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Research on automatic
classification technology of
kidney tumor and normal kidney
tissue based on computed
tomography radiomics

Yunfei Li †, Xinrui Gao †, Xuemei Tang †, Sheng Lin*

and Haowen Pang*

Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
Purpose: By using a radiomics-based approach, multiple radiomics features can

be extracted from regions of interest in computed tomography (CT) images,

which may be applied to automatically classify kidney tumors and normal kidney

tissues. The study proposes a method based on CT radiomics and aims to use

extracted radiomics features to automatically classify of kidney tumors and

normal kidney tissues and to establish an automatic classification model.

Methods: CT data were retrieved from the 2019 Kidney and Kidney Tumor

Segmentation Challenge (KiTS19) in The Cancer Imaging Archive (TCIA) open

access database. Arterial phase-enhanced CT images from 210 cases were used

to establish an automatic classification model. These CT images of patients were

randomly divided into training (168 cases) and test (42 cases) sets. Furthermore,

the radiomics features of gross tumor volume (GTV) and normal kidney tissues in

the training set were extracted and screened, and a binary logistic regression

model was established. For the test set, the radiomic features and cutoff value of

P were consistent with the training set.

Results: Three radiomics features were selected to establish the binary logistic

regression model. The accuracy (ACC), sensitivity (SENS), specificity (SPEC), area

under the curve (AUC), and Youden index of the training and test sets based on

the CT radiomics classification model were all higher than 0.85.

Conclusion: The automatic classificationmodel of kidney tumors and normal kidney

tissues based on CT radiomics exhibited good classification ability. Kidney tumors

could be distinguished from normal kidney tissues. This study may complement

automated tumor delineation techniques and warrants further research.
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Introduction

Radiomics refers to the high-throughput extraction of a large

amount of information from medical images, such as computed

tomography (CT), magnetic resonance imaging (MRI), and

positron emission computed tomography (PET), to extract

features and establish models. In general, visual image

information is converted into digital feature variables for

quantitative research. Extensive research and analysis of massive

image data information can assist doctors in providing a more

accurate diagnosis of a patient’s condition (1–3). Compared to

biopsy, radiomics has the technical advantage of obtaining non-

invasive and repeatable radiological images, thus providing a safer

and more way for conducting patient follow-ups and prognosis

prediction. Radiomics method can also be used for pathological

tumor classification and grading (4, 5). Traditional radiomics,

which involves the extraction and screening of high-throughput

features of regions of interest from medical images, is used

primarily for the diagnosis of benign and malignant diseases,

prognosis evaluation, and survival prediction (6–13). Radiomics

combined with machine learning and deep learning performs well

for differentiating, grading and staging kidney tumors (14–16).

Traditional classification methods using computed tomography

(CT) images mainly rely on the pixel value of the image and less on

other parameters; this makes it difficult to accurately distinguish the

tumor area from the surrounding normal organs (17–22). However,

radiomics-based methods can be used to extract more than 800

radiomics features from regions of interest in CT images. In the

present study, we proposed a radiomics research method based on

the automatic classification technology of radiomics which has the

potential to supplement the deep learning automatic delineation

technology. This study is the first to report such a method. Therefore,

the purpose of this study is to establish a preliminary classification

model based on CT radiomics to automatically classify kidney tumors

and normal kidney tissues.
Materials and methods

Data collection

The study was reviewed and approved by Ethics Committee

of the Affiliated Hospital of Southwest Medical University (18

January 2017, KY2021023). CT data were retrieved from the 2019

Kidney and Kidney Tumor Segmentation Challenge (KiTS19)

(https://wiki.cancerimagingarchive.net/pages/viewpage.action?

pageId=61081171) of The Cancer Imaging Archive (TCIA) open

access database. Arterial phase-enhanced images of 210 patients

from the database were used to establish an automatic classification

model. The kidneys and tumors were already manually segmented.

