP
chemotherapy. Ten months later, the lesion diameter decreased to 56 mm, and the results showed that the patient presented with PS.
FIGURE 1

Flowchart of study enrollment.
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2.4 Tumor segmentation of volumes of
interest and extraction of radiomic features

The radiomics workflow is shown in Figure 3. Tumors and

mediastinal lymph nodes fused with tumors in the mediastinal

window were included in the volume of interest (VOI). First, a

radiologist (reader 1, Y. S, a radiologist with five years of chest

imaging experience) manually annotated 3D tumor VOIs around

the largest lesion using the Radcloud platform (Huiying Medical

Technology Co., Ltd, http://mics.radcloud.cn). To evaluate the

reproducibility of the extracted features, reader 2 (C. L, a

radiologist with 15 years of chest imaging experience)

independently segmented 10% of lesions randomly selected from

both the PR and PS groups.

For each VOI on our CT images, 1,409 radiomic features

were extracted using a tool from the Radcloud platform, which

extracted radiomic features from medical image data with a large

panel of engineered hard-coded feature algorithms (https://

pyradiomics.readthedocs.io/en/latest/features.html). The 1,409

features obtained were divided into four main categories: first-

order statistics, shape, texture [gray-level cooccurrence (GLCM),

gray-level run length (GLRLM), gray-level size zone (GLSZM),

neighboring gray tone difference (NGTDM), gray-level

dependence (GLDM), Matrices], and higher-order statistics

(Laplacian of Gaussian, wavelet, square, square root, logarithm,

exponential, gradient, and local binary pattern filters) features.

The intraclass correlation coefficient (ICC) was used to validate

the reproducibility of extracted features from the two radiologists.

Radiomic features with intra-ICCs >0.75 were selected for the

subsequent statistical analysis.
Frontiers in Oncology 04
2.5 Construction of a radiomics signature
and assessment of performance

In the imaging and storage of medical images, to make the

intensity information consistent, the following formula was used to

normalize all the radiomic features of CT images.

f (x) =
s(x − ux)

sx

Where f(x) is the normalized intensity, x is the original

intensity, µ and s are the mean value and variance, respectively,

and s represents an optional scaling whose default is 1.

The samples were randomly divided into a training cohort

(n=58, 70%) and a validation cohort (n=25, 30%). To reduce the

redundant features, the feature selection methods included the

variance threshold, SelectKBest, and the least absolute shrinkage

and selection operator (LASSO). For the variance threshold

method, the threshold is 0.8, so that the eigenvalues of the

variance smaller than 0.8 are removed. The SelectKBest method,

which is a single-variable feature selection method, uses the p value

to analyze the relationship between the features and the

classification results; all the features with a p value smaller than

0.05 are used. For the LASSO model, L1 regularization is used as the

cost function, the error value of cross-validation is 10, and the

maximum number of iterations is 1,000. Subsequently, the radiomic

parameters with nonzero coefficients in the LASSO model

generated by the entire training cohort with the optimal a were

selected. The radiomics signature (i.e., Rad-score) was computed for

each lesion by a linear combination of the selected features as

weighted by their respective quotient.
FIGURE 3

Flowchart of the study.
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2.6 Construction and internal validation of
the nomogram model

The variables, including clinical factors, conventional CT

findings, and Rad-scores between the samples of platinum-

resistant groups and platinum-sensitive groups with significant

differences, were analyzed via multivariate logistic regression to

build the radiomics nomogram. The performance of the nomogram

was evaluated by plotting receiver operating characteristic curves.

The Hosmer−Lemeshow test was used to evaluate the goodness-

of-fit of the nomogram. The classification accuracy between the

predicted probability and the observed results was evaluated using

calibration curves. The diagnostic performance of the nomogram

was assessed by evaluating the AUC, sensitivity, specificity, and

accuracy. The AUC between the optimized signature and the

nomogram was evaluated by using the DeLong test. Decision

curve analysis (DCA) was performed to evaluate the clinical

utility of the nomogram.
2.7 Statistical analysis

All quantitative features were analyzed with SPSS 25. P<0.05

was considered as statistically significant.

Categorical variables are shown as frequencies, and continuous

variables are presented as the mean and standard deviation or
Frontiers in Oncology 05
median and interquartile range. The c2 test was used to analyze the

categorical variables, the t test was applied to analyze the

continuous variables with a normal distribution, and the Mann

−Whitney U test was used for variables with an abnormal or

unknown distribution. Multivariable logistic regression analysis

was used to select the independent prognostic factors. The

performance of the model was assessed in the primary and

validation cohorts. The discrimination of the signature was

measured by the area under the curve (AUC).

