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Although the survival rate of pediatric cancer has significantly improved, it is still an

important cause of death among children. New technologies have been developed

to improve the diagnosis, treatment, and prognosis of pediatric cancers. Raman

spectroscopy (RS) is a non-destructive analytical technique that uses different

frequencies of scattering light to characterize biological specimens. It can provide

information on biological components, activities, and molecular structures. This

review summarizes studies on the potential of RS in pediatric cancers. Currently,

studies on the application of RS in pediatric cancers mainly focus on early

diagnosis, prognosis prediction, and treatment improvement. The results of

these studies showed high accuracy and specificity. In addition, the combination

of RS and deep learning is discussed as a future application of RS in pediatric

cancer. Studies applying RS in pediatric cancer illustrated good prospects. This

review collected and analyzed the potential clinical applications of RS in

pediatric cancers.
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1 Introduction

Pediatric cancer is uncommon but represents a significant cause of disease-related death

among children (1–3). Pediatric cancers represented only 2% of all reported cancer cases but

accounted for 10% of child deaths (4, 5). Leukemia (30–40%), central nervous system (CNS)

tumors (20%), lymphoma, and osteosarcoma (5%) are the most common pediatric cancers in

children aged 0–19 years (6, 7). Two peak incidences of pediatric cancers occur before the age

of two and during adolescence (8). Leukemia frequently occurs throughout childhood, while

CNS tumors account for most diagnoses in children under two years. Meanwhile, the

incidence of OS and lymphoma increases steeply after nine years (5, 9). In contrast to adult

cancers, pediatric cancers have more significant influence on children in the long term (4).

Pediatric cancer patients may die from cancers or their complications (10). Technologies
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1044177/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1044177/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1044177/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1044177&domain=pdf&date_stamp=2023-02-06
mailto:tuchao@csu.edu.cn
mailto:lizhihong@csu.edu.cn
https://doi.org/10.3389/fonc.2023.1044177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1044177
https://www.frontiersin.org/journals/oncology


Li et al. 10.3389/fonc.2023.1044177
focusing on pediatric cancer have significantly improved in the last

few decades, and survival has increased by over 60% (11, 12).

However, compared to adult cancer, there are approved treatments

for pediatric cancer. Once the patients grow up, side effects and

complications become more severe (13). Thus, new perspectives on

pediatric cancer are urgently needed to address these challenges

doctors face.

Raman spectroscopy (RS) is an optical spectroscopic technique

using different frequencies of scattering light to characterize biological

specimens (14, 15). It probes the vibrational modes related to

chemical bonds in a sample and obtains the “Raman Spectrum”,

which is a unique spectral fingerprint of the sample (16, 17). Different

samples possess their chemical compositions, which give RS the

ability to reveal changes in the components and structure of target

samples in a non-destructive manner (18). It provides deep insights

into biological activities, offering a new angle to analyze diseases and

assisting in diagnosis, treatment, and prognostic evaluation (15, 19).

In fact, vibrational spectroscopy has been quite active over the past

two decades. It is considered to be used for both in vivo and ex vivo

disease diagnosis (20). Moreover, it is applied in multitudinous areas,

such as characterization of tumor margins in surgery (21, 22), disease

detection using in vivo-endoscopic probe (23), and drug screening

(24, 25). Therefore, RS is highly valued for clinical application in

pediatric cancers and provides critical biological information for

doctors (26). This review summarizes articles on RS and pediatric

cancers within the last two decades and explores the clinical role of RS

in pediatric cancers.
2 Raman spectroscopy

21 Principle of Raman spectroscopy

The Raman effect was first discovered by the physicist C.V.

Raman and his team in 1928 (27, 28). They observed the

absorption and scattering of photons passing through a medium. If

a photon is absorbed by a molecule, the molecule will gain its energy.

However, if a photon is scattered and its energy remains the same, it is

called “elastic scattering”; otherwise, it is called “inelastic scattering”.

In addition, the inelastically scattered photons with higher energy are

called anti-Stokes Raman scattering, while those with lower energy

are Stokes Raman scattering (29) (Figure 1).

This little energy difference is known as the Raman effect (or

shift). It is a rare phenomenon that only happens in approximately

one in 107 of the incident photons (30, 31). This energy difference can

be used to detect different chemical bonds to identify molecular

structures (32, 33). Since the photon energy is inversely

proportional to the wavelength, Raman shift can perform a color

shift named the Raman spectrum. It is a plot of the intensity of the

scattered light under different wavenumber (cm-1) (34). This plot is

associated with a particular vibrational mode of the molecule and is

directly proportional to its concentration. It is a summary of all

Raman active molecules in a sample, such as proteins, lipids, etc. The

range below 2000 cm-1 is usually called the fingerprint region, which

is composed of unique Raman signals biological molecules (35, 36).

