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based on these genes can
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prognosis of patients
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Introduction: Glioblastoma (GBM) is the most invasive type of glioma, is insensitive

to radiotherapy and chemotherapy, and has high proliferation and invasive ability,

with a 5-year survival rate of <5%. Cuproptosis-related genes (CRGs) have been

successfully used to predict the prognosis of many types of tumors. However, the

relationship between cuproptosis and GBM remains unclear.

Methods:Here, we sought to identify CRGs in GBM and elucidate their role in the

tumor immune microenvironment and prognosis. To that aim, changes in CRGs

in The Cancer Genome Atlas (TCGA) transcriptional and Gene Expression

Omnibus (GEO) datasets (GEO4290 and GEO15824) were characterized, and

the expression patterns of these genes were analyzed.

Results: A risk score based on CRG expression characteristics could predict the

survival and prognosis of patients with GBM and was significantly associated with

immune infiltration levels and the expression of CD47 and CD24, which are

immune checkpoints of the “don't eat me “signal. Furthermore, we found that the

CDKN2A gene may predict GBM sensitivity and resistance to drugs.

Discussion: Our findings suggest that CRGs play a crucial role in GBM outcomes

and provide new insights into CRG-related target drugs/molecules for cancer

prevention and treatment.
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1 Introduction

Glioma is the most common malignant primary brain tumor,

with glioblastoma (GBM) being the most aggressive type,

constituting >50% of all gliomas, and having an incidence rate of

3–5 per 100,000 population (1, 2). GBM shows the worst prognosis,

with a median age at diagnosis of 65 years (3). Those under 70 years

of age who do not undergo treatment have a median survival of

approximately 3–4.5 months (4). Precision medicine, which

combines molecular biomarkers and targeted therapies, has

become increasingly important in modern cancer treatment (5).

Therefore, it is particularly important to screen for molecular

markers and target genes of GBM.

Copper (Cu) is an important cofactor in all organisms, but if

the concentration exceeds the threshold maintained by the

evolutionarily conservative homeostasis mechanism, it can induce

a form of cell death named cuproptosis (6). Cu ions in mitochondria

directly bind to the fatty acylated components of the tricarboxylic

acid (TCA) cycle, resulting in the abnormal aggregation of fatty

acylated proteins and loss of iron thiocluster proteins, which causes

protein toxic stress reactions and eventually cell death (7).

Cuproptosis-related genes (CRGs) [false discovery rate (FDR) <

0.01] include FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,

MTF1, GLS, and CDKN2A. CRGs have aroused interest in studying

the regulation of mitochondrial copper homeostasis during normal

and physiological changes and as a target for cancer therapy. CRGs

successfully predict the prognosis of soft tissue sarcoma (8),

hepatocellular carcinoma (9, 10), melanoma (11), and renal clear

cell carcinoma (12, 13). However, the role of CRGs in GBM remains

unclear. Therefore, the aim of our study was to identify CRGs

in GBM and elucidate their role in the tumor immune

microenvironment and prognosis. This will provide insights not

only into the signaling pathways and molecular mechanisms of

cuproptosis in GBM, but also into the effects of immunotherapy on

patients with GBM.
2 Materials and methods

2.1 Data collection

The sequencing data and clinical characteristics of GBM tissues

were obtained from UCSC XENA (https://xenabrowser.net/

datapages/, accessed on 7 July 2022) (14) through the Toil

process, which uniformly processes RNAseq data in transcripts

per million reads (TPM) format of The Cancer Genome Atlas

(TCGA) and the Genotype-Tissue Expression (GTEx) database.
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The corresponding normal tissue data were also extracted. A total of