These CT images were randomly divided into a training set (168

cases) and test set (42 cases).
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Radiomics feature extraction

The CT images were preprocessed using wavelet-based

methods. Before feature extraction, all images were resampled

according to a voxel size of 1 × 1 × 1 mm3. The gross tumor

volume (GTV) and normal kidney tissue were regarded as the

regions of interest. Feature extraction was based on a three-

dimensional (3D) slicer platform and performed using the

pyradiomics package; the package is available at http://

PyRadiomics.readthedocs.io/en/latest/ (last accessed on June 30,

2019). The eigenvalue data of all radiomic features were

processed using z-score standardization. Figure 1 shows a CT

sectional view of a patient in the training set. The CT radiomic

feature variables of the GTV and normal kidney tissue were

extracted. A total of 837 radiomics features were extracted,

including first-order statistics, gray level co-occurrence matrix

(GLCM), gray level dependence matrix (GLDM), gray level run

length matrix (GLRLM), gray level size zone matrix (GLSZM), and

neighboring gray tone difference matrix (NGTDM). Shape features

were removed in this study. First-order features describes single

pixel or voxel within the ROI. GLCM defines different combination

of gray levels of an image area. GLDM quantifies the gray level

dependencies in an image. GLRLM provides information about

runs of consecutive pixels with the same gray level. GLSZM

quantifies gray level zones in an image. And wavelet-based

features were transformed based on above features.
Screening of radiomics features of the
training set

(A) Univariate feature screening
By considering the radiomics features of the GTV and normal

kidney tissue as independent variables and the GTV and normal

kidney tissue as binary variables, the area under curve (AUC;

defined as the area surrounded by the receiver operation

characteristic (ROC) curve and the abscissa and ordinate axis)

corresponding to each radiomics feature was calculated. The AUC

ranged from 0.5 to 1. The closer the value is to 1.0, the higher the

authenticity, whereas an AUC value equal to 0.5 indicates that the

radiomics have no application value in the study. The ROC curve

takes the false positive rate (FPR) as the abscissa and true

positive rate (TPR) as the ordinate. The curve is mostly used for

the evaluation of binary classification problems. Radiomics

features with an AUC less than 0.7 were excluded after the

univariate screening.

(B) LASSO logistic regression feature screening
The principle of least absolute shrinkage and selection operator

(LASSO) regression is to compress the original eigenvalue

coefficients; more specifically, it involves directly compressing the

original small coefficients to 0 and treating the eigenvalue variables

corresponding to these coefficients as nonsignificant variables. Such
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nonsignificant variables have little or no impact on the final

classification results; thus, such variables can be directly

discarded, which results in variable screening. LASSO logistic

regression was conducted using the method of five-fold cross-

validation method to select the radiomics features. In the LASSO

regression analysis, the L1 regularization term is added based on the

least-squares fit to improve the accuracy of the linear regression

model. Its penalty function is the absolute value of the regression

coefficient, which guarantees that the parameter estimation results

equal to zero. Thus, it is helpful for feature selection. This study is a

binary classification problem, and logistic regression analysis is a

generalized linear model commonly used in binary classification or

one-to-many classifications. It normalizes the response of simple

linear regression to zero and one. Therefore, the linear regression in

the LASSO regression model can be replaced by logistic regression

to select the characteristics. The objective function of LASSO

logistic regression optimization is as follows:

min
w ,b o

n
i=1 log ( exp ( − yi(X

T
i w + b)) + 1) + l ∥w ∥1

where n is the total number of samples; Xi is an m × n-size raw

data (each sample has m eigenvalues); yi is the corresponding

response value of each sample; w is the linear regression

coefficient; b is the cutoff value of linear regression; and l is a

nonnegative regularization parameter used to control the sparsity of

regression coefficients.

The extracted radiomics features were input into the LASSO

logistic regression model; subsequently, the lambda (l) value with
the smallest model deviation was calculated and the radiomics

features were screened.
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(C) Model collinearity detection
The variance expansion factor (VIF) of the independent

variable of the logistic regression model was calculated after

screening the variables using the LASSO logistic regression. The

VIF measures the severity of multicollinearity in multiple regression

models. This represents the ratio of the variance of the estimator of

the regression coefficient to the variance when no linear correlation

between the independent variables is assumed.

The VIF can be calculated as follows.