By analyzing the Raman spectrum, it is possible to detect specific

molecules and distinguish pathological tissues (37, 38). Moreover,
Frontiers in Oncology 02
biological activities inside normal or diseased tissues can also be

revealed (39, 40).
2.2 Advantages and disadvantages of
Raman spectroscopy

RS has advantages in clinical application, although its function is

restricted by some limitations. The key pros and cons of RS are listed

below (Figure 2). The most common advantage is its non-destructive

and label-free properties (41, 42). Since the influence of water in RS is

less than in other spectroscopies, various samples can be investigated,

including biological fluids, cell cultures, tissue sections, and organs

(43). After the acquisition of samples, cellular biological activities and

chemical components can be detected, which are suitable for chemical

analysis or cell classification (44). In addition, RS can be applied to in

vivo detection to monitor disease stage or the response of cells under

different situations, including drugs and pH (45).

Nevertheless, there are some shortcomings. Due to the low

probability of occurrence of Raman scattering, the signals of RS are

weak, limiting the sensitivity of RS (46). In addition, weak Raman

signals lead to a long acquisition time, and the interference of

autofluorescence may make the signal difficult to discern (47) (Schie

et al.) RS results mostly depend on the identification of spectral peaks.

The accuracy of the identification has a significant influence on the

final results. Most researchers identified RS data based on previously

published articles. Thus, without a database containing most of the

required peaks in the spectral range, peak identification can be time-

consuming (36). Unlike clinical biochemical examinations, RS requires

both normal and abnormal tissue for comparison, and data on RS

often require additional analysis (48).
2.3 Differences between Raman
spectroscopy and other spectroscopies

Infrared spectroscopy (IRS) and fluorescence spectroscopy (FS)

are powerful techniques in the clinical medical field. They have special

characteristics compared to RS (Table 1).

IRS and RS belong to a molecular vibration area. RS is based on

photon scattering, while IRS measures regions where the discrete

energy of molecules is related to vibration. The absorption of photons

in the electromagnetic spectrum was monitored and can be used to

discriminate different bonds in samples (49–51). In the IR region,

water absorbance is so strong that it could affect the collection and

analysis of IR spectra. However, Raman regions possess weak water

signals, which are more accurate for in vivo analysis.

FS has been applied in various diseases, such as breast cancer (52)

and cervical cancer (53, 54). It measures the concentration of a

substance in a solution based on fluorescent properties, which is

directly proportional to the intensity of emitted light (55, 56).
2.4 Raman-based technologies

Various types of enhanced Raman techniques were developed to

intensify the sensitivity of detection and speed up imaging production

(57, 58) (Figure 3).
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Raman micro-spectroscopy is a non-destructive technique that

combines RS with an optical microscope. It provides correlations

between biochemical and morphological properties (59, 60).

Furthermore, the combination of a confocal microscope and RS can

improve the depth of information. (61, 62). In Coherent RS,

vibrational modes are generated by two light sources. It focuses on

specific molecular bands that shorten the acquisition time (63).

Moreover, surface-enhanced RS (SERS) performs enhanced signals

with metal nanoparticles to increase the sensitivity (64, 65).
2.5 Data analysis of Raman spectra

Suitable multivariate analysis is crucial to make a diagnosis more

accurate. Data of Raman spectra are composed of multiple bands and

peaks that represent different molecules. In addition, the dataset of

Raman spectra contains intensity and wavenumber, and it is correlated

with diseases and cell types (66). Therefore, multivariate analysis is

necessary to simplify the data using statistical algorithms such as

principle component analysis (PCA). PCA reduces the dimension of

data, and most of the variation is unchanged (67, 68). This reduction is

completed by identifying the principal components. It can simplify the
Frontiers in Oncology 03
data by presenting a few samples instead of a large number of

redundant data. (69). Combining PCA with other statistical methods

can be used for discriminating between diseases, cell states, and cell

types (70). In general, multivariate analysis can be divided into two

classes: supervised and unsupervised, based on targets and samples

(71). Meanwhile, hierarchical clustering analysis (HCA) (72), k-means

clustering (KMC) (73, 74), and linear discriminant analysis (LDA) (75,

76) are supervised methods. Their purpose is to explore, and no

previous information about the samples is needed. On the other

hand, unsupervised methods focus on pattern recognition based on

existing labels like disease diagnosis or cell type classification.

Unsupervised methods include algorithms like PCA, multiple linear

regression (77, 78), and partial least squares (PLS) (79).
3 The roles of Raman spectroscopy in
pediatric cancer

This review is a collection of articles from the PubMed database

from 2012 to 2022 (Table 2). The search terms were Raman

spectroscopy, osteosarcoma, acute lymphoblastic leukemia, acute

myeloid leukemia, lymphoma, and glioma.
FIGURE 1

Elastic scattering, Stokes, and anti-Stokes Raman scattering. This is a scattering energy level diagram (molecular energy states). Stokes scattering leads to
an energy shift from incident photons to chemical bonds. Anti-Stokes scattering moves vibrational excited chemical bonds to the incident light.
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3.1 Osteosarcoma