1,846 samples were obtained, including datasets of 689 tumor

samples, five paracancerous datasets, and 1,152 normal tissue

samples. The GSE4290 (15) and GSE15824 (16) datasets were

derived from the Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/, accessed on 12 July 2022). The

ggplot2 R package was used for visualization.
2.2 Sample collection

The human glioblastoma cell lines A172 were purchased from

the Cell Bank of the Servicebio (Wuhan, China). A172 were

cultured in RPMI-1640 medium (Procell, China), with 10% fetal

bovine serum (Gibco, USA). This cell were cultured at 37°C with 5%

CO2. Three paired GBM and adjacent non-tumor tissues were

collected in Xijing Hospital; written informed consent was

obtained from the patients. All these GBM patients did not

receive chemotherapy or radiotherapy prior to surgery. All tissue

samples were snap-frozen and stored in liquid nitrogen (−80°C)

until RNA extraction. The study was approved by Xijing Hospital of

Fourth Military Medical University (KY20193098).
2.3 Copper assay

Tissue (0.1 g) was removed and irrigated in cold saline, and wiped

dry of surface water; 0.86% saline was added according to the ratio of

weight (g):volume (ml) = 1:9. It was then crushed for 1 min with an

ultrasonic grinder (Ningbo Xinyi YJ92-IIN) and subjected to low-

temperature and low-speed centrifugation at approximately 2,500

rpm for 15 min; the supernatant was taken for analysis. Copper

content was measured using a Copper Assay Kit (Nanjing Jiancheng

Bioengineering Institute), according to the manufacturer’s

instructions. The absorbance was determined at 600 nm

wavelength using a microplate reader (TECAN Infinite M200 Pro).
2.4 Plasmids, shRNAs, and transfection

Short hairpin RNA (shRNA) oligonucleotide sequences were

designed and synthesized by Shanghai Genechem Company

(Shanghai, China). The shRNA sequences for knockdown of

CD24 and CD47 is shown in Table 1, and A172 was transfected

with shRNA using Lipofectamine 3000 (Invitrogen, USA) according

to the manufacturer’s instructions. Cells were then used for assays

48 h post-transfection.
TABLE 1 The target and shRNA of CD24 and CD47.

Gene Target shRNA (5’−3’)

CD24 ACTAATTTAATGCCGATATAC gatcccACTAATTTAATGCCGATATACctcgagGTATATCGGCATTAAATTAGTtttttggat

CD47 GCCTTGGTTTAATTGTGACTT ccgggcCTTGGTTTAATTGTGACTTctcgagAAGTCACAATTAAACCAAGgctttttg
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2.5 Quantitative PCR

Total RNA was extracted using the GeneJET RNA Purification

Kit (Thermo Scientific, USA), and cDNA was acquired by reverse

transcription using the PrimeScript™ RT reagent kit (DIYI, China).

Quantitative real-time PCR was performed with a TB Green Fast

qPCR Mix (DIYI, China). The 2−DDCt method was used to quantify

the expression of each gene normalized to that of actin. Detailed

information on the primer sequences for each gene is shown

in Table 2.
2.6 Consensus clustering analysis of CRGs

Ten CRGs were genotyped in TCGA and GTEx data. The

ConsensusClusterPlus R packet (v1.54.0) was used for consistency
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analysis; the maximum number of clusters was six and 80% of the

total samples were drawn 100 times. A cluster heat map was created

in R using the package ggplot2 (version 3.3.3). The statistical

method used was Spearman’s rank correlation coefficient. The

cBioPortal database (http://www.cbioportal.org/, accessed on 19

July 2022) was used to obtain the CRG mutation profile in GBM.
2.7 Gene network and enrichment
analysis of CRGs

To analyze the potential interactions of these genes,

we performed gene network analysis using STRING (17).

Furthermore, we performed pathway enrichment analysis of the

CRGs using the Database for Annotation, Visualization, and

Integrated Discovery (18). Kyoto Encyclopedia of Genes and
TABLE 2 Primer sets used in this study.