VIF =
1

1 − R2
i
,

where Ri is the negative correlation coefficient of the regression

analysis for other independent variables. The larger the VIF, the

greater the possibility of collinearity between the independent

variables. Generally, multicollinearity is assumed when the VIF

value is greater than five; thus, removing the radiomics features with

a VIF value greater than five is necessary.
Model establishment

The final binary logistic regression model was established based

on the final radiomics features (X):

logitP = g(xi),

P  =  1= ( 1  +  exp( − logitP)),

where P is the probability that GTV is positive. The ROC curve

of the model was plotted and its AUC value was calculated.
FIGURE 1

CT section of one patient in the training set. The white arrow indicates normal kidney tissue, and the red arrow indicates gross tumor volume.
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The sensitivity (SENS) and specificity (SPEC) corresponding to

each point on the ROC curve were used to calculate the point that

maximized SENS + SPEC, which is the cutoff value of P.
Model diagnosis

The accuracy (ACC), SENS, SPEC, AUC, and the Youden index of

the model were used for evaluating the effectiveness of the model. The

Youden index, also known as the correct index, was used to evaluate

the authenticity of screening tests. It is calculated as Youden

index=SENS+ SPEC -1.
Model validation

For the test set, the radiomics features extracted concerning GTV

and normal kidney tissue were consistent with those of the training set.

The cutoff value of P in the test set is also consistent with the training

set. If the GTV of the test set is positive, the ROC curve is drawn to

calculate the AUC value. Thereafter, the ACC, SENS, SPEC, AUC, and

Youden index of the test model were again calculated. The flowchart of

the proposed method is shown in Figure 2.

All statistical analyses were performed using R software, version

4.1.2 (R Foundation for Statistical Computing, Vienna, Austria).
Results

Altogether, 837 radiomics features were extracted. After the

univariate screening, 217 radiomic features were identified. Using

LASSO logistic regression for variable screening, according to the
Frontiers in Oncology 04
calculation, the deviation of the model was the smallest when the

minimum value was 0.1715; Figure 3 shows the model deviation and

lambda. Finally, three radiomics features were extracted: dependence

entropy of the GLDM of the original (Feature 1), zone entropy of

GLSZM of the wavelet-HLL (H = high-frequency band, L = low-

frequency band; Feature 2), and gray level non-uniformity of GLSZM of

the wavelet-LLL (Feature 3). Table 1 lists the VIF values corresponding

to these features. The VIFs were all less than five, which indicates that no

multicollinearity existed among the three radiomics features.

The final binary logistic regression model was established based

on the final radiomics features as follows.

logitP  =   − 0:0156ðFeature 1Þ − 0:0523ðFeature 2Þ
− 0:0004ðFeature 3Þ

P  =  1= ( 1  +  exp( − logitP)),

where P is the probability that GTV is positive. The cutoff value in

this study was 0.4851. It was used as a radiomics marker to determine

the tumor area and was equivalent to the critical point. If the detected

value is greater than the cutoff value, it is the GTV; if the detected value

is less than the cutoff value, it is the normal kidney tissue.

Table 2 lists the diagnostic parameters of the training set model,

and Figure 4 shows the ROC curve of the training set model.

Table 3 lists the model diagnostic parameters of the test set, and

Figure 5 shows the ROC curve of the test set model.
Discussion

Confirming the GTV is a challenge when treating a tumor. It

tests the patience and proficiency of clinicians in relevant clinical
FIGURE 2

Flowchart of the proposed method.
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knowledge. Furthermore, tumors of different shapes are difficult to

delineate. A qualified clinician must have systematic learning and

continuous practice to be competent in sketching. In this study,

based on the CT radiomics method, the extracted CT radiomics

features were used to automatically distinguish kidney tumor areas

from normal kidney tissues.

The cutoff value, which is the critical point, was used as a radiomics

marker for determining the GTV. If the detection value was greater

than the cutoff value, it was considered positive; if the detection value

was less than the cutoff value, it was considered negative. In this study, a
Frontiers in Oncology 05
positive detection value represented the kidney tumor part, and a

negative value represented normal tissues and organs. The AUC values

of the training and test sets obtained from the ROC curve were 0.9798

and 0.9841, respectively, which were significantly greater than 0.7. The

ACC, SENS, SPEC, and Youden indices for the training and test sets

based on the CT radiomics classification model were all greater than

0.85. This indicates that automatic classification technology based on

radiomics had achieved good application results. Further studies need

to extract only selected radiomic features from the GTV and kidney

training sets instead of all radiomic features to improve efficiency.

