
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Ning Wen,
Henry Ford Health System, United States

REVIEWED BY

Yin Zhang,
Rutgers, The State University of New
Jersey, United States
Syamsiah Mashohor,
Putra Malaysia University, Malaysia

*CORRESPONDENCE

Jianrong Dai

dai_jianrong@cicams.ac.cn

SPECIALTY SECTION

This article was submitted to
Radiation Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 11 September 2022
ACCEPTED 06 February 2023

PUBLISHED 28 February 2023

CITATION

Chen X, Zhu J, Yang B, Chen D, Men K
and Dai J (2023) Combining distance
and anatomical information for
deep-learning based dose distribution
predictions for nasopharyngeal
cancer radiotherapy planning.
Front. Oncol. 13:1041769.
doi: 10.3389/fonc.2023.1041769

COPYRIGHT

© 2023 Chen, Zhu, Yang, Chen, Men and
Dai. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 February 2023

DOI 10.3389/fonc.2023.1041769
Combining distance and
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deep-learning based dose
distribution predictions for
nasopharyngeal cancer
radiotherapy planning
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Kuo Men1 and Jianrong Dai1*

1National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2National Cancer
Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of
Medical Sciences, Langfang, China
Purpose: Deep-learning effectively predicts dose distributions in knowledge-

based radiotherapy planning. Using anatomical information that includes a

structure map and computed tomography (CT) data as input has been proven

to work well. The minimum distance from each voxel in normal structures to

planning target volume (DPTV) closely affects each voxel’s dose. In this study, we

combined DPTV and anatomical information as input for a deep-learning–based

dose-prediction network to improve performance.

Materials and methods: One hundred patients who underwent volumetric-

modulated arc therapy for nasopharyngeal cancer were selected in this study.

The predictionmodel based on a residual network had DPTVmaps, structuremaps,

and CT as inputs and the corresponding dose distribution maps as outputs. The

performances of the combined distance and anatomical information (COM) model

and the traditional anatomical (ANAT) model with two-channel inputs (structure

maps and CT) were compared. A 10-fold cross validation was performed to

separately train and test the COM and ANAT models. The voxel-based mean

error (ME), mean absolute error (MAE), dosimetric parameters, and dice similarity

coefficient (DSC) of isodose volumes were used for modeling evaluation.

Results: The mean MAE of the body volume of the COM model were 4.89 ±

1.35%, highly significantly lower than those for the ANAT model of 5.07 ± 1.37%

(p<0.001). The ME values of the body for the 2-type models were similar (p

>0.05). The mean DSC values of the isodose volumes in the range of 60 Gy were

all better in the COM model (p<0.05), and there were highly significant

differences between 10 Gy and 55 Gy (p<0.001). For most organs at risk, the
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ME, MAE, and dosimetric parameters predicted by both models were concurrent

with the ground truth values except the MAE values of the pituitary and optic

chiasm in the ANAT model and the average mean dose of the right parotid in the

ANAT model.

Conclusions: The COM model outperformed the ANAT model and could

improve automated planning with statistically highly significant differences.
KEYWORDS

dose-prediction, minimum distance, anatomical information, deep-learning,
radiotherapy treatment planning
1 Introduction

Inverse treatment planning is an important step for modern

radiotherapy, such as intensity-modulated radiotherapy (IMRT) and

volumetric-modulated arc therapy (VMAT). Dose and dose-volume–

based objectives/constraints are essential in most commercial inverse

planning systems. The optimal objectives/constraints for different

patients, even if diagnosed as cancers of the same stage and grade, are

very different due to variations in the morphology and position of the

tumor and normal tissues. The process of finding personalized

optimal objectives/constraints is time consuming and depends on

the experience of the planner (1–4).

Some knowledge-based radiotherapy planning (KBRP)

methods have been developed to substitute the human-dominated

treatment planning process in recent decades (5–7).One of the key

steps of KBRP approaches was to predict three-dimensional (3D)

dose distributions for setting optimal objectives/constraints (8, 9).

In early studies, the geometrical features of the organs at risk

(OARs) and target(s) were manually extracted for the modeling

of dose-prediction with machine learning methods (10). KBRP

methods have been proven to have good performance in sparing

OARs, decreasing inter-operator differences, and improving

planning efficiency. The extracted geometric features of KBRP

include the minimum distance to target and OARs, as well as

angles related parameters (11, 12). Among them, the minimum

distance to target has been widely used as an effective handcraft

geometric feature in dose prediction modeling with machine

learning which can capture the general slope of dose gradient

outside PTV with lower average dose as the distance increases

(13–15).