Genes Forward Prime

CD24 Forward Primer : CCACGCAGATTTATTCCAGTGA

Reverse Primer : CCTTGGTGGTGGCATTAGTT

CD47 Forward Primer : TGTGTTTAGTACAGCGATTGGA

Reverse Primer : CCAACCACAGCGAGGATATAG

ACTIN-182 Forward Primer : CCTGGGCATGGAGTCCTGTG

Reverse Primer : TCTTCATTGTGCTGGGTGCC

FDX1 Forward Primer : CTAACAGACAGATCACGGTTGG

Reverse Primer : GAGGTCTTGCCCACATCAAT

LIAS Forward Primer : CAGTCCCGGAATTACAGAGTAAG

Reverse Primer : TCTCGCCTAAACCCAACATTAT

LIPT1 Forward Primer : GATGGGACGTTCTTGTCTTCTT

Reverse Primer : AGGTCAGAGTGGGATCCTTT

DLD Forward Primer : CTGCTAACAGCAGAGCTAAGA

Reverse Primer : CAGCACCTGGTCCAAGAATA

DLAT Forward Primer : TTGGCAGTAGAGAAAGGGATTG

Reverse Primer : GAGCAGGAGCAACTTTACTAGG

PDHA1 Forward Primer : GTCAGTTACCGTACACGAGAAG

Reverse Primer : CCTTCCTCACTTCCACATCAA

PDHB Forward Primer : GAGAAGAAGTTGCCCAGTATGA

Reverse Primer : CAGCAAAGCCCATCTCTGATA

GLS Forward Primer : CCCAAGGACAGGTGGAATAAC

Reverse Primer : CTTGAGGTGTGTACTGGACTTG

MTF1 Forward Primer : CTTCAGACCCTCAGACAGAAAC

Reverse Primer : CCCTGCAGTAGTGCTTCAAT

CDKN2A Forward Primer : CTGAGGAGCTGGGCCAT

Reverse Primer : ACCTTCCGCGGCATCTAT
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Genomes (KEGG) and Gene Ontology (GO) were used as

references, and enrichment analysis was performed using the R

package “clusterProfiler.” We applied the Benjamini–Hochberg

method for multiple correction and an FDR < 0.05 was considered

significant.
2.8 Differential expression
analysis and validation

To verify the differential expression level of CRGs in GBM and

normal tissues, we collected the data of GSE4290 (GPL570) and

GSE15824 (GPL570) and used box charts and the R packet

“ggplot2” to compare the expression of CRGs in different

datasets. After calculating the change in log2 multiple and 95%

confidence intervals, we conducted a meta-analysis of the results

of differential expression to improve the statistical ability of

our research.
2.9 Analysis of correlation
with immune infiltration

The Tumor Immune Estimation Resource (TIMER2.0; http://

timer.cistrome.org/) (19) was used to investigate the relationship

between the expression of CRGs and the abundance of six immune

cells (B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages,

and dendritic cells). We also examined two immune checkpoints

involved in the “don’t eat me” signaling pathway, including CD24

and CD47, because the expression levels of immune checkpoint-

related genes are related to the therapeutic response to immune

checkpoint inhibitors (20). Pearson’s correlation analysis was used

to test the relationship between GBM and CRGs.
2.10 Prognostic significance of
CRGs in GBM

We used the pROC package (21) to transform the RNA-seq data

in TPM format into log2 to compare the expression between

samples. The area under the curve (AUC) values were determined

by performing receiver operating characteristic (ROC) analysis, and

the predictive capabilities of the signature were assessed. The

abscissa is the false positive rate (FPR), and the vertical

coordinate is the true positive rate (TPR). Survminer (version

0.4.9) and the survival package (version 3.2-10) were used to

draw survival line charts. The Cox proportional hazard models

for 1-, 5-, and 10-year biochemical recurrence (BCR)-free

probability were obtained using the “rms” R package, and the

variables included age, gender, race, and CRGs. Based on the data

reported by Ceccarelli et al. (22), we analyzed the co-expression of

chromosome arms 1p and 19q (1p/19q codeletion) and isocitrate

dehydrogenase (IDH) status and their relation to CRGs in GBM.

To construct a CRG–drug/molecule–pathway interactive

network, the Genomics of Drug Sensitivity in Cancer (GDSC)
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(23), Drugbank (https://www.drugbank.com/, accessed on 21 July