The ICC was graded as follows: poor (<0.20), moderate (0.20–

0.40), fair (0.40–0.60), good (0.60–0.80), or very good (0.80–1.00).

Statistical analyses were performed using SPSS software (Ver.

25, IBM, Armonk, New York), SigmaPlot (Ver. 14.0), R software

package (Ver. 3.5.2, R Development Core Team: https://www.r-

project.org/), and the Python scikit-learn package (Ver. 3.7, scikit-

learn Ver. 0.21, http://scikit-learn.org/).
3 Results

3.1 Clinical factors of the patients and
construction of the clinical factor model

The baseline clinical characteristics of the patients are

summarized in Table 1. A total of 134 patients were enrolled in

this study: 51 patients with PR and 83 patients with PS. The mean
TABLE 1 Baseline characteristics of the patients in the PR and PS groups.

Variables PR (51) PS (83) t/c2/U P

Sex 0.063 0.802

Male 45 (88%) 72 (87%)

Female 6 (12%) 11 (13%)

Age 62.71 ± 9.38 61.28 ± 7.33 0.983 0.327

BMI/kg·m-2 22.06 (20.20, 25.00) 22.53 (20.57, 24.61) 0.472 0.637

Smoking 38 (75%) 62 (75%) <0.001 0.981

Superior vena cava syndrome 3 (6%) 5 (6%) <0.001 1.000

Spinal cord compression 3 (6%) 5 (6%) <0.001 1.000

Ki67 80% (70%, 85%) 80% (70%, 85%) 0.576 0.565

Tumor number 0.737 0.692

1 41 (80%) 69 (83%)

2 1 (2%) 3 (4%)

≥3 9 (18%) 11 (13%)

Tumor volume 115.06 (14.50, 247.30) 65.99 (18.72, 160.40) 1.191 0.233

Intratumoral calcification 3 (6%) 2 (2%) 0.314 0.575

Tumor location <0.001 0.987

Central 40 (78%) 65 (78%)

Peripheral 11 (22%) 18 (22%)

(Continued)
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ages were 62.71 ± 9.38 and 61.28 ± 7.33, respectively. Univariate

analysis showed that NSE, CEA, CA125, CA72-4, CA199, and TG

were significantly different between the two groups. Subsequently,

multivariate analysis suggested that CA125 (OR: 0.98, 95% CI:
Frontiers in Oncology 06
0.977-0.998, P =0.022) and CA72-4 (OR: 1.172, 95% CI: 1.023-

1.341, P =0.022) were independent predictors of SCLC with PS

(Table 2). The ROC curves of CA125, CA72-4 and the clinical

model are shown in Figure S1.
TABLE 1 Continued

Variables PR (51) PS (83) t/c2/U P

Tumor morphology 1.615 0.532

Regular 16 (31%) 25 (30%)

Irregular 35 (69%) 58 (70%)

Lobulated <0.001 1.000

Absent 2 (4%) 4 (5%)

Present 49 (96%) 79 (95%)

Necrosis 0.285 0.594

Absent 27 (53%) 41 (48%)

Present 24 (47%) 43 (52%)

Hydrothorax 1.941 0.164

Absent 27 (53%) 55 (65%)

Present 24 (47%) 29 (35%)

Staging 0.202 0.653

LS 25 (49%) 45 (53%)

ES 26 (51%) 39 (47%)