Osteosarcoma is the most common malignant bone tumor in

children (108, 109), accounting for 20% of all bone malignancies (110,

111) and 2.5% of pediatric malignancies (112). According to

Surveillance, Epidemiology, and End Results (SEER) data from

1973 to 2004, the incidence of osteosarcoma has two peaks. The

first peak occurs between 10 and 14 years of age, while the second

peak is observed after 60 (113, 114). OS in adolescence commonly

develops in the metaphysis of long bones, such as the distal femur and

proximal tibia (115–117). With the improvement of technology, the

survival rate of OS has significantly increased from less than 20% to

around 70% (118). The number of studies exploring the clinical

application of Raman spectroscopy in OS within the last few decades

continues to increase. The applications of RS in OS are summarized

in Figure 4.
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Current pediatric osteosarcoma diagnosis, prognosis and

treatment decisions are composed of clinical manifestation, CT,

MRI scan, biopsy, and laboratory results (119). CT and MRI are

considered the most common and convenient diagnostic techniques

(120). A study indicated that the accuracy of CT and MRI in detecting

bone lesions of pediatric osteosarcoma was 67% and 86% (121).

Accurate clinical diagnosis of osteosarcoma requires biopsies.

However, it takes time and requires complex operations to get

precise the tumor tissue. To improve the efficiency of diagnosis,

Han’s team isolated exosomes from plasma and profiled multiple

biomarkers for the diagnosis of osteosarcoma (80). An exosome is a

small vesicle that carries nucleic acids, proteins, and lipids (122, 123).

It transmits information and plays an important role in tumorigenesis

(124, 125). In Han’s study, Raman bands at 1000, 1075, and 1375

cm−1 (CD63, vimentin (VIM), and epithelial cell adhesion molecule

(EpCAM)) in exosomes of osteosarcoma patients were significantly
TABLE 1 Characteristics of different spectroscopy.

Raman Spectoscopy IR Fluorescence

Region (wavelength [µm]) 2.5-200 0.75-1000 0.18-0.8

Mechanism Inelastic photon scattering
Absorption of specific frequencies of

light
Absorption and emission

Problems and challenges
1. Raman signal affected by

autofluorescence.
2. Long acquisition time.

1. Signal affected by water absorbance.
2. Influencing signal from H2O and

CO2.

1. Not suitable for intransparent samples.
2. Only works on molecules that absorb excitation
light.
IR, infrared.
FIGURE 2

Summary of the advantages and disadvantages of Raman spectroscopy in diagnosis. RS possesses non-destructive properties and is workable under various
environments, such as different pH or drug conditions. RS can be used to analyze tissue, blood, or supernatant samples and provides biomolecular
information on DNA or biomarkers. However, signals of RS are weak and can be affected by other interferents, such as fluorescence. HA, hydroxyapatite.
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higher. The area under the receiver operating characteristic curve was

0.971, and the sensitivity, specificity, and accuracy of the model in

identifying osteosarcoma was 100%, 90%, and 95% (80).

Osteosarcoma results from a disorder in the differentiation

procedures of mesenchymal stem cells (MSC) (126). Minerals like

hydroxyapatite (HA), a mineral form of calcium phosphate, are

highly expressed in osteoblast differentiation of MSCs and can be

measured using RS (127). Malignant cancer cells are immature and

produce less HA (128). Thus, it is possible to use HA as a potential

biomarker for grading differentiation. Chiang et al. developed an RS-

based measurement to grade in vitro osteosarcoma cells based on HA

level. A significant difference in the peak intensity of symmetric

stretching of phosphate groups (around 960 cm-1), which

represents the expression of HA in cells, was observed in Raman

spectra of living human fetal osteoblast (hFoB), human bone marrow-

derived mesenchymal stem cells (hMSC), low-grade (MG-63), and

high-grade (SaOS2, 143B) osteosarcoma cells. Results showed that

HA was highly expressed in MG63 cells but not in hMSC and SaOS2

and 143B cells (81). Based on a previous study, D’Acunto et al. also

employed RS to detect HA in MG-63 cells and MSCs. The

identification was based on HA Raman peaks (around 960 cm-1)

with the support of multivariate analysis, and the results suggested

that HA Raman peaks are greater in MG-63 cells (82). Moreover, the
Frontiers in Oncology 05
expression of matrix metalloproteinases (MMP2, MMP9) was rich in

high-grade but negligible in low-grade osteosarcoma. MMP is an

angiogenesis factor closely related to the invasion and metastasis of

tumors (129). The upregulation of MMP is correlated with poor

prognosis in osteosarcoma patients (130). Generally, MMP was

measured using RT-PCR, and the expression level was positively

correlated with HA levels. This may highlight the inverse correlation

between the HA level and the prognosis of osteosarcoma. Current

evaluation of the maturation of osteogenic differentiation is based on

histochemical and molecular biological methods, such as Alizarin red

staining, western blot, and RT-PCR (131, 132). However, these assays

are time-consuming and cannot be applied on live cells. The detection

of HA production using RS could be a rapid method for grading OS.

During surgery, accurate resection of tumor is extremely crucial for

patients’ prognosis. Yet, precise information of margin offered by

biopsy is time-consuming. In addition, CT and MRI are unable to

distinguish osteosarcoma cells from normal cells. In this case, RS is

suitable for rapid detection of osteosarcoma cells in the

resection margins.