2022), and Genecard (https://www.genecards.org/, accessed on 22

July 2022) databases were used. Cytoscape (24) was used to build

the network. Subsequently, we screened for drug sensitivity and

resistance in GBM with CDKN2A mutations.
2.11 Statistical analysis

R (version 3.6.3) and related packages were used for all

statistical analyses. The Wilcoxon test was used to compare two

independent non-parametric samples. Statistical significance in

qPCR and copper assay experiments were calculated using

Student’s t-test. We used mean ± standard deviation to describe

continuous variables with normal distribution, and correlated

variables without normal distributions were examined via

Spearman’s correlation analysis. Statistical significance was set at

p < 0.05.
3 Results

3.1 Differential expression and genetic
alterations of CRGs in GBM

From TCGA, we analyzed the differential expression of CRGs,

which were closely related to copper death in GBM and normal

tissues; only GLS (log2 = −0.686, p < 0.001) showed significantly

lower expression, whereas FDX1 (log2 = 0.934, p < 0.001), LIAS

(log2 = 0.704, p < 0.001), LIPT1 (log2 = 0.747, p < 0.001),

DLD (log2 = 1.278, p < 0.001), DLAT (log2 = 0.905, p < 0.001),

PDHA1 (log2 = 0.495, p < 0.001), PDHB (log2 = 0.992,

p < 0.001), MTF1 (log2 = 0.522, p < 0.001), and CDKN2A

(log2 = 2.476, p < 0.001) showed significantly higher expression

in the GBM group than in the normal group (Figure 1A;

Supplementary Table 1). We detected the difference of copper

content in different tissues, and the results showed that GBM tissue

containedmore copper than normal tissues (p < 0.001, Supplementary

Figure S1A). To validate these differential expression, we performed

qPCR analyses and the results (Supplementary Figure S1B) were

consistent with those from bioinformatic analyses.

To validate the associations between differential expression

levels of CRGs and GBM, we collected two independent

validation GEO datasets (GSE4290 and GSE15824) and

performed a meta-analysis to evaluate the overall effect. We

found differences in the expression of LIPT1 and CDKN2A in

different datasets. Therefore, we adopted the random-effects

model for the meta-analysis and found that there was a

significant difference in the expression level of LIPT1 (95% CI:

0.34–1.66, p = 0.003) in GBM tissues. Although the expression of

CDKN2A in tumor tissues of the GSE4290 dataset and TCGA-

GTEX dataset was significantly lower than that of normal tissues,

after adding the data of the GSE15824 dataset, meta-analysis

showed that there was no significant difference in the expression

of CDKN2A between tumor tissues and normal tissues
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(Supplementary Figure S2). In addition, we investigated the

correlation between different gene expression levels and found a

strong correlation (Figure 1B). For example, we found that DLAT

expression was highly positively correlated with that of PDHA1

(r = 0.755, p < 0.001) (Figure 1C).

We used OncoPrint from a query for alterations in the CRGs in

GBM; 15.1% of the CRGs in the samples per patient were altered,

and CDKN2A had the highest level of alteration (13%) (Figure 1D).

FDX1 andDLAT showed gene amplification (red bars), GLS showed

homozygous deletions (green bars), and CDKN2A showed non-

synonymous mutations (blue bars).
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3.2 Protein–protein interaction analysis
and functional enrichment of CRGs

After setting up medium confidence (0.400) and no more than

50 interactors (1st shell), protein–protein interaction network

analysis was performed to explore the interactions of CRGs,

showing that DLD, PDHB, DLAT, and PDHA1 were hub

genes (Figure 2A).

To further clarify the biological function of CRGs, related

approaches were analyzed using the GO and KEGG databases.

The main biological processes of the three CRGs in the GO analysis
D

A

B C

FIGURE 1

Expression and genetic alterations of CRGs in GBM. (A) The expression of CRGs in GBM and normal tissues (tumor in red and normal in blue). The
upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent the median value. (B, C) Correlations
between the expression of cuproptosis regulators. (D) The OncoPrint tab shows the CRGs in GBM; rows represent genes and columns represent
samples, red bars indicate gene amplifications, blue bars are homozygous deletions, and green squares are nonsynonymous mutations. **p < 0.01,
***p < 0.001; CRGs, cuproptosis-related genes; GBM, glioblastoma.
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were iron–sulfur cluster binding; oxidoreductase activity, acting

on the aldehyde or oxo group of donors; and oxidoreductase

activity, acting on the aldehyde or oxo group of donors with NAD

or NADP as an acceptor. The cellular components were

dihydrolipoyl dehydrogenase complex, oxidoreductase complex,

and mitochondrial matrix. Molecular functions included the TCA

cycle, acetyl-CoA biosynthetic process from pyruvate, and acetyl-

CoA biosynthetic process. In addition, the TCA cycle, pyruvate

metabolism, and glycolysis/gluconeogenesis were closely related to

the CRGs in the KEGG analysis (Figure 2B).
3.3 Correlation between CRG expression
and immune infiltration in GBM