In recent years, artificial intelligence technologies such as machine

learning and neural networks have been widely used in the field of

automatic tumor and organ delineation in radiotherapy, such as

automatic segmentation technology based on convolutional neural

network and automatic classification technology based on the U-

NET model. These have greatly reduced clinician workload and

increased productivity (23–26). Artificial intelligence models have

achieved great success in the automatic delineation of organs, but the
A

B

FIGURE 3

Features selected by the LASSO regression model. (A) Selection of the tuning parameter (l) in the LASSO model via 5-fold cross-validation. The
optimal l are indicated by the dotted vertical lines, and a value of 0.1715 was selected. (B) LASSO coefficient profiles of 217 radiomics features. A
coefficient profile plot was generated versus the selected log l value using five-fold cross-validation. Three radiomics features with non-zero
coefficients were selected.
TABLE 1 Model collinearity analysis.

Features VIF

Feature 1 1.125322

Feature 2 1.052620

Feature 3 1.084162
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accuracy of the automatic delineation of tumor regions is still a

problem. For future research, we can limit the region of interest to

the entire kidney region, grid it, and extract only the radiomics features

filtered through the training set to improve efficiency. A binary logistic

regression model can be established based on the final radiomics

features extracted from the training set, and the cutoff value

calculated from the training set can be used as a radiomics marker

for classifying tumor regions. When the P value is greater than the

Cutoff value, the grid is considered to be a tumor region; when the P

value is less than the Cutoff value, the grid is considered to be a normal

organ. After clustering the tumor region or substituting P-values for

pixel values, it is possible to automatically delineate the tumor region,
Frontiers in Oncology 06
which may be a supplement to the automatic delineation technology of

deep learning.

In conclusion, automatic classification technology based on

radiomics can be feasibly applied to distinguish between GTV

and normal kidney tissue in patients. Nevertheless, our study has

a few limitations. First, this study used a limited number of samples.

Second, the establishment and optimization of the model were

affected by the quality of the CT images and the accuracy of manual

tumor segmentation. Third, different clinicians have a different

understanding of GTV boundaries, and some CT images still have

problems such as a fuzzy boundary of the tumor target area. Forth,

the pre-malignant state and benign kidney lesions should be
TABLE 2 Training set model diagnosis parameters.

Cutoff (Predicted P value) ACC SENS SPEC AUC Youden

0.4851 0.9405 0.9583 0.9226 0.9798 0.881
fro
FIGURE 4

ROC curve of the training set.
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analyzed and differentiated. Thus, the data may have biases. For

future clinical application, we plan to train and test CT image data

of more patients with different tumors, to obtain better automatic

classification results. If the technology is further matured and

developed, it may reduce the risk of inaccurate drawing due to a

lack of experience, save valuable processing time, and benefit

doctors, patients, and radiotherapy technology.

Radiomics methods are generally used in the diagnosis of

benign and malignant diseases, prognosis evaluation, and survival

prediction. The preliminary method of automatic classification

technology based on radiomics proposed in this study aims to

enrich research on radiomics and may be to supplement to deep-

learning automatic rendering technology to realize more accurate
Frontiers in Oncology 07
GTV determination. Future research should focus on different

diseases and increase the number of samples to further improve

the accuracy of this automatic classification technology.
Conclusion

The automatic classification model of kidney tumors and

normal kidney tissue based on CT radiomics exhibited good

classification ability. Tumorous kidney tissues could be

distinguished from normal kidneys, with these observations

worthy of further study.
TABLE 3 Test set model diagnosis parameters.

Cutoff(Predicted P value) ACC SENS SPEC AUC Youden

0.4851 0.9286 0.9285 0.9285 0.9841 0.8571
fro
FIGURE 5

ROC curve of the test set.
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