More recently, some research groups have worked on deep-

learning methods to predict patient-specific dose distributions

automatically. As one of the solutions of deep-learning methods,

convolutional neural networks (CNNs) show potential to predict

dose distribution (16, 17). Some research groups have explored

deep-learning-based dose-prediction methods that use anatomical

inputs combined with computed tomography (CT), OARs, and

targets (18–20). The normalized mean square error and dose

difference for rectal cancer radiotherapy plans were 0.001 and

0.4%. Ma et al. (21) introduced a deep-learning method for dose-
02
prediction using inputs of contours (PTV and OARs) and

dosimetric features. Compared with the traditional contours-

based model, the model including dosimetric features could

significantly improve the dose prediction accuracy for target with

p< 0.001. Our research group also developed a CNN with 101 layers

that used the inputs of OARs anatomical information, targets, and

out-of-field distance to predict dose distributions which could

improve the mean absolute dose from 5.5% to 4.7% (16).

Although deep-learning methods with anatomical information

perform well on dose-prediction tasks, the geometric features are

also related to the dose distribution. Yue et al. (22) applied the

distance information to guided deep-learning including signed

boundary distance map for regions of interest (ROIs) and the

Euclidean distances from all body voxels to the center of the

CTV. Different from that method, we introduced the minimum

distance from each voxel in normal structures to planning target

volume (DPTV) which was more common used for machine

learning based KBRT. It is directly related to features for

dosimetric parameter prediction and may also be an

important parameter for training deep-learning models. The

study aim was to propose a method that combines distance and

anatomical information (structure maps and CT) as input for deep-

learning based dose-prediction network training to improve

model performance.
2 Materials and methods

2.1 Patient data

One hundred patients with nasopharyngeal cancer who

received VMAT between 2016 and 2020 were enrolled in this

study. Thermoplastic masks (Klarity Medical, Guangzhou, China)

were used to immobilize the patients in the supine position. The

simulation CT images were acquired on a Somatom Definition AS

40 (Siemens Healthcare, Forchheim, Germany) or a Brilliance CT

Big Bore (Philips Healthcare, Best, The Netherlands) system with

the same settings of a 3 mm slice thickness and a 512 × 512 matrix.

A 3 mm margin was applied around the gross tumor volume of

the nasopharynx (GTVnx) and clinical target volume to create the
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planning GTVnx (PGTVnx) and PTV, respectively. The metastatic

lymph nodes of gross tumor (GTVnd) were also contoured.

The combination of PGTVnx and GTVnd was named “Boost”.

The prescription of PGTVnx and GTVnd was 69.96 Gy in 33

fractions (2.12 Gy/fraction). The prescription of the PTV was

60.06 Gy in 33 fractions (1.82 Gy/fraction). Twenty-one OARs

were adopted for inverse treatment planning constraints,

including larynx, biliteral lens, biliteral mandible, optic chiasm,

biliteral optic nerves, biliteral parotids, pituitary, biliteral

temporomandibular joints (TMJs), biliteral temporal lobes,

thyroid gland, trachea, brain stem and the corresponding

planning organ at risk volume (PRV) with 3mm margin, spinal

cord, and PRV with 5mm margin.

The VMAT plans were optimized in the Pinnacle 9.10 version

treatment planning system (TPS) (Philips Radiation Oncology

Systems, Fitchburg, WI, USA) with 6 MV photons. Two opposite

coplanar dynamic full arcs, each consisting of 91 control points,

were used to generate all plans. The dosimetric objectives of the

target volumes and OARs for direct optimization of machine

parameters were consistent. The final dose grid resolution was set

as 0.4 × 0.4 cm in the TPS and the dose maps were interpolated into

the same pixel size with the corresponding CT image. The

delineations of the regions of interest (ROIs) and treatment plans

were reviewed carefully and approved by our radiotherapy team

that included senior radiation oncologists and senior physicists.

