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Surgical resection and postoperative radiotherapy remained the most common

therapeutic modalities for malignant tumors. However, tumor recurrence after

receiving such combination is difficult to be avoided because of high invasiveness

and radiation resistance of cancer cells during long-term therapy. Hydrogels, as

novel local drug delivery systems, presented excellent biocompatibility, high drug

loading capacity and sustained drug release property. Compared with conventional

drug formulations, hydrogels are able to be administered intraoperatively and

directly release the entrapped therapeutic agents to the unresectable tumor sites.

Therefore, hydrogel-based local drug delivery systems have their unique advantages

especially in sensitizing postoperative radiotherapy. In this context, classification and

biological properties of hydrogels were firstly introduced. Then, recent progress and

application of hydrogels for postoperative radiotherapy were summarized. Finally,

the prospects and challenges of hydrogels in postoperative radiotherapy

were discussed.

KEYWORDS

hydrogel, postoperative radiotherapy, radiation sensitization, local drug delivery,
tumor recurrence
1 Introduction

Malignant tumors, as the most complicated and challenging diseases, has received

considerable attention all over the world (1). By now, the combination treatment of

surgical resection and postoperative radiotherapy is still one of the most effective strategy,

and is widely used for many kinds of tumors (2, 3). However, malignant tumor cells grow

infiltratively and interweave with surrounding healthy tissues, which make it difficult to be

completely resected. More importantly, the therapeutic effect of postoperative radiotherapy is

limited by the radiation resistance of residual tumor cells (4, 5). These above reasons make

the tumor easy to relapse, and the curative effect often dissatisfies us.
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Numerous attempts (such as high-dose radiation, utilization of

radiosensitizers, chemoradiotherapy and immunoradiotherapy) have

been made to address the pitfalls of surgery and postoperative

radiotherapy (6–9). Unfortunately, it has been proved that high-

dose radiation can cause irreversible damages to the peritumoral

normal tissues and further cause various adverse side effect in patients

(10). Traditional radiosensitizers or chemotherapeutics could not

effectively penetrate into tumor tissues, which limits their

radiosensitization effects after systemic administration. In addition,

the systemic toxicity, gastrointestinal side effects, myelosuppression

and some other side effects can also be caused by such systemic

administration (11, 12). Immunoradiotherapy has attracted great

research interests in recent years. Tumor-associated antigens

(TAAs) can be released from radiation-induced apoptotic cancer

cells, which further cause antitumor immune responses (13). But

immune-related adverse events (irAEs), which produced by an

overactive immune response against healthy organs, can seriously

affect the therapeutic efficacy of immunoradiotherapy (14, 15). The

nonspecific distribution of conventional antitumor drugs inhibits the

effectiveness of postoperative radiotherapy, and the repeated systemic

administration make antitumor therapy more complicated. As a

result, local drug delivery systems, especially hydrogels, have been

explored to address these constraints, with the potential to

simultaneously improve antitumor efficacy and minimize systemic

side effects.

With the fast development of material engineering and molecular

biology, hydrogel has opened up new avenues for the treatment of

cancer. Hydrogel refers to a three-dimensional network gel

constituted with hydrophilic polymers, which has good

permeability and excellent biocompatibility. It can be directly

applied to the pathological tissue and has a wide range of

applications prospects in the field of biological medicine (16–22).

Hydrogel can be injected or sprayed into postoperative cavities, in situ

gel and circumvent the biological barrier, such as blood brain barrier

(23). Before reaching the tumor cells, the agents can be protected by

hydrogel from being affected by severe surroundings. And the plasma
Frontiers in Oncology 02
half-life can be prolonged (24). To optimize therapy effectiveness and

minimize systemic drug distribution, hydrogel can be designed to

delivery drug to specific cells or tissues (25). In addition, the unique

porous structure of the hydrogel can optimize drug sustained release

properties. The controlled release properties can also be obtained by

utilizing an elaborated stimuli-responsive hydrogel delivery system

(26). The strategy of coadministration of different pharmaceuticals

can similarly be achieved by hydrogel delivery systems, which can

overcome drug resistance and boost therapeutic efficacy (27). From

the above information, we can see that the hydrogel-based drug

delivery systems have their unique advantages in postoperative

radiotherapy. Traditional drugs formulations (such as radioisotopes,

radiosensitizers, chemotherapeutic agents or immunomodulators)

were recorded by encapsulating into hydrogels and combing with

postoperative radiotherapy to inhibit tumor recurrence (Figure 1).