A combination of chemotherapy and surgery is the conventional

therapeutic approach for pediatric osteosarcoma (133). Cisplatin is a

drug for osteosarcoma chemotherapy and the first platinum-based

anti-tumor drug widely used to treat cancers (134). Drug resistance by
FIGURE 3

Summary of different Raman spectroscopy techniques. Surface-enhanced RS (SERS) performs enhanced signals with metal nanoparticles; Confocal RS is a
combination of confocal microscope and RS; Raman micro-spectroscopy combines RS with microscope; and Coherent RS is RS with two light sources.
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TABLE 2 Summary of RS studies on pediatric cancers.

RS
Techniques Sample Diagnostic performance Reference Advantages

of RS
Disadvantages

of RS

Osteosarcoma 1. Early and
non-destructive
diagnosis
2. Can be
universally
applied in
patients.
3. Samples are
easy to be
acquired.
4. Tumor
margin
evaluation.

1. Lack of specific
marker for RS
diagnosis.
2. Lack of RS OS
database.
3. Time consuming
in analyzing tissue
samples.
4. RS data analysis
is complex.

SERS
In vitro, 143B, HOS, MG63 cells; Plasma
of patients (n=20) and control (n=20)

PLS-DA model accuracy: 95%, sensitivity: 100%,
Specificity: 90%.

(80)

RS
In vitro, five different cell lines (MSC,
hFOB, MG63, SaOS2, and 143B)

Not mentioned. (81)

Confocal RS
In vitro, Undifferentiated MSCs, Osteo-
differentiated MSCs, MG-63 cells

Not mentioned. (82)

Confocal RS In vitro, K7M2 cells
PCA-SVM model accuracy: 91.7%(24h), 90%
(48h).

(83, 84)

Confocal RS
In vitro, osteosarcoma compact bone
(n=10), trabecular bone (n=5), control
compact bone (n=1)

Not mentioned (85)

ALL and AML 1. Rapid and
economic
diagnosis
method.
2. Reveal
biomolecule
information.

1. Lack of RS ALL/
AML database.
2. RS data analysis
is complex.Confocal RS

In vitro, fresh blood sample of ALL
(n=5), AML (n=4), CML (n=3) and
control (n=21)

PCA-LDA model in leukemia detection and
classification sensitivity: 100%, specificity:100%

(86)

RS
In vitro, whole blood sample of leukemia
(n=17) and control (n=21). Plasma of
leukemia (n=15) and control (n=25).

PLS model of whole blood sensitivity: 91.9%,
specificity: 100%, accuracy: 96.5%. PLS model of
plasma sensitivity: 95.7%, specificity: 98%,
accuracy: 97.1%.

(87)

RS
In vitro, bone marrow supernatant of
AML (n=61), ALL(n=22) and control
(n=5).

OPLS-DA model sensitivity: 85%, specificity: 90%. (88)

RS
In vitro, MN60 cells from ALL patients,
leukocyte from control (n=3)

PCA model accuracy: 99%, PCA-LDA model
accuracy: 98.6%.

(89)

SERS

In vitro, bone marrow samples from
AML-M0 (n=13), AML-M2 (n=20),
AML-M3 (n=31), AML-M4 (n=2), AML-
M5 (n=89).

Not mentioned (90)

SERS
In vitro, cell line (THP-1, HaCaT), DNA
sample from AML (n=17), control
(n=17).

PCA-LDA model accuracy: 82.2%, SVM model
accuracy: 75.3%

(91, 92)

Confocal RS
In vitro, AML-M0 (n=2), AML-M2
(n=2), AML-M3 (n=2), AML-M6 (n=1).

PCA-LDA model accuracy: 98%. (93)

Raman micro
spectroscopy

In vitro, cell line (HL60, K562)
Classification accuracy of BaP treated cells:
95.23%, accuracy of control cells: 89.11%.

(94)

SERS
In vitro, bone marrow supernatant of
AML

Prognosis prediction model accuracy: 84.78%. (95)

Lymphoma 1. Simple and
non-destructive
diagnosis.
2. Samples are
easy to be
acquired.

1. Equipment of RS
are expensive.
2. RS data analysis
is complex.
3. Equipment is
costly. Hard to
promote in some
area.

SERS
In vitro, blood sample of DLBCL stage I
(n=19), stage II (n=19), stage III (n=9),
stage IV (n=6) and control (n=47).

Classification model accuracy: 87.3%, sensitivity:
92.1%, specificity: 80.9%. Discrimination of early
and late-stage model accuracy: 90.6%.

(96)

SERS
In vitro, lymph node tissue sample of
BCL (n=9), TCL (n=9), Met (n=10) and
control (n=10).

PCA-QDA discrimination model accuracy: 94.7%. (97)

RS
In vitro, DLBCL cell line (KML1, A4/
Fuk, HF), leukocyte from control.

Discrimination sensitivity: 74-94%, specificity: 90-
100%.

(98)

RS
In vitro, blood plasma of DLBCL (n=33),
CLL (n=39), control (n=30).