A 10-fold cross validation was conducted for 100 cases that were

randomly partitioned into 10 equal-sized subsets. The model was

trained using nine subsets (90% of the data) and tested using the

remaining subset (10% of the data). Ten models were trained using

the same procedure, and 10 sets of results were obtained to evaluate

the performance of each established deep-learning method. The

dose distribution maps of the approved plans were adopted as

ground truth (GT) for model estimation.
2.2 Generating the DPTV maps and
structure maps

To incorporate the distance information for deep-learning

methods, the DPTV maps were generated as inputs. The DPTV is

defined as the minimum distance to PTV surface for each voxel of

normal tissue that was outside the PTV but within body range. The

DPTV was calculated in 3D to search the proximity distance to PTV

according to equation 1.

DPTVi = min  Distance(Voxeli,  VoxelPTV  )f g  Eq: 1

Voxeli ∈ Body   ∩​  Voxeli ∉ PTV ,    VoxelPTV ∈ PTV

For each slice of the DPTV map, the PTV voxels were labeled

“0” and DPTVi was the label value of each corresponding Voxeli.

The voxels in the outside body range were labeled “0.”

The same method based on our previous proposed study was

used to generate the structure maps (16). The targets, OARs, body,

and out-of-field voxels were assigned separate unique labels. The

overlap of the OARs and target was labeled with their summation.
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The out-of-field voxels were also specified because they have been

proven to achieve more accurate dose-prediction.
2.3 Experiments

2.3.1 Input and output of the networks
To identify the better combination of inputs for dose-prediction

models, two kinds of inputs were compared: The first one was to use

anatomical maps as two-channel inputs that included structure

maps and CT to train a deep-learning anatomical (ANAT) model.

The second one was to use combined anatomical maps as three-

channel inputs that included DPTV maps, structure maps, and CT

to train a deep-learning combined (COM) model. The outputs were

the corresponding dose distribution maps.

2.3.2 Architecture of the deep-learning networks
The overall end-to-end workflow of CNNs was proposed to

predict pixel-wise dose distributions. The ANAT model and COM

model were trained separately with the same network architecture.

The training workflow of the COMmodel is shown in Figure 1. The

main generator of the network was based on Resnet with 101 layers,

which had been introduced in our previous study (16). Conv1 is a

7×7 convolutional layer with 64 filters. A max-pooling operation is

then performed for downsampling. Conv2, Conv3, Conv4, and

Conv5 consist of 3, 4, 23, and 5 deeper bottleneck architectures

(DBAs), respectively (23). Each DBA has three convolutional layers

of 1×1, 3×3, and 1×1 and a connection. The output of Conv5 is 1/8

of the original image. An upsampling based on the fractionally-

strided deconvolution is used to restore the image resolution.

PyTorch was used to implement the process of model training

and testing on a workstation equipped with an Intel® Core i7 CPU

(3.4 GHz) and a TITAN XP graphics card. A total of 100 epochs

were set for training to ensure loss convergence.
2.3.3 Quantitative evaluation
2.3.3.1 Voxel-based comparison

The accuracy of the predicted dose distributions by the two

models were evaluated against the corresponding GT dose voxel-

by-voxel. The voxel-based mean error (ME) and mean absolute

error (MAE) were used as the evaluation indexes for outlines of

body (24). For each patient, the ME and MAE values in the range of

the body, whole normal tissue, and each ROI were separately

calculated, according to equation 2 and 3:

ME =  
1
N
oN

j=1
1
MoM

i=1(DPred(i) − DGT (i))

prescription   dose *100%   Eq: 2

MAE =  
1
N
oN

j=1
1
MoM

i=1 DPred(i) − DGT (i)j j
prescription   dose *100%   Eq: 3

where i is the index of the voxel in each ROI for each patient and

M is the total number of the involved voxels.DPred(i) andDGT (i) are

the predicted and GT dose of a voxel i, respectively, j is the index of

the case, and N is the total number of cases in the test set.
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2.3.3.2 Dosimetric comparison

Some critical dosimetric parameters of OARs related to the setting

of inverse optimization, including the mean dose and D5% (doses

delivered to 5% volume of an OAR), were calculated for both models.

2.3.3.3 DSC of isodose volumes comparison

The performance of different models were also evaluated by the

3D DSC (25) of isodose volumes calculated as equation 4.