This local drug delivery method can avoid the nonspecific distribution

of traditional drugs, sensitize radiotherapy and achieve the

combination of multiple treatment modalities.

In this review, we first introduced the classification and biological

characteristics of hydrogels. Next, the applications of hydrogel-based

local drug delivery systems for postoperative radiotherapy were

further systematically investigated. Lastly, the prospects and

challenges of hydrogel-based local drug delivery systems in

postoperative radiotherapy were discussed.
2 The classification and
biocompatibility of hydrogels

2.1 Classifications of hydrogels

According to different standards, hydrogels are divided into

different classifications (Table 1).
a) Based on the original materials, it can be divided into natural

hydrogels and synthetic hydrogels (28). The former includes
FIGURE 1

Schematic illumination of the application of hydrogel-based local drug delivery systems for postoperative radiotherapy.
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Fron
alginates hydrogel, chitosan hydrogel, collagen hydrogel,

hyaluronic acid hydrogel, etc (35–37). The latter is

synthetized by a variety of polymers, including polyethylene

glycol (PEG), poly glycolic acid (PGA) and poly lactic-co-

glycolic acid (PLGA) (38–40).

b) According to the cross-linking junction types, hydrogels can

be divided into physical cross-linked hydrogels and chemical

cross-linked hydrogels. On the molecular level, noncovalent

bonding interactions lead to physically cross-linked

hydrogels. Although the connections are typically fleeting,

they are enough to make hydrogels insoluble in aqueous

media. Irreversible covalent cross-linking interaction

produces chemically cross-linked hydrogels. Linear or

branching polymers directly come into contact with one

another by chemical cross-linking reaction, which leads to

extremely high mechanical strength (29, 30).

c) In terms of network charge, three groups of hydrogels are

categorized: anionic, cationic and neutral hydrogels. The whole

network’s charge is determined by the polymer’s charge (31, 32).

d) In accordance with the polymeric compositions, hydrogels are

divided into three classes: (I) Homopolymeric hydrogels

(composed of a single monomer species). (II) Copolymeric

hydrogels (obtained from two or more monomer species, at

least one being hydrophilic). (III) Multipolymeric hydrogels

(made up of two independent and cross-linked chains of

polymers) (33).

e) Hydrogels can also be generally divided into conventional and

intelligent hydrogels. Conventional hydrogels refer to

hydrogels that are not sensitive to environment, such as

temperature or pH, etc. Conventional hydrogels have a few

fundamental properties. The unique porous architectures of

conventional hydrogels can facilitate molecular penetration.

The hard chain architecture can resist dissolution, and the

flexible architecture can make conventional hydrogels

extendable and collapsible (34). Intelligent hydrogels, also

named as stimuli-responsive hydrogels, have the capacity to

alter self-physical characteristics (swelling ability, mechanical

properties, molecular diffusion, etc). It can response to a

variety of environmental stimuli, such as temperature, light,

pH, enzyme, electric fields, and some other biological factors
tiers in Oncology 03
(41–45). In the tumor microenvironment, stimuli-responsive

hydrogels can modify its own rheological behavior (46). By

encapsulating pharmaceuticals in unique response hydrogel,

the medication release could be better controlled. For

example, pH-responsive hydrogels can control the drug

release in the acidic tumor microenvironment (47).
2.2 Biocompatibility of hydrogels

Biocompatibility is the biological property that a material can

tolerate the action of various systems of the host, while the material

can still remain relatively stable and not be rejected or destroyed.

Excellent biocompatibility is a prerequisite for hydrogels to be widely

used in biomedical fields (48). Polysaccharide is a well-known raw

material of hydrogel. Zhao et al. detected its cytotoxicity in vivo and

found that it did not produce acute toxic reaction to the blood system

(49). Zhang et al. investigated the cytotoxicity offibrin hydrogel toDC2.4

cells and C57BL/6 mice. The in vitro data showed that the cell survival

rate was more than 90% after coincubation with fibrin hydrogel for 24 h,

and the in vivo H&E staining assay did not show obvious inflammatory

response (50). Liu et al. evaluated the cytotoxicity of polymer HA-DEG/

UPy hydrogel on 3T3 fibroblasts. The experimental results showed that

HA-DEG/UPy hydrogel had almost no toxicity to 3T3 fibroblasts cells

and the cell viability remained almost 100% (51). The high

biocompatibility of hydrogel effectively avoids the generation of

systemic toxicity, it can be safely applied in the treatment of diseases.
3 The application of hydrogel-based
local drug delivery systems in
postoperative radiotherapy