OPLS-DA CLL model sensitivity: 92.86%,
specificity: 100%. OPLS-DA DLBCL model
sensitivity: 80%, specificity: 92.31%.

(99)

(Continued)
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osteosarcoma is a problem that affects patients’ prognosis (135). In

this regard, a better understanding of cellular drug interactions is

needed for therapeutic improvement. Wang et al. selected RS as an

analytical technique for real-time extraction of biochemical

information from living cells, and spectra of in vitro K7M2

osteosarcoma cells treated with 20 mm and 40 mm were measured.

The results suggested that the major biochemical changes induced by

cisplatin in osteosarcoma cells are on protein and nucleic acid. Raman

bands of nucleic acids (766, 1096, 1248, and 1323 cm−1) were

decreased after treatment with cisplatin. Meanwhile, Raman bands

of cisplatin-induced apoptosis (657, 1002, 1248, 1450, and 1660 cm−1)

showed the most significant spectral features. The results indicate that

cisplatin mainly targets the nucleus and affects the secondary

structure of proteins (83, 84).

Extra Corporeal irradiation and Reimplantation Therapy (ECRT)

is an established biological reconstruction technique of limb salvage

surgery that mainly focuses on the treatment of malignant bone

tumors (osteosarcoma, Ewing sarcoma etc.) and presents good

clinical outcomes (136, 137). Specifically, the resected bone of

patients will be reimplanted after high-dose irradiation (50 Gy to

300 Gy). To enrich the understanding of compositional and structural

changes of bone under high-dose irradiation, Chauhan and team

investigated Raman spectra of human bone of fifteen osteosarcoma

and Ewing sarcoma patients on osteosarcoma treatment with 50 Gy

single-dose irradiation. Thirteen patients were under 18 years, and

three were between 18 and 26 years. Pre- and post-irradiation samples

were scanned by confocal Raman spectroscope using a 785 nm

excitation laser at 50% laser power. Thirty accumulations were

taken at the scan area, and the average was analyzed. The

evaluation of bone quality was conducted using calcium content

and mineral to matrix ratio, and change in collagen was quantified

with the deconvolution of Amide I peak. The findings showed that a
Frontiers in Oncology 07
50 Gy dose of radiation resulted in the loss of approximately 50% of

mineral components. Thus, irradiation might cause changes in bone

composition, which have negative effects on bone quality (85). This

provides valuable insights for clinicians in predicting the outcome of

high-dose irradiation and designing irradiation doses for treatment.

Early diagnosis of osteosarcoma mainly depends on imageology

results. RS possesses advantages in screening patients using their

biochemical information, and it is able to help doctors to determine

resection margins, which can largely reduce recurrence. In addition,

RS is universally applicable in pediatric patients since samples for RS

analysis are easy to acquire. Tumor biopsy is a destructive and painful

process for patients, and RS is an ideal replacement for biopsy.

However, RS has its limitations. Current RS can only be the

reference for clinicians as the accuracy of RS needs to be improved.

Mineralization level is a biomarker of bone-related diseases. Thus, the

future direction of RS can focus on detecting mineralization levels and

discovering specific markers for osteosarcoma.
3.2 Acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is a malignancy derived

from B/T cell lineage lymphatic progenitor cells during the

transformation of B/T lymphocytes (138, 139). It is the most

common malignancy of childhood and mainly develops in children

aged 2–5 years (140). The 5-year survival rate of children with ALL is

as high as 80–90% (141, 142). However, the prognosis of ALL

recurrence is still very poor (143). Thus, a more accurate

classification of ALL is needed to reduce recurrence and improve

the clinical outcome of ALL. In recent years, studies have aimed at

discovering the application of RS in ALL in multiple areas. The

applications of RS in ALL are briefly summarized in Figure 4.
TABLE 2 Continued

RS
Techniques Sample Diagnostic performance Reference Advantages

of RS
Disadvantages

of RS

Glioma 1. Guide the
resection of
tumor.
2. No
preparation and
special staining
are needed.
3. Real-time
diagnosis.

1. RS has limited
field of view.
2. RS data analysis
is complex.

RS
In vitro, samples from glioma patients
(n=4), healthy brain astrocytes.

Discrimination model accuracy: 92.5%. (100)

Confocal RS
In vitro, blood sample from glioma
patients (n=38), control (n=45).

PLS-LDA model accuracy: 97.87%, sensitivity:
98.1%, specificity: 98.19%.

(101)

SERS
In vitro, tissue samples from astrocytoma
(n=2), GBM (n=3), control (n=5).

Discrimination accuracy: 96% (102, 103)

RS In vivo detection of brain tumor cells. Discrimination sensitivity: 93%, specificity: 91%. (104)

RS
In vitro, tissue sample from pediatric
medulloblastoma (n=4), glioma (n=19)
and control (n=5).

Glioma identification accuracy: 96.7%,
medulloblastoma identification accuracy: 93.9%.
Tissue level classification accuracy: 100%.

(105)

RS
In vitro, samples from GBM,
medulloblastoma, meningioma and
control.

Discrimination model sensitivity: 97.4%,
specificity: 100%.