DSCi =  
2(IViPred ∩

​ IViGT )
IViPred + IViGT

Eq: 4

where DSCi describes the degree of agreement between the

predicted isodose volume in dose i (IViPred) and the corresponding

isodose volumes of GT(IViGT). The DSCi of continual dose i within
Frontiers in Oncology 04
the range of prescription dose (1 Gy - 60 Gy) was calculated

respectively for each model and plotted for comparison.

Furthermore, the values of DSCi of dose i from 5 Gy to 55 Gy

with a 5 Gy bin were extracted for statistical analysis.

2.3.3.4 Statistical analyses

Differences in the values of MAE and DSC between the two

models were assessed by performing the paired t-test. The critical

dosimetric parameters were compared against GT values and

evaluated by the paired t-test. All of the statistical analyses were

performed in IBM SPSS Statistics for Windows software (version

25.0; IBM Corp., Armonk, New York, USA). All of t-tests were two-

sided. P values<0.05 were considered to be indicative of

statistical significance.
FIGURE 2

Examples of dose maps predicted by the COM model and ANAT model: the first column, the CT maps as input; the second column, the structure-
maps as input; the third column, the DPTV-maps as input; the fourth column, the dose maps of approved treatment plans; the fifth column, the
dose maps predicted by ANAT-model; the sixth column, the dose maps predicted by COM-model; the seventh column, the dose-difference maps
for ANAT-model; the eighth column, the dose-difference maps for COM-model.
FIGURE 1

Training workflow based on 101 with three input channels (CT, structure maps, and DPTV maps) of the COM model.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1041769
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1041769
TABLE 1 Comparison of the MAE for each OAR and target.

OARs ANAT model (%) COM model (%) OARs and targets ANAT model (%) COM model (%)

BrainStem PRV 5.68 ± 1.74 5.63 ± 1.83 Pituitary* 9.07 ± 6.08 7.63 ± 5.41

BrainStem 5.66 ± 1.90 5.66 ± 2.00 SpinalCord PRV 6.00 ± 1.99 6.05 ± 1.99

Larynx 4.35 ± 1.52 4.25 ± 1.39 SpinalCord 6.19 ± 2.26 6.17 ± 2.28

Lens L 1.99 ± 1.71 2.13 ± 1.93 TMJ L 4.77 ± 2.12 4.72 ± 2.50

Lens R 1.85 ± 1.41 2.00 ± 0.67 TMJ R 5.31 ± 2.82 5.50 ± 2.99

Mandible L 4.77 ± 1.20 4.60 ± 1.14 Temporal Lobe L 5.03 ± 1.70 4.75 ± 1.89

Mandible R 5.11 ± 1.49 5.03 ± 1.57 Temporal Lobe R 4.71 ± 1.68 4.52 ± 1.62

Optic Chiasm* 9.22 ± 5.17 8.08 ± 4.62 Thyroid Gland 5.01 ± 2.29 4.73 ± 1.48

Optic Nerve L 7.66 ± 4.24 7.09 ± 4.87 Trachea 4.48 ± 1.24 4.31 ± 1.21

Optic Nerve R 7.00 ± 4.57 6.41 ± 4.19 Parotid R 5.66 ± 2.38 5.54 ± 1.93

Parotid L 4.90 ± 1.54 4.80 ± 1.54 PTV 2.54± 2.44 2.52 ± 2.42

Boost 1.34 ± 0.30 1.30 ± 0.41
F
rontiers in Oncology
 0
5
*p<0.05.
FIGURE 3

Comparison of the mean DVHs between the COM model (dash lines), ANAT model (dot lines), and GT (solid lines).
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3 Results

As shown in Figure 2, both the COM model and ANAT model

predicted similar dose maps in acceptable agreement with the GT

for visual comparison. Figure 3 illustrates the mean DVHs of all

patients in the test dataset. The DVH curves predicted by the COM

model and ANAT model were close to those of the clinically

approved GT for most of the OARs and targets.

The MAE of the body volume was lower for the COM model

(4.89 ± 1.35%) compared to the ANAT model (5.07 ± 1.37%)

(p<0.001). As Table 1 shows, comparing the MAEs for most OARs,

there were no significant differences between the two models. The

MAE was significantly lower in the COM model than the ANAT

model only for the pituitary and optic chiasm. The mean MAEs of

the 21 OARs were 5.45 ± 1.80% for the ANAT model and 5.21 ±

1.49% for the COMmodel. For whole normal tissue, the mean MAE

was 5.18 ± 1.22% of the COM model, which was also highly

significantly lower than the 5.39 ± 1.25% of the ANAT

model (p<0.001).