Tumor‐infiltrating immune cells (TIICs) are an indication of

the host immune reaction to tumor antigens (25). TIIC, tumor, and

stromal form an ecosystem in the tumor microenvironment and

have shown potential prognostic value (26, 27). We used the

TIMER 2.0 to validate the relationship between CRGs expression

and TIIC in GBM. The infiltration levels of macrophages were

positively correlated with the levels of FDX1 (p = 4.13 × 10−4)

(Figure 3A), LIPT1 (p = 2.74 × 10−4) (Figure 3B), DLAT (p = 1.12 ×

10−4) (Figure 3C), PDHB (p = 9.80 × 10−7) (Figure 3D), LIAS (p =

3.19 × 10−4) (Figure 3E), andDLD (p = 1.15 × 10−4) (Supplementary

Figure S3D) expression. PDHA1 expression was negatively
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correlated with B-cel l infi l trat ion (p = 2.51 × 10−3)

(Supplementary Figure S3A). MTF1 expression was positively

correlated with CD4+ T-cell infiltration (p = 2.57 × 10−7)

(Supplementary Figure 3B). GLS expression was positively

correlated with neutrophil infiltration (p = 2.40 × 10−4)

(Supplementary Figure S3C). CDKN2A expression was positively

correlated with neutrophil infiltration (p = 7.2 × 10−4)

(Supplementary Figure S3E).

CD47 (28) and CD24 (29) are dominant innate immune

checkpoints and part of the novel “don’t eat me” signal that

promotes cancer immune escape. Our results also showed that

CD47 and CD24 were highly expressed in GBM tissues

(Supplementary Figure S4A). CD47 expression levels in GBM

were positively correlated with those of FDX1 (r = 0.192, p <

0.001), DLAT (r = 0.425, p < 0.001), DLD (r = 0.267, p < 0.001), GLS

(r = 0.432, p < 0.001), LIPT1 (r = 0.077, p = 0.043), PDHA1 (r =

0.080, p = 0.034), PDHB (r = 0.320, p < 0.001),MTF1 (r = 0.266, p <

0.001), and LIAS (r = 0.109, p = 0.004), and negatively correlated

with those of CDKN2A (r = −0.207, p < 0.001) (Figure 4A). CD24

expression levels in GBM were positively correlated with those of

LIPT1 (r = 0.158, p < 0.001), CDKN2A (r = 0.276, p < 0.001),

PDHA1 (r = 0.137, p = 0.034), MTF1 (r = 0.115, p = 0.002), and

LIAS (r = 0.218, p < 0.001), and negatively correlated with those of

GLS (r = −0.134, p < 0.001) (Figure 4B).

To validate the results obtained in the bioinformatic target

prediction analysis, we used two independent shRNAs to silence
A

B

FIGURE 2

Protein–protein interaction analysis and functional enrichment of CRGs. (A) The protein–protein interaction network of CRGs. (B) The enriched item in
the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. BP, biological process; CC, cellular component; MF, molecular function.
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CD24 and CD47 expression (Table 1) in 172 cell lines.

Subsequently, we observed the gene expression levels of CRGs

and found a positive correlation between CRGs and CD24 (p <

0.01) (Supplementary Figure S4B) and a negative correlation

between CRGs and CD47 (p < 0.01) (Supplementary Figure S4C).
3.4 Construction of the prognostic
signature of CRGs in GBM

In predicting the outcomes of normal and tumor tissues, FDX1

(AUC = 0.938, CI = 0.928–0.949), DLD (AUC = 0.918, CI = 0.905–

0.931), PDHB (AUC = 0.926, CI = 0.914–0.938), and CDKN2A

(AUC = 0.910, CI = 0.895-0.924) had high prediction accuracy.

DLAT (AUC = 0.845, CI = 0.827–0.863), LIAS (AUC = 0.85, CI =

0.838–0.872), MTF1 (AUC = 0.764, CI = 0.742–0.786), and LIPT1

(AUC = 0.870, CI = 0.854–0.886) had certain prediction accuracy.
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PDHA1 (AUC = 0.671, CI = 0.646–0.695) and GLS had low

prediction accuracy (AUC = 0.692, CI = 0.668–0.716) (Figure 5A).