Hydrogels have the capacity to encapsulate various drugs through

blending them together in precursor solution, which are then

converted into three-dimensional mesh structure gel. After in vivo

administration, the therapeutic substances encapsulated in hydrogels

localized in the target area and the drug delivery systems sustained the

drug release for an extended time (52, 53). Hydrogel based local drug

delivery systems have been explored to encapsulate traditional drug

(such as radioisotopes, radiosensitizers, chemotherapeutic agents, and

immunotherapy agents), which can enhance the therapeutic efficacy

of postoperative radiotherapy.
3.1 Hydrogels for the local delivery of
radioisotopes in postoperative radiotherapy

Brachytherapy, also known as internal radiotherapy, is a kind of

radiotherapy that deliver sealed radiation source to tumor tissue or

post-operative tumor cavity. This therapeutic modality has been

applied to the treatment of a variety of tumors (54, 55). If

administered systemically, the non-specific distribution of

radioisotopes have harmful effects on the normal organs of patients.

Hydrogel drug delivery systems can directly transfer radioisotopes to
TABLE 1 The classification of hydrogels based on different standards.

Classification standards Kinds of hydrogels References

Material Natural hydrogels
Synthetic hydrogels

(28)

Crosslinking manner Physically hydrogels
Chemically hydrogels

(29, 30)

Electrical charge Anionic hydrogels
Cationic hydrogels
Neutral hydrogels

(31, 32)

Polymeric composition Homopolymer hydrogels
Copolymer hydrogels
Multipolymer hydrogels

(33)

Type of stimuli responsive Conventional hydrogels
Intelligent hydrogels

(34)
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the tumor area. It can avoid the non-specific distribution of

radioisotopes and have received great attention. Meng et al.

designed a CuS/131I-PEGDA/AIPH hydrogel, in which copper

sulfide responsed to the near-infrared laser to raise the temperature

of the tumor-bearing region. When the AIPH thermal initiator was

activated, the polymer matrix PEGDA began to gel and 131I (Iodine-

131) was effectively preserved in the tumor cavity. The in-situ gelation

of PEGDA triggered by NIR could prolong the retention time of 131I

in tumor cavity and prevent it from leaking into adjacent normal

tissues. What’s more, hyperthermia, induced by NIR responsive

photothermal hydrogels, could boost blood circulation and further

alleviated the tumor hypoxia microenvironment. As a result, the

radiation sensitivity of tumor cells could be improved (56).

Apart from 131I, the hydrogel-based delivery systems could also

deliver some other radioisotopes, such as 125I (Iodine-125) and 188Re

(Rhenium-188). 125I implantation had been demonstrated to be an

effective approach to eradicate tumor cells, and it only cause minor

damage to adjacent normal cells (57). Wu et al. constructed an

injectable near-infrared induced polymerized hydrogel (125I-GPA),

which could continuously release 125I-GNR-RGDY into tumor

tissues. It had been successfully applied to the surgical resection

model of breast cancer (22). In this experiment, hyperthermia

induced by near-infrared radiation could eradicate potentially

pathogenic bacteria and was helpful to prevent postoperative wound

infection. Besides, the RGD peptide modification on the surface of 125I-

GNR-RGDY could target tumor cells and achieve more accurate

brachytherapy (Figure 2). The recurrence time of different treatment

groups demonstrated that the combination treatment of 125I-GPA +

NIR suppress tumor growth more effectively than GAP + NIR. And no

tumor recurrence was observed in 125I-GPA + NIR treated group.
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188Re is an another radionuclide with b-ray that has been

frequently applied in radioisotope therapy (58, 59). Shi et al.

encapsulated the radiopharmaceutical 188Re-EL in a temperature-

sensitive hydrogel to construct a hybrid radioactive thermosensitive

hydrogel system (188Re-EL/hydrogel), which synergistically

potentiated the therapeutic efficacy of 188Re-EL on hepatocellular

carcinoma (Figure 3) (60).