(106)

Raman micro-
spectroscopy

Human GBM cell line (U-251) Not mentioned (107)
RS, Raman spectroscopy; SERS, surfaced enhanced Raman spectroscopy; PCA, principal component analysis; HCA, hierarchical cluster analysis; LDA, linear discriminant analysis; PLS, partial least
squares; OS, osteosarcoma; hFoB, human fetal osteoblast; hMSC, human bone marrow-derived mesenchymal stem cells; HA, hydroxyapatite; MSC, mesenchymal stomal cells; ALL, acute
lymphoblastic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; NHL, Non-Hodgkin lymphoma; HL, Hodgkin lymphoma; NK, natural killer; DLBCL, diffuse large B-cell
lymphoma; Met, melanoma; OPLS-DA, orthogonal partial least squares discriminant analysis; SVM, support vector machine; BCL, B-cell lymphoma; TCL, T-cell lymphoma; Met, melanoma; CLL,
chronic lymphocytic leukemia; GBM, glioblastoma.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1044177
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1044177
The diagnosis of acute leukemia, including ALL and acute

myeloid leukemia (AML), mainly depends on clinical symptoms

and peripheral blood or bone marrow aspiration examinations.

Further classification is based on cell immunology, flow cytometry,

and molecular biology. However, these diagnostic methods are time-

consuming and costly (87). Therefore, low-cost and rapid diagnostic

methods are needed for early definition and classification of leukemia

(144, 145).

Confocal Raman microscope with a laser of 830 nm and power of

17 mW was applied on fresh blood serum from different types of

leukemia patients (Ages 8–50 years) and healthy volunteers to detect

and identify leukemia. The msain differences between leukemia and

control spectra were at 1,338 (tryptophan (Trp), a-helix, and

phospholipids), 1,447 (lipids), 1,523 (b-carotene), 1,556 (Trp)),

1,587 (protein, tyrosine (Tyr)), 1,603 (Tyr, phenylalanine (Phe)),

and 1,654 (proteins, amide I, a-helix, phospholipids) cm−1. Spectral

information was analyzed using PCA and LDA for discrimination

and identification of leukemia, and the prediction outcome using RS

was validated using pathological diagnosis. The results showed the

sensitivity and specificity of leukemia detection and discrimination

were 100%. (86). Current diagnosis of leukemia is mainly based on
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cytomorphology and immunophenotyping (146, 147). The accuracy

of phenotyping diagnosis is 94% (146), and the specificity and

sensitivity of flow cytometry are 98% and 95.7% (147). Diagnosis

based on RS is close or even better. RS was applied to whole blood

samples to identify spectral differences based on chemical

components like proteins, amino acids, and lipids. PLS

discrimination model based on whole blood spectra showed a

sensitivity of 91.9%, specificity of 100%, and accuracy of 96.5% in

discriminating leukemia from control. The classification of leukemia

subtypes using plasma had a sensitivity, specificity, and accuracy of

95.7%, 98%, and 97.1% (87).

According to a previous study, Raman peaks of Trp, Tyr, Phe,

phospholipid, and b-carotene contribute to the diagnosis of leukemia.

For further diagnosis, Liang’s team established a detection method for

AML and ALL, using bone marrow supernatant from 22 patients with

ALL (aged 3–55 years), 61 patients with AML (aged 1–69 years) and

five healthy donors (aged 1–40 years). Raman peaks of 1437, 1443,

and 1579 cm-1 (cholesterol, high-density lipoprotein (HDL), low-

density lipoprotein (LDL), adenosine deaminase (ADA), and

hemoglobin) were used for diagnosis. The results indicated that the

sensitivity of RS analysis was 85% and 90% specificity based on bone
FIGURE 4

Raman spectroscopy techniques in pediatric cancers. Summary of information on RS in osteosarcoma, ALL, AML, lymphoma, and glioma. RS techniques
were applied to various samples (blood, tissue, supernatant etc.) and produced Raman spectra. Data were analyzed using different algorithms, such as
PCA, OPLS-DA, and LDA. The results demonstrated the potential of applying RS in the diagnosis, treatment, and prognosis of pediatric cancers. DLBCL,
diffuse large B-cell lymphoma; GBM, glioblastoma; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; HA, hydroxyapatite; OS,
osteosarcoma; MSC, mesenchymal stem cells; PCA, principal component analysis; OPLS-DA, orthogonal partial least squares discriminant analysis; LDA,
linear discriminant analysis; DFA, discrimination function analysis.
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marrow supernatant (148). Another article published in 2018 used RS

to identify leukocyte subpopulations of lymphocyte (B, T, and natural

killer (NK) cells), monocyte, and granulocytes. Spectral differences

between monocytes and lymphocytes were nucleic acid and protein

bands. In addition, spectral differences around 833, 977, 1337, 1547,

and 1617 cm−1 were found in granulocyte. Classification based on

Raman data provides 99% accuracy. Moreover, they proved that RS

can effectively monitor the cell response to low-dose chemotherapy.