Metastasis

Lymph den 49 (96%) 73 (88%) 1.659 0.198

Bone 9 (18%) 6 (7%) 3.449 0.063

Parenchyma organ 12 (24%) 14 (17%) 0.897 0.344

Cardiovascular 12 (24%) 16 (19%) 0.346 0.557

Pleural and pericardium 7 (14%) 8 (10%) 0.531 0.466

NSE 37.30 (22.20, 103.60) 31.80 (18.20, 55.90) 1.991 0.046

CEA 7.30 (2.90, 18.60) 3.80 (2.20, 6.50) 2.390 0.017

Pro-GRP 714.9 (129.90, 3212.20) 597.80 (156.90, 1953.10) 0.660 0.509

CYFRA-211 3.20 (2.30, 5.20) 2.90 (2.00, 4.40) 1.407 0.159

CA125 33.40 (18.20, 66.60) 17.30 (13.10, 31.10) 4.443 <0.001

CA72-4 1.60 (1.00, 2.60) 2.50 (1.20, 5.60) 2.726 0.006

CA199 23.40 (5.60, 48.80) 12.10 (4.80, 23.20) 2.809 0.005

FER 249.70 (156.00, 491.80) 280.50 (188.30, 387.90) 0.332 0.740

SCC 0.90 (0.50, 1.10) 0.70 (0.60, 1.00) 0.600 0.549

ApoB/ApoA 0.76 (0.63, 0.82) 0.67 (0.60, 0.80) 1.241 0.215

HDL 1.12 (0.90, 1.32) 1.12 (0.97, 1.27) 0.133 0.894

LDL 2.47 (2.12, 3.10) 2.37 (2.12, 3.10) 0.500 0.617

TG 0.98 (0.77, 1.43) 1.40 (1.12, 2.01) 4.015 <0.001
frontie
NSE, neuron-specific enolase; CEA, carcinoembryonic antigen; pro-GRP, progastrin-releasing peptide; CA125, carbohydrate antigen 125; CA72-4, carbohydrate antigen 72-4; CA199,
carbohydrate antigen 199; FER, ferroprotein; SCC, squamous cell carcinoma; ApoB, apolipoprotein B; ApoA, apolipoprotein A; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
TG, triglyceride.
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3.2 Feature extraction, selection, and
radiomic signature building

Of the 1409 radiomic features extracted from CT images, 1186

were demonstrated to have good interobserver agreement, with

intra-ICCs >0.75. A total of 1107 radiomic features by variance

threshold were enrolled in SelectKBest to select the most valuable 60

features. Finally, 10 features were screened out by LASSO to build

the radiomic signature model. The optimal parameter l of each fold

and the selected features of the corresponding fold are shown in

Figure 4. The ROC curves of the 10 radiomic features and radiomics

model are shown in Figure 5.

Based on these 10 features and their regression coefficients, the

radiomics score (Rad-score) formula was constructed as follows:

Rad-score = feature * coefficient (Table 3).
Frontiers in Oncology 07
3.3 Radiomics nomogram building and
assessment of the performance of
different models

The ROC and decision curves of the nomogram model are

shown in Figures 6A–D. The CA125, CA72-4, and Rad-score were

incorporated into the construction of the radiomics nomogram

(Figure 6E). Figures 6F, G shows the calibration curve of the

nomogram. The Nomo-scores for each patient are shown in

Figure S2. The AUC of the clinical model was higher than that of

the radiomics model in the training cohort, whereas the AUC value

of the radiomics model was higher than that of the clinical model in

the validation cohort. The AUC value of the nomogram model was

significantly higher than that of the clinical and radiomics models in

the training cohort and verification cohort. The calibration curve
TABLE 2 Univariate and multivariate analyses of clinical factors.

Characteristic Univariate Multivariate

OR 95% CI P OR 95% CI P

NSE 0.994 0.988-0.999 0.024 0.994 0.987-1.000 0.063

CEA 0.982 0.962-1.002 0.078

CA125 0.986 0.975-0.997 0.014 0.987 0.977-0.998 0.022

CA72-4 1.187 1.037-1.359 0.013 1.172 1.023-1.341 0.022

CA199 0.995 0.987-1.003 0.212

TG 1.043 0.913-1.190 0.538
frontier
B
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FIGURE 4

Radiomic feature selection using the variance threshold, SelectKBest and selection operator (LASSO) regression model. LASSO regression model on
CT images. The mean square error on each fold in the tenfold cross-validation method and the optimal value of the lasso tuning parameter (-log (a)
=1.574,a= 2.978) were found (A). The vertical line was plotted with 10 selected radiomic features (B). The 10 radiomic features were selected after
dimension reduction (C, D).
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showed good calibration in the training cohort and validation

cohort (Figure S3). The radiomics nomogram showed the highest

net benefit of the three models.