Overall, encapsulating radionuclides into hydrogels exhibit

obvious advantages in treating tumors. Compared with conventional

radioisotope implantation, hydrogel can prolong the retention time of

radionuclides in tumors, which is conducive to improving the

effectiveness of internal radiotherapy. At the same time, hydrogel can

effectively prevent the implanted radioisotopes from migrating to

adjacent normal cells and reduce the adverse reactions of radionuclides.
3.2 Hydrogels for the local delivery
of radiosensitizers in
postoperative radiotherapy

Ionizing radiation, which includes high-energy X-rays, gamma

rays, heavy ions, as well as electrons, is used in radiotherapy to

directly produce DNA damage, or indirectly induce cell death by

stimulating the generation of massive numbers of toxic reactive

oxygen species (ROS) (61). However, abnormal vasculature and

insufficient blood flow together contribute to hypoxia in solid

tumors, which significantly reduces the effectiveness of radiotherapy

and leads to radiation resistance (62). Besides, radiotherapy has the

characteristic that significantly suppresses tumor growth in a dose-

dependent manner, and its effectiveness is typically restricted by the
A

B

FIGURE 2

(A) 125I-GNR-RGDY and (B) nanocomposite double-network GPA hydrogel and their theranostic application for inhibition of postoperative breast cancer
recurrence and wound infection through synergistic brachytherapy and photothermal therapy (22).
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maximum radiation dose which can be applied to the tumor area

without causing serious damage to surrounding tissues (63).

Therefore, radiosensitizers (such as nitroimidazoles, cisplatin,

metal-based nanoparticles and so on) have been developed to

minimize peripheral tissue lesion while maintaining sufficient

ionization damage to tumors (64, 65). Hydrogels, as local drug

carriers, can be injected into surgical cavities and overcome the

limitation of physiological barriers for traditional drug delivery. It

has been applied to the administration of various radiosensitizers to

tumor areas, generating a synergistic radiosensitive effect (66).

Glioblastoma (GBM), the most common primary malignant brain

tumors, have amedian survival of only 12-15months (67). The radiation

tolerance of glioma cells limits the therapeutic effect of radiotherapy.

Worse still, the presence of blood brain barrier (BBB) makes traditional

anticancer agents ineffective, resulting in unexpected GBM recurrence

and poor prognosis for patients (68, 69). To overcome this limitation,

Liang et al. reported a thermal-sensitive hydrogel encapsulating

carboplatin that can be injected into the surgical cavity, circumventing

BBB and delivering radiosensitizer to improve the postoperative

radiotherapy of GBM (Figure 4) (70). In this research, carboplatin was

used as radiosensitizer to prevent radiation-induced DNA damage from

being repaired, making radiation therapy more sensitive. This research

found that intratumorally administered hydrogels have the advantages of

lowering systemic toxicity, bypassing the BBB and simplifying the drug

delivery frequency. It is indicated that the injection of hydrogel systems

containing smart radiosensitizers into the surgical cavity, combined with

ionizing radiation, is a promising treatment strategy for glioblastoma.

Oxygen, acknowledged as the definitive hypoxic cell radiosensitizer,

has been widely used to enhance radiotherapeutic efficacy (71, 72). Yang

et al. constructed an oxygen-enriched thermosensitive hydrogel that

steadily provided exogenous oxygen playing as a potent

radiosensitization role in increasing the radiosensitivity of tumor cells
Frontiers in Oncology 05
(16). As shown in Figure 5, exogenous oxygen sustained released from

O2@PFOB@Gel and induced reoxygenation of hypoxic tumor,

successfully eliminating the hypoxia-related radiation resistance and

significantly suppressing the tumor growth.

Sunitinib, as a small molecule multikinase inhibitor targeting

VEGF receptors, has powerful antiangiogenic properties and has been

proposed as a radiosensitier (73, 74). Fu et al. introduced a matrix

metalloproteinase (MMP) -responsive hydrogel loaded with sunitinib

nanoparticles (NS-MRH) to improve radiosensitivity and prevent

local breast cancer recurrence (75). By being injected into the

postoperative cavity and continuously releasing sunitinib, the

constructed hydrogel system in this study successfully sensitized

radiation and inhibited tumor recurrence.
3.3 Hydrogels for the local delivery
of chemotherapeutic agents in
postoperative radiotherapy

Postoperative concurrent chemoradiotherapy, which involves the

simultaneous administration of chemotherapeutics and radiotherapy

following surgery, has become the standard treatment for various solid

tumors including lung cancers, esophageal cancer, gastrointestinal

malignancies, as well as brain tumors. During the treatment of

radiotherapy, normal tissues are also subjected to radiation exposure.