Methotrexate (MTX)-treated (0.01, 0.1, and 1 mm, 72 h) cells

presented a decreasing trend of RS intensities. In addition, proteins

and nucleic acids decreased as the concentration of MTX

increased (89).
3.3 Acute myeloid leukemia

AML is a group of aggressive hematopoietic malignancies that

arise from myeloid precursors (149). Although AML treatments have

improved significantly in recent decades, relapses of AML and drug

resistance are still the major challenges in the treatment of AML

(150), with only 40% of young patients staying in remission at five

years after treatment (151, 152). Therefore, more accurate

classification and diagnosis are needed. Advanced technology such

as RS can be applied in AML to improve outcome. A description of RS

techniques in AML is summarized in Figure 4.

The most recent study of AML and RS was conducted in 2022.

SERS with Ag nanoparticles was used to detect biochemical varieties

of blood serum samples from patients aged 16–60 years. Significant

differences were found in amino acids and proteins, which can be

used as SERS biomarkers to differentiate AML subtypes. Raman

bands at 495, 725, 1002, 1070, 1616, and 1653 cm−1 (amino acid,

nucleic acid, and protein) demonstrated significant differences in

samples. Quadruple detection of a combination of Raman band ratios

533/1002, 1070/1653, 725/1653, and 1616/1653 could be used as a

biomarker for the primary diagnosis of AML (90). Besides, some

articles mentioned above in the ALL section (86, 87, 148) also

demonstrated the potential of RS in the diagnosis and

classification AML.

Various diagnostic models have been established based on RS

techniques to obtain a rapid and accurate classification of AML. Low

methylation of DNA can be used to detect cancer (153). DNA from in

vitro AML cells were extracted and compared to normal DNA.

Raman spectra illustrated the 1005 cm-1 band of 5-methylcytosine

decreased, and classification based on this band demonstrated 82%

accuracy. Currently, next-generation sequencing (NGS) or flow

cytometry is used for tumor burden monitoring (154, 155). Yet, the

complexity of the AML gene and phenotype is challenging to monitor

(156). RS showed high accuracy, specificity, and sensitivity in

detection, which can be used as a valuable tool for follow-up (92).

Raman image combined with HCA is able to automatically

discriminate and localize cellular components, such as hemoglobin.

In addition, the accuracy of PCA and LDA classification models based

on RS reached 98%. Furthermore, typical vibration characteristics of

myeloblasts, promyelocytes (normal/abnormal), and erythroblasts

were demonstrated. However, the International Working Group on

Morphology of Myelodysplastic Syndrome (IWGM-MDS) reported

72–85% accuracy of manual examination (93).
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In addition, a better understanding of biochemical activities and

cellular response to drugs can improve treatment. In 2017, Denbigh

et al. performed vibrational spectroscopy (FTIR and RS) on regular

AML cells and cells treated with a combination of bezafibrate and

medroxyprogesterone acetate (BaP). Spectral differences revealed a

significant change in cellular lipid composition, indicating that lipid

biochemistry is a significant target for BaP. The accuracy of

classification was 95.23% for BaP-treated cells and 89.11% for

control cells (94). In order to predict patients’ prognosis, SERS was

used to measure biomolecular differences in bone marrow

supernatant fluid. The findings showed differences in amino acids,

saccharides, and lipids between patients with good and poor

prognosis. An AML prognostic model was established after

multivariate analysis of SERS results and achieved a prediction

accuracy of 84.78%. (95).

Traditional diagnosis of ALL and AML mostly rely on

morphology, flow cytometry, polymerase chain reaction, and gene

sequencing (157, 158), but these methods are either time-consuming

or costly. In contrast, RS is rapid and economical in ALL/AML

diagnosis. RS also reveals biomolecular information, which provides

new perspectives in ALL/AML treatment. Since ALL and AML

subtypes are numerous and hard to discriminate, abundant RS

information on the different subtypes of ALL/AML is needed to

make a more precise diagnosis. Establishing an RS database of ALL/

AML is an effective way to improve the clinical applications of RS.
3.4 Lymphoma

Lymphomas are one of the most common types of cancer in

adolescents and can be classified into Non-Hodgkin (NHL) (90%)

and Hodgkin (HL) (10%). Nearly 90% of lymphomas are derived

from B-cell and T-cell, and natural killer cells (NK) origin accounts

for only 10% (159). Lymphoma accounts for 22% of all cancers in

patients aged between 15 and 24 years (16% of HL and 6% of NHL)

(160, 161). Due to advances in treatment techniques, the overall

survival five-year of lymphoma has improved from 80.4 to 93.4% for

HL and 55.6 to 76.2% for NHL (162). More rapid and accurate

diagnosis and classification of lymphoma are vital. The applications of

RS in lymphoma are summarized in Figure 4.