As determined by the Kaplan-Meier curves, patients with high

expression of CDKN2A (log-rank test, p < 0.001), PDHA1 (log-rank

test, p = 0.001), or LIAS (log-rank test, p = 0.009) had a longer

overall survival than patients with low expression, while patients

with low expression of FDX1 (log-rank test, p < 0.001), DLD (log-

rank test, p < 0.001), DLAT (log-rank test, p < 0.001), or LIPT1 (log-

rank test, p < 0.001) had a longer overall survival than patients with

high expression (Figure 5B) (Supplementary Figure S5).
3.5 Nomogram development and validation
for GBM

To facilitate the clinical application of the prediction model, we

created a nomogram to predict the 1-, 5-, and 10-year survival
D

A

B

E

C

FIGURE 3

Correlation between (A) FDX1, (B) LIPT1, (C) DLAT, (D) PDHB, and (E) LIAS expression and immune infiltration in GBM in the TIMER database.
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probabilities based on the patient characteristics and CRGs. The top

row of the nomogram is marked with “points” to calculate the

points associated with 13 variables. Subsequent lines (“age” to

“LIPT1”) are the risk factors (variables) used in the model,

reflecting a relatively excellent predictive performance of the

nomogram. The data indicate that the low CDKN2A expression

and high FDX1 expression are proportional to the survival

probability of GBM patients (Figure 6A). Model calibration was

assessed using calibration curves that measured the relationship

between the results predicted by the model and those observed in

the cohort. The model made predictions that were close to the

actual results (Figure 6B). Finally, we evaluated the differences in

CRG expression between other pathological conditions of glioma

and GBM. The results showed that the expression of FDX1, LIPT1,

and DLAT was highest in GBM (Supplementary Figure S6).

IDH status was the molecular marker in the 2016 WHO

classification of GBM (30); here, we analyzed the IDH mutation

status of CRGs in patients with GBM and found that the status of

mutant FDX1 (p < 0.0001), LIAS (p < 0.0001), PDHB (p < 0.0001),

DLD (p < 0.0001), PDHA1 (p < 0.0001), CDKN2A (p < 0.0001), and
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LIPT1 (p < 0.0001) was significantly different from that of the wild-

type genes (Supplementary Table 2). The 1p/19q codeletion highly

benefits diagnosis and prognosis in gliomas (31); our data showed

that the FDX1 (p < 0.0001), LIAS (p < 0.0001), DLAT (p < 0.0001),

DLD (p = 0.032), PDHA1 (p < 0.0001),MTF1 (p < 0.0001), and GLS

(p < 0.0001) of 1p/19q non-codeletion (non-codel) GBM were

significantly different from those of 1p/19q codeletion (codel)

GMB (Supplementary Table 3).
3.6 A CRG–drug/molecule–pathway
network reveals novel treatment strategies

To predict potential drugs for the treatment of GBM, we

systematically evaluated the relationship between CRGs and drug/

molecule responses of related pathways and constructed a multi-

group integrated interaction network. As shown in Figure 7, in

the CRG–drug/molecule–pathway interaction network, the

most important gene for interaction was CDKN2A, and the

most important pathway was the drugs/molecules of pyruvate
A

B

FIGURE 4

Association between CRGs and immune checkpoint expression in patients with GBM. (A) CRGs and CD47. (B) CRGs and CD24.
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metabolism, with the top 10 being oxygen, magnesium cation,

ATP, NADH, biotin, pyruvic acid, beta-D-glucose, chloramphenicol,

D-tyrosine, and flavin adenine dinucleotide.