The ME values of the body for the COM and ANAT models

were similar (p = 0.575) and were 0.21 ± 1.85% and 0.18 ± 1.91%,

respectively. As shown in Table 2, the mean ME values of 21 OARs

and two targets were also very similar but with no statistically

significant differences (p >0.05). For whole normal tissue, the mean

ME of the COMmodel was 0.20 ± 1.80%, which was very similar to

the ANAT model with 0.14 ± 1.89% of (p = 0.412).

As Figure 4 shows, the mean DSC values of the isodose volumes

within the range of prescription (1 Gy - 60 Gy) dose were all better

for the COM model than for the ANAT model. Table 3 shows that,

the mean DSC deviations of isodose between the two models from

10 Gy to 55 Gy ranged from 0.22% to 0.80% were with highly

statistical significance (p<0.001). For the DSC at 5 Gy isodose, the

deviations were also statistically significant (p = 0.01). The lowest

DSC values for the ANATmodel and COMmodel were 89.30% and
Frontiers in Oncology 06
89.72% respectively, when the isodose was approximately equal to

30 Gy.

As shown in Figure 5, no significant differences between the

dosimetric parameters predicted by the COM model and the

corresponding GT value for all OARs were found (p >0.05). For

most OARs, the dosimetric parameters predicted by the ANAT

model were also quite close to the GT values, with no significant

differences. Only for the right parotid was the average mean dose

predicted by the ANAT model (30.89 ± 4.59 Gy), which was

significantly higher than the GT value (30.15 ± 3.17 Gy).

However, the absolute difference was only 0.74 Gy.
4 Discussion

The novelty and the significant aspect of this study with two

main contributions: one is that we developed DPTV maps and

combined them with direct anatomical information (including

structure maps and CT) as input to train a COM deep-learning

model for dose-prediction; the other is we proved the COM model

could improve the accuracy of dose-prediction with highly

statistical significance. The DPTV maps provided the distance

relationship between each voxel in normal structures and target

volumes, which might be an important complement to anatomical

information for deep learning model training. Our 10-fold cross

validation results demonstrate the accuracy improvement in the

body dose prediction using the COMmodel with statistically highly

significant differences, including MAE of body and DSC of most

isodose volumes. The results were encouraging that the proposed

COM model incorporating the distance information could achieve

better dose-prediction results for whole-dose map prediction and

for some OARs, which means that the DPTV maps were able to

extract effective information not only for OARs but also for all

voxels of body.
TABLE 2 Comparison of the ME for each OAR and target.

OARs ANAT model (%) COM model (%) OARs and targets ANAT model (%) COM model (%)

BrainStem PRV -0.08 ± 4.65 0.19 ± 4.78 Pituitary 0.99 ± 10.46 1.26 ± 9.04

BrainStem -0.13 ± 4.84 0.20 ± 5.00 SpinalCord PRV 0.34 ± 4.54 0.61 ± 4.45

Larynx 0.59 ± 3.09 0.73 ± 2.98 SpinalCord 0.34 ± 4.98 0.62 ± 4.96

Lens L 0.81 ± 3.77 1.05 ± 4.45 TMJ L 1.25 ± 4.35 1.01 ± 4.72

Lens R 1.21 ± 4.44 1.11 ± 4.04 TMJ R 1.85 ± 5.15 2.06 ± 5.39

Mandible L 0.76 ± 2.97 0.59 ± 2.92 Temporal Lobe L 0.15 ± 4.15 0.00 ± 4.16

Mandible R 0.66 ± 3.33 0.49 ± 3.40 Temporal Lobe R 0.09 ± 3.94 0.18 ± 3.85

Optic Chiasm -0.23 ± 9.98 0.27 ± 8.95 Thyroid Gland 1.07 ± 5.86 1.70 ± 5.38

Optic Nerve L 0.70 ± 8.68 0.15 ± 8.80 Trachea 0.79 ± 5.94 0.81 ± 5.67

Optic Nerve R 0.66 ± 8.11 0.62 ± 7.47 Parotid R 1.17 ± 4.49 0.93 ± 4.19

Parotid L 0.60 ± 3.49 0.70 ± 3.43 PTV 0.30 ± 2.76 0.37 ± 2.79

Boost -0.31 ± 0.56 -0.24 ± 0.57
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The DSC results of whole isodose volumes were significantly