The radiomics signatures based on the nomogram model

showed high performance in differentiating between platinum-

resistant groups and platinum-sensitive groups, with an AUC of

0.900 (95% CI, 0.844-0.947; sensitivity, 83.61%; specificity, 78.13%;

accuracy, 81.72%) in the training cohort and 0.838 (95% CI, 0.534-

0.735; sensitivity, 68.57%; specificity, 83.33%; accuracy, 70.73%) in

the validation cohort. The AUC of the CT image model was 0.727

(95% CI, 0.627-0.809; sensitivity, 73.85%; specificity, 64.29%;

accuracy, 70.97%) in the training cohort and 0.723 (95% CI,

0.562-0.799; sensitivity, 71.88%; specificity, 77.78%; accuracy,

73.17%) in the validation dataset. The AUC of the clinical model

was 0.734 (95% CI, 0.637–0.814; sensitivity, 65.82%; specificity,

57.14%; accuracy, 64.52%) in the training cohort and 0.715 (95% CI,

0.514–0.756; sensitivity, 70.00%; specificity, 63.64%; accuracy,

68.29%) in the test dataset. For the combined radiomics

signature, the Hosmer−Lemeshow test yielded P values of 0.219

and 0.308 in the training and validation cohorts, respectively,

indicating no departure from a good fit.
Frontiers in Oncology 08
4 Discussion

The standard first-line therapy for SCLC is platinum-based

chemotherapy, which has a 70–80% success rate and often a very

pronounced early effect (3, 4). However, the disease will progress

quickly, on average, six months after the first treatment has been

administered (2). Current management advice is that PR patients

should try clinical trial medication such as topotecan or

lurbinectedin because they would gain little from an EP regimen,

whereas PS patients should be restimulated with an EP regimen (6).

To increase the overall survival rate, it is crucial to evaluate the

tumor’s response to platinum chemotherapy and choose a suitable

second-line treatment prior to first-line therapy (24, 25). In this

study, we established a CT-based, noninvasive radiomics

nomogram model that incorporates the radiomics signature and

clinical factors to predict a customized platinum response in SCLC

patients. Overall, our study serves as an example of precision

medicine and can influence treatment options.

In our study, mediastinal window texture characteristics in

patients with SCLC were extracted using radiological methods,

and 1409 potential radiological features were chosen for further
BA

FIGURE 5

ROC curves of the radiomics model. The ROC curves of the radiomics model in the training (A) and validation (B) cohorts.
TABLE 3 Description of the selected radiomic features with their associated feature group and filter.

Radiomic feature Radiomic class Filter Coefficient

Skewness firstorder wavelet-HLL -0.0778821372989

Kurtosis firstorder wavelet-LLH -0.048467472885

LongRunLowGrayLevelEmphasis glrlm original -0.0168388737795

Imc2 glcm wavelet-HHL -0.0243113156389

10Percentile firstorder square 0.0276043499311

MCC glcm wavelet-LHH -0.00170586466044

RunPercentage glrlm wavelet-HLL -0.0129710574977

ShortRunHighGrayLevelEmphasis glrlm wavelet-HLH -0.0156495283052

RootMeanSquared firstorder wavelet-LLL 0.0201114297855

RootMeanSquared firstorder original 0.0190099678839
Imc2, Informational Measure of Correlation 2; MCC, Maximal Correlation Coefficient; glrlm, gray level tun length matrix; glcm, gray-level cooccurrence matrix.
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investigation. We were able to greatly enhance the number of

texture characteristics by utilizing 3D annotation, which allowed

us to avoid missing any crucial aspects altogether. Wavelet-based

characteristics have been proposed as a tool for illness diagnosis and

predicting therapy response (26, 27). GLCM and GLRLM are both

matrix-based features: GLCM describes the pairwise arrangement

of voxels with the same gray value and is used to highlight local

heterogeneity information; GLRLM is used to measure the

distribution of high gray values, and the GrayLevelEmphasis value

is expected to be larger for images with higher gray values. Our Rad-

score includes two GLSZM features, MCC and GLCM. The MCC

represents the complexity of the texture, and the lower the value, the

more complex the texture. In this study, the MCC value of the

sensitive group was lower, indicating that the lesion heterogeneity

in the sensitive group was higher, and thus, the probability of a

response to the treatment outcome was higher.