When the radiation dose exceeds the maximum tolerance level of normal

tissues, radioactive necrosis will occur (76). Traditional chemotherapeutic

agents have been proven to sensitize radiotherapy in solid tumors, but

their nonspecific tissue distribution usually causes severe damages to

normal tissues and organs (77).

Because of the unique characteristics of intraoperative

administration, sustained drug release and high drug loading, hydrogel
FIGURE 3

PEG-PLGA-PEG chemical structure, preparation of 188Re-ECD-Lipiodol/hydrogel, and hepatoma animal model treatment. (A) Chemical structure of
PEG-PLGA-PEG. (B) Optical images of 188Re-ECD-Lipiodol/hydrogel, prepared by mixing PEG-PLGA-PEG (30% w/w) and 188Re-ECDLipiodol in a 1:1
ratio. (C) 188Re-ECD-Lipiodol/hydrogel was administered to N1-S1 hepatoma-bearing rats via intratumoral injection (60).
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has been widely employed in postoperative chemoradiotherapy (78, 79).

Doxorubicin (DOX), as a broad-spectrum anticancer drug, can effectively

inhibit the synthesis of RNA and DNA to eliminate tumor cells. But the

toxic side effects of doxorubicin, such as myelosuppression and

myocardial toxicity, seriously limit its use in the clinic (80, 81). In

order to minimize DOX toxicity, intelligence hydrogels have been

employed. Huang et al. designed a thermos-responsive hydrogel (PEG-

PLGA-PEG) for the co-delivery 131I as a radioactive source and DOX/

PECT micelles as a chemotherapeutic to achieve combined

chemoradiotherapy (Figure 6) (82). This hydrogel delivery system was

confirmed that it enhanced the synergistic therapeutic efficacy of

chemoradiotherapy and alleviated the toxic side effects of DOX.

Another study utilizing DOX as the major sensitization ingredient was

presented by Peng and his coworkers. 188Re-Tin and liposomal DOX
Frontiers in Oncology 06
were encapsulated in a thermoresponsive hydrogel (PCL-PEG-PCL) to

maximize the 188Re therapeutic efficacy for hepatocellular

carcinoma (83).
3.4 Hydrogels for the local delivery
of immunomodulators in
postoperative radiotherapy

It has been confirmed that radiation can enhance antitumor

immune responses by inducing immunogenic cell death (ICD) (84–

86). Danger associated molecular patterns (DAMPs) released by ICD

promote the maturation of antigen-presenting cells (APCs), the

infiltration of cytotoxic T lymphocytes (CTLs) and the release of
FIGURE 4

Rationale and purpose of this study: To compare the characteristics of intratumoral delivery modalities and drugs for malignant gliomas and propose a
novel combination to satisfy the unmet clinical need of convenience, effectiveness, and safety. RT, radiotherapy; wk, week (70).
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associated cytokines (87, 88). CTLs could cooperate with cytokines

such as interferon-g(IFN-g) and tumor necrosis factor-a (TNF-a) to
reverse the immunosuppressive tumor microenvironment into an

immunogenic phenotype, increasing immunotherapy responses of

tumor cells (89, 90). However, the increased sensitivity of
Frontiers in Oncology 07
immunotherapy in post-radiation therapy is only to a certain extent

and radiotherapy alone could not effectively suppress distant tumor

growth (91). To enhance the immune efficacy of radiation and

mitigate the systemic toxic side effects of immunotherapy drugs,

hydrogels were used to deliver immunomodulators after injection

into the tumor cavity and obtain combination effect with

radiotherapy for various tumor treatment.

Sun et al. developed the ADU-AAV-PD1@Gel, a ROS-responsive

hydrogel for localized radioimmunotherapy in the glioblastoma

resection mouse model (92). As shown in Figure 7, STING agonist

(ADU) was used to improve tumor immunogenicity and adeno-

associated virus-based-PD1 (AAV-PD1) was utilized to secret

therapeutic PD-1 proteins to block the interaction between PD-1

and PD-L1 for restoring immunotherapy. ADU and AAV-PD1 were

encapsulated together in a ROS-responsive hydrogel and

orthotopically injected into the postoperative glioma cavity,

enhanced the immune response induced by radiotherapy. This

combination treatment effectively inhibited the recurrence of

glioma after operation and prolonged the survival time of the

model mice.