better for the COM model than for the anatomical input results,

especially in the range from 10 Gy–55 Gy (p<0.001). For the MAE

comparison of whole normal tissue and the body, the COM model
Frontiers in Oncology 07
also significantly outperformed the ANAT model. This finding was

mainly due to the fact that the received dose of each voxel in normal

tissue is related to its geometric proximity to the target. The voxels

of normal tissue that were proximal to the target were likely to

receive a higher dose than the dose received by distal voxels.

Generating DPTV maps set as the input of one channel in the

CNN model training is a simple and effective method to obtain

objectively patient-specific 3D spatial information.

A high-quality optimized plan requires not only setting

appropriate constraints of targets and OARs, but also considering

the dose modulation by virtual volumes (VVs) in normal tissue. The

VVs are designed to find the best compromise between adequate

PTV coverage and satisfactory conformity to protect normal tissue

as much as possible (26). For example, in inverse planning, planners

create different distances of annulus -shape structures from around

a target and set a series of dose constraints to make the dose

conform to the target volume. The proposed COM model showed

better performances in DSC and MAE of the whole normal tissue

which may benefit more accurate prediction of VVs for KBRT.

Our results reveal that for most OARs, the COM model gave

performance equivalent to that of the ANAT model, including

voxel-based comparison and dosimetric comparison. This was

mainly because the direct anatomical maps, including structure

maps and CT, were set as input for training both models. The direct

anatomical maps mainly focused on the shape and gray level of

OARs and targets. The parameter of DPTV was one of the essential
FIGURE 5

Comparison of the dosimetric parameters between the two models.
FIGURE 4

Comparison of the mean DSC values with of the isodose volumes
between the two models (The solid lines represent the mean value
of DSC for 2 models at each dose point and the corresponding
shaded areas represent the values of standard deviation.).
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features that has been widely used for the task of dose-prediction

using a convention-matching learning algorithm (11, 27). A DPTV

map can extract the distance features of the body, which could have

a role complementary to direct anatomical maps for obtaining high-

precision dose map prediction using deep-learning.

Some researchers have proposed to incorporate extra features as

inputs to improve the deep learning model of dose prediction, for

example, dosimetric features. Ma et.al (21) proposed the use of

contours-based features together with a PTV-only plan as the input,

which was found to predict dose distribution results far more

accurately compared with only contour-based features. The PTV-

only plan has proved that it could seek the best PTV coverage and

sacrifice sparing OARs by ignoring all OARs constraints in the deep

learning model. In the future, a combination of anatomical,

geometric, and dosimetric features should be carefully tested to

train the deep learning model.

There were several study limitations that should be considered.

First, we only used two-dimension Resnet to train the model.

Another architecture should also be tested and evaluated in the

future, including the 3D deep-learning method with inputs of

geometric and anatomical information. Second, we only imported

the NPC dataset with two-level prediction to train our dose-

prediction model, so a more general prediction model should be

studied in the future.
5 Conclusion

A deep learning model combining distance information and

anatomical information was built, and a comparison showed that it

outperformed a deep learning model using anatomical information

only with statistically highly significant differences. This result was

obtained because the distance information is also closely related to

the dose distribution. The studied network model with distance and

anatomical information provides a new way to obtain high-

precision dose-prediction and thus has the potential to improve

automated radiotherapy planning.
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TABLE 3 Statistical comparison of the mean DSC values of the isodose volumes between the two models.

Isodose (Gy) DDSC (%) P value Isodose (Gy) DDSC (%) P value

5 0.09 ± 0.36 0.01 35 0.43 ± 0.50 <0.001

10 0.22 ± 0.43 <0.001 40 0.51 ± 0.42 <0.001

15 0.28 ± 0.52 <0.001 45 0.80 ± 0.39 <0.001

20 0.40 ± 0.64 <0.001 50 0.65 ± 0.38 <0.001

25 0.42 ± 0.62 <0.001 55 0.50 ± 0.34 <0.001

30 0.42 ± 0.55 <0.001 60 0.04 ± 0.42 0.293
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