Meanwhile, the potential 1409 candidate radiomic features were

finally reduced to 10 potential predictors by shrinking the regression

coefficients with the LASSOmethod for further integration to form the

Rad-score, which contains effective biological information and could

reflect the heterogeneity of the tumor. The radiomics signature

demonstrated good discrimination in both the training set (AUC,

0.727; 95% CI, 0.627-0.809) and the validation set (AUC, 0.723; 95%

CI, 0.562-0.799). Several previous studies have demonstrated that the

Rad-score can effectively predict the prognosis of patients due to its

high correlation with tumor biological characteristics (28). Several

radiomic model prediction algorithms have been developed in the

past to predict tumor response to medications, including platinum-

based chemotherapeutics, in a variety of cancers (16, 17, 19, 20). A

recent study showed that the computed tomography-based radiomics

signature was closely associated with the PFS of SCLC; however, this

study primarily concentrated on PFS prediction and made no
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recommendations to enhance PFS, which only offered minimal

clinical support (23). These preliminary studies have further

confirmed that the texture feature-based radiomics method of SCLC

is feasible for predicting platinum responsiveness. Additionally, our

study expands on these findings to achieve more significant outcomes

with regard to clinical requirements and increased patient survival.

To improve the prediction efficacy, predictors beyond

radiomics should also be incorporated with the radiomics

signature to further increase the power of the decision support

model. In previous studies, patient prognosis was influenced by

characteristics such as patient sex, smoking history, tumor stage,

and other variables; however, in our study, these variables had no

impact on the tumor’s sensitivity to platinum-based chemotherapy.

NSE, Pro-GRP, and CYFRA 21-1 are all linked to the prognosis of

SCLC; however, they also cannot predict platinum resistance. As a

result, CA125 and CA72-4 with corresponding odds ratios of 0.987

and 1.172 were selected by multivariable logistic regression analysis.

The ORs suggest that the higher the CA125 and CA72-4 levels are,

the greater the probability of a favorable response to platinum

treatment in SCLC. The clinical phases of SCLC were linked to

CA125 (29). According to the literature, a higher level of CA125 can

indicate a better impact of first-line treatment (30). Although Ca72-

4 can predict the degree of differentiation in gastric cancer (31–33),

no studies have found a link between it and small cell lung cancer.

The baseline expression of CA 125 and CA72-4 in SCLC can predict

platinum resistance, according to our findings.

After selecting candidate predictors using multivariate logistic

regression analysis, a nomogram model was built that included

radiomics signatures, CA125, and CA72-4. Of note, our radiomics

nomogram showed favorable discrimination (AUC 0.900) in the

training cohort, which was further validated in the internal validation

cohorts (AUC 0.834). Furthermore, DCA showed a higher overall net
B

C D

E

F G

A

FIGURE 6

ROC and curve decision curve analysis of the nomogram model. The radiomics nomogram and calibration curves for the radiomics nomogram.
The ROC curves of the nomogram model in the training (A) and validation (B) sets and the decision curve analysis for the nomogram model in the
training (C) and validation (D) sets. The radiomics nomogram, combining CA125, CA72-4, and Rad-score, was developed in the training cohort
(E). Calibration curves for the radiomics nomogram in the training (F) and validation (G) cohorts. Calibration curves indicate the goodness-of-fit of
the nomogram. The 45° gray line represents the ideal prediction, and the blue lines and red lines represent the performance of the corrected and
apparent bias, respectively. The closer the line approaches the ideal prediction line, the better the predictive efficacy of the nomogram.
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benefit of the radiomics model, thus highlighting its value as a better

tool for assisting in clinical decision-making. Using the radiomics

nomogrammodel, if a patient is predicted to have a favorable response

to platinum, second-line platinum chemotherapy should be

recommended; if not, immune checkpoint inhibitors are a good

alternative (11, 34, 35). This is particularly important for those with

PR, since doctors can choose other treatment options at an earlier stage

to prevent tumor progression due to drug resistance and improve

recurrence-free survival. However, our study has several limitations.

First, given the retrospective nature of this study, selection bias may

exist. Second, the training/testing cohort is tiny. Due to morbidity, the

sample size is smaller than other tumor type radiomics research

samples but similar to those in SCLC radiomics studies. Larger

datasets are needed to verify and improve our results, and external

validation of our model’s performance with an independent cohort

from other institutions is necessary.

In summary, we developed and validated a radiomics model that

incorporates the pretreatment CT-based radiomics signature and

clinical variables for the prediction of the response to platinum

treatment in patients with SCLC. This study can assist patients in

customizing second-line chemotherapy, improve clinical decision-

making, and increase patient survival. Additionally, this research

could be utilized to forecast second-line therapy responsiveness and

support the development of third-line treatment approaches. It offers a

wide range of potential applications and is also applicable to different

tumor types.
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