To predict the drug sensitivity of mutated or wild-type

CDKN2A, we systematically evaluated the relationship between

CDKN2A in GBM and drug sensitivity and resistance in the

GDSC database. Using the IC50 values, we calculated the

correlation between the IC50 and CDKN2A scores of the drugs/

molecules. Combining the correlation results and drug treatment

information, we obtained five drug sensitivity candidate groups and

one drug resistance candidate. GBM with CDKN2A mutations was

significantly sensitive to BDOCA000347e (p = 0.00745),

dihydrorotenone (p = 0.00277), remodelin (p = 0.0177), OF-1

(p = 0.00145), and TAF1_5496 (p = 0.0151), and was significantly

resistant to VX-11e (p = 0.000307) (Supplementary Figure S7).
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4 Discussion

GBM is the most common primary malignant tumor of the

central nervous system (32). Owing to the high proliferative and

invasive ability of GBM and its insensitivity to radiotherapy and

chemotherapy, the prognosis of patients with GBM is poor (33),

with 5-year survival rates of less than 5% (34–36). Understanding

the molecular basis of CRGs is a critical step in the continued

evolution of precision medicine and cancer therapy. In this study,

we examined the expression characteristics of CRGs in GBM tissues

and performed functional enrichment and linear regression

analyses of immune checkpoints. To the best of our knowledge,

this is the first study to construct a prognosis score and target drug

prediction for CRGs and GBM to provide an accurate treatment

plan for GBM.
A

B

FIGURE 5

Prognostic signature of CRGs in GBM. (A) ROC of CRGs in GBM. (B) Kaplan−Meier plots of the expression of FDX1, DLD, DLAT, PDHA1, CDKN2A, and
LIPT1 and survival probability. ROC, receiver operating characteristic curve.
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Heavy metal ions are essential micronutrients, but insufficient

or excessive metal content causes cell death (37). For example, iron-

induced death has been defined as an iron-dependent form of non-

apoptotic cell death (38). Studies have shown that intracellular Cu

can induce a new form of regulatory cell death that is different from

oxidative stress, which is known as cuproptosis (6). Mitochondria

regulate cell death induced by copper ionophores through the TCA

cycle. Our results showed that the primary pathway for CRG

enrichment is the TCA cycle (Figure 2B). Growing cells under

hypoxic conditions (1% O2) attenuates copper ionophore-induced

cell death, whereas forced stabilization of the HIF pathway with the

HIF prolyl hydroxylase inhibitor FG-4592 under normoxic

conditions (21% O2) does not (6). Consistent with this finding,

our research data showed that oxygen ranks first among the related

drugs/molecules predicted by CRGs; therefore, we believe that

appropriate hyperbaric oxygen therapy can increase cuproptosis

in tumor tissue.

GBM immunotherapy has recently attracted considerable

attention (39), and understanding the mechanisms of GBM

immunosuppression will help us to develop immunotherapy

strategies (40). Today, immunotherapy options for GBM remain

limited (41), and there is an urgent need for new and effective
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targets. The present study analyzed immune cells and checkpoints

in CRGs of GBM to establish a potential strategy for GBM

immunotherapy. Our research data showed that a variety of CRG

molecules are highly correlated with macrophage infiltration and

significantly correlated with the expression of t CD47 and CD24,

which are immune checkpoints of the “don’t eat me” signal. Cancer

cell death is also usually accompanied by downregulation of “don’t

eat me” signals (42).

In the 1990s, the first phagocytosis checkpoint axis, CD47-

signal regulatory protein alpha (SIRPa), was identified (43). CD47 is

the ligand of SIRPa, and is involved in inflammatory response and is

recognized as an immune checkpoint for tumor evasion (44), which

operates as a “don’t eat me” signal (45). CD24 also operates as a

“don’t eat me” signal that promotes cancer immune escape (29).

Previous studies have shown that CD24 and CD47 expression are

upregulated in GBM cells (46–48). In this study, GBM tissue

had significantly increased expression of CD24 and CD47

(Supplementary Figure 4A). CD47 expression levels were

positively correlated with those of FDX1, DLAT, DLD, GLS,

LIPT1, PDHA1, PDHB, MTF1, and LIAS and negatively

correlated with those of CDKN2A in GBM (Figure 4A). CD24

expression levels were positively correlated with those of LIPT1,
A

B

FIGURE 6

Nomogram development and validation. (A) Univariate Cox regression of CRGs, age, gender, and race to predict the 1-, 3-, and 5-year survival
probabilities. (B) Calibration curve for the CRG nomogram model in GBM. The abscissa is the survival probability predicted by the model, the
ordinate is the actual observed survival probability, and the gray diagonal is the ideal line.
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CDKN2A, PDHA1, MTF1, and LIAS and negatively correlated with

those of GLS in GBM (Figure 4B). These findings provide new

insights for developing immunotherapies against GBM.