In 2022, Katsara et al. suggested a rapid RS method for

characterization and differentiation. This method provides a non-

destructive strategy for early and accurate lymphoma classification

(163). SERS can be a non-destructive diagnosis and staging diffuse

large B-cell lymphoma (DLBCL) strategy on serum. Spectra of

DLBCL in different stages were compared and provided different

Raman spectral intensities. DLBCL serum samples had relatively

higher intensities at Raman bands 725, 1093, 1329, 1371, and 1444

cm−1 (hypoxanthine, adenine, thymine, collagen, and phospholipids)

and lower intensities at bands 493, 636, 888, 1003, 1133, 1580, and

1652 cm−1 (ergothioneine, uric acid, Tyr, lactose, Phe, acetoacetate,

amide I, and a-Helix). Multivariate analysis methods were then used

to establish DLBCL diagnosis and staging models. The accuracy,

sensitivity, and specificity of k-nearest neighbors (kNN) classifier

model was 87.3%, 92.1%, and 80.9%, respectively. As for the staging

model, the discrimination accuracy of early (Stage I & II) and late

(Stage III & IV) stages was 90.6% (96). In addition, the distinction
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between B-cell lymphoma (BCL), T-cell lymphoma (TCL), and lymph

node metastasis of melanoma (Met) is vital in treatment. However,

diagnosis through pathology or extensive immunohistochemistry

staining is laborious (164). RS is a rapid and novel method of

diagnosis. Two spectral differences were found in bands of 5-

methylcytosine and adenine. The overall discriminatory accuracy

between B-cell lymphoma (BCL), T-cell lymphoma (TCL), and

lymph node metastasis of melanoma (Met) was 94.7% (97). In early

2003, SERS active substrates were used to detect cancer genes, such as

BCL2. The SERS gene probes in this study can be used to detect DNA

targets which possess the sensitivity and specificity to detect cancer

genes (165).

Additionally, Agsalda-Garcia et al. performed standard RS to

analyze 11 pediatric NHL and non-malignant tissue specimens from

pediatric patients. However, pediatric NHL specimens consisted of

100% tumor tissues. The sensitivity of RS in samples comprised of

more than just tumor remains unknown (166). Intraocular

lymphoma is a special type of lymphoma that is difficult to

diagnose (167). RS was selected to improve the diagnosis of

intraocular lymphoma by analyzing spectra from intraocular

inflammatory leukocytes and other samples using multivariate

analysis. The sensitivity and specificity to discriminate between

lymphoma cells and normal B cells ranged from 74–94% and 90–

100% (98).

A study from 2020 reported in vitro blood plasma analysis of

hematopoietic tumors based on RS. Spectral characteristics of plasma

of DLBCL and chronic lymphocytic leukemia (CLL) were discovered,

and models of DLBCL and CLL were built using orthogonal partial

least squares discriminant analysis (OPLS-DA). Raman shifts at 1445

cm-1 and 1655 cm-1 were used to distinguish DLBCL and CLL,

demonstrating high diagnostic sensitivity (92.86% and 80%) and

specificity (100% and 92.31%) (99).

The current diagnosis of lymphoma is inclined to needle biopsy or

surgical excision (168). These methods are destructive and complex.

Compared to traditional diagnostic methods, RS is much simpler, and

the samples for analysis are diverse and easy to acquire. Similar to

other pediatric cancers, an accurate diagnosis requires the support of

a large database. Studies that enlarge the RS database are needed in

future to enhance the diagnosis. In addition, RS equipment is too

expensive in some areas with high incidences of Burkitt lymphoma

(169). Therefore, there is a need to invent economical and affordable

RS equipment.
3.5 Glioma

Glioma is a single-celled disease that occurs anywhere in the CNS,

especially in the brain and glial tissue (170, 171). It is the most

common primary CNS tumor, accounting for around 30% of CNS

tumors and 80% of malignant tumors (172). The World Health

Organization classifies gliomas into four grades based on malignant

behaviors (173). Gliomas are generally classified into two typical

types: Low-grade glioma (LGG), which includes grades I and II; and

high-grade glioma (HGG), which includes grades III and IV (174).

LGG and HGG accounts for nearly 33% and 62% of all gliomas,

respectively (175). Besides, gliomas can also be divided into various

kinds of tumors, from low-risk ependyma to the most dangerous
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glioblastoma (GBM), based on the histological features (176). The

applications of RS in glioma are summarized in Figure 4.

LGG is the most common glioma during childhood and accounts

for over 30% of CNS tumors (177, 178). The survival rate of glioma is

high (20-years overall survival of 87 ± 0.8%) since it can be surgically

removed (179). However, HGG is rare but very aggressive and fatal

due to its high recurrence. The incidence of HGG in children is higher

than in adults (180) and has a low survival rate of about 20% (181).

Thus, the clinical application of optical technologies like RS is

promising. The applications of RS in glioma are summarized

in Figure 4.

Iturrioz-Rodrıǵuez et al. compared GBM cells with healthy

human astrocytes in vitro using RS. Their results revealed that

spectral regions ranging from 1000–1300 cm-1 provide sufficient

information for discrimination. Raman peaks related to DNA/RNA

and cytochrome C are increased in cancer cells. Their model

distinguished cancer cells from healthy cells with an average

accuracy of 92.5% (100). Moreover, Ma et al. obtained Raman

spectra of pediatric blood plasma and used feature engineering-

based classification models for prediction. After fivefold cross-

validation that measures the predictive performance between

models, the results showed the sensitivity, specificity, and accuracy

was 98