Immune adjuvants have been shown to be highly effective in

enhancing antitumor immune responses and promoting radiation-

induced ICD (93–95). CpG oligodeoxynucleotide (CpG ODN) is a

toll-like receptor 9 (TLR9) agonist, which is widely used as an

immune adjuvant (96, 97). Liu et al. created an ATP-responsive

sodium alginate hydrogel containing ATP-specific aptamers and CpG

ODNs for local immunoradiotherapy (98). CpG ODNs were released

in response to ATP secreted from dying cells after radiotherapy, and
FIGURE 6

The schematic diagram of the formation of PECT/DOX MHg as the
nanodrug and radionuclide reservoir and its following action model of
in situ chemoradiotherapy (82).
FIGURE 5

Schematic representation of the preparation of an oxygen-enriched thermosensitive composite hydrogel (O2@PFOB@Gel) and its radiosensitizing effect
on tumor. The thermosensitive composite hydrogel undergoing a thermoreversible sol–gel transition is made up of a PFOA-modified mPEG–PLGA
diblock copolymer and PFOB. After peritumoral injection of the O2@PFOB@Gel system, the hypoxic tumor microenvironment gains great alleviation via
the sustained release of oxygen. As the released oxygen reacts with a damaged segment of DNA strand that is induced by X-ray exposure, the repair of
DNA strand breaks is inhibited, resulting in more cell death. Consequently, a radiosensitizing effect is achieved (16).
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the released CpG had been confirmed to have the ability to boost the

antitumor immunotherapy of ionizing radiation at low doses.

Notably, when combined with systemic administration of PD-L1

antibody, the constructed smart hydrogel exhibited excellent ability to

eliminate established tumors and inhibit distant tumor metastasis, the

latter of which was made possible by long-term immune

memory effect.

Taken together, these findings demonstrated that hydrogel

delivery of immunomodulators can be directly injected into the

operation cavity, successfully bypassing physiological barriers (such

as BBB) and reducing the off target effects of immunostimulatory

agents, enhancing radiation-induced immune responses, and having

significant efficacy in suppressing local and distant tumors.
Frontiers in Oncology 08
4 Conclusions and prospects

In situ hydrogel drug delivery system has received considerable

concerns and numerous successful applications of hydrogel as anti-

cancer local delivery carrier has been witnessed in recent decades. Ideal

hydrogels should present biodegradable property, avoiding producing

harmful substance during degradation, has high drug loading efficiency

and minimize the negative effects of anti-tumor drugs. In this context, we

systematically summarized the recent researches of hydrogel-based drug

delivery systems in postoperative radiotherapy. Different types of anti-

tumor drug agents, such as radioisotopes, radiosensitizers,

chemotherapeutic molecules or immunomodulators can be

encapsulated in hydrogels to achieve combined therapeutic effect for
A

B

D

C

FIGURE 7

Preparation and mechanism of ADU-AAV-PD1@Gel. (A) Schematic illustration of the preparation of PVA-TSPBA hydrogel. (B) Flowchart of generation of
the AAV-PD1 and formation of the ADU-AAV-PD1@Gel. (C) The ADU-AAV-PD1@Gel combined with RT treatment was performed in the GBM resection
mice model. ADU-AAV-PD1@Gel was injected into the GBM resection cavity on day 11 after the GBM inoculation. The RT was performed on day 12, 13,
and 14. (D) Mechanism of combining ADU-AAV-PD1@Gel with RT treatment for synergetic radioimmunotherapy of post-resection glioma (92).
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postoperative radiotherapy, which has been proven to effectively sensitize

radiation therapy and successfully suppress tumor growth and recurrence.

Although many advances have been achieved in the application of

hydrogels for postoperative radiotherapy, there are still some challenges

to be considered. From the perspective of clinical translation, hydrogels

still could not completely replace the existing adjuvant treatment

methods. The design of existent hydrogel drug delivery system is too

complex, which is a great challenge to the quality control of products.

Hydrogels showed controlled local drug release, but it was difficult to

accurately control the drug release behavior per unit time. Therefore,

simplifying the preparation procedure of hydrogels, improving the

accuracy of drug release and release rate will hopefully further improve

the application prospect of hydrogels in postoperative radiotherapy.
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