Primary GBM comprises 90% of the cases and is IDH wild-type,

while secondary GBM develops from lower-grade glioma and

carries mutations in IDH (49). In this study, the IDH status of

GBM with mutant types of FDX1, LIAS, PDHB, DLD, PDHA1,

CDKN2A, and LIPT1 was significantly different from that of GBM

with the wild-type genes (Supplementary Table 2). Furthermore, in

the CRG–drug/molecule–pathway interaction network, the most

important gene for interaction was CDKN2A (Figure 7). The GDSC

database is a resource for biomarker discovery for the development

of therapeutics for cancer cells and contains information from 138

anticancer drugs across 696 cell lines (23, 50). We observed that the

CDKN2A gene predicted sensitivity and resistance to drugs in most

GBM cell lines in the GDSC database. For example, GBM with

mutated CDKN2A was significantly sensitive to BDOCA000347e,

dihydrorotenone, and remodelin, but significantly resistant to VX-

11e (Supplementary Figure 7). These findings provide a basis for the

selection of therapeutic drugs.

Our study has several limitations. First, although immunoassay

and clinical prognostic scores focusing on the expression of CRGs

in GBM performed well, other significant genes with potential

predictive values were not included in this study. Second, given

that the prognostic signature and target drug prediction were built
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and validated by exploiting data from public databases, although we

conducted qPCR experiments in tissue and A172 cell line, further

experimental validation is required.
5 Conclusion

In summary, this study systematically analyzed the landscape of

molecular alterations and interactive genes involved in cuproptosis

in GBM. Our study suggests that these CRGs may play a crucial role

in GBM outcome. The risk score based on CRG expression

characteristics can predict the survival and prognosis of GBM

patients, and is significantly associated with immune infiltration

levels and the expression of CD47 and CD24, the immune

checkpoints of the “don’t eat me signal.” Our results provide new

insights into CRG-related target drugs/molecules for cancer

prevention and treatment. Future biological studies are required

to confirm our findings.
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SUPPLEMENTARY FIGURE 1

(A) The content of copper (mmol/L). (B) qPCR analysis of human GBM tissues

and normal adjacent tissue CRGs expression (n = 3). Student’s t-test was used
for comparison between two groups. *p < 0.05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE 2

Differential expression analysis and validation in three datasets. Box plots of
the expression of LIPT1 and CDKN2A in (A) GSE4290 and (B) GSE15824. (C)
Forest plots of the meta-analysis of the differential expression of LIPT1 and

CDKN2A in GSE4290, GSE15824, and TCGA-GTEx. ***p < 0.001.

SUPPLEMENTARY FIGURE 3

Correlation between (A) PDHA1, (B) MTF1, (C) GLS, (D) DLD, and (E) CDKN2A

expression and immune infiltration in GBM in the TIMER database.

SUPPLEMENTARY FIGURE 4

(A) Expression of CD24 and CD47 in GBM and normal tissues. (B) qPCR
analysis of CD24 and CRGs expression in the CD24 knockout A172 cell line.

(C) qPCR analysis of CD24 and CRGs expression in the CD47 knockout A172
cell line. Each experiment was repeated independently three times. Student’s

t-test was used for comparison between two groups. *p < 0.05; **p < 0.01;
***p < 0.001; ns, not statistically significant.

SUPPLEMENTARY FIGURE 5

Kaplan−Meier plots of the expression of PDHB (A), GLS (B), MTF1 (C), and LIAS

(D) and progression-free survival.

SUPPLEMENTARY FIGURE 6

CRG expression differences between other pathological conditions of glioma

and GBM.

SUPPLEMENTARY FIGURE 7

CDKN2A mutation influences drug selection for GBM. Volcano plot showing
that GBM with CDKN2A mutations is significantly sensit ive to

BDOCA000347e, dihydrorotenone, remodelin, OF-1, and TAF1_5496, and
significantly resistant to VX-11e. Each circle in the volcano map represents a

single drug–gene interaction, and the size is proportional to the number of

mutant cell lines screened for each drug. Each circle in the box-and-whisker
plot represents the IC50 value for an individual cell line plotted on a

logarithmic scale, and the red line is the geometric mean of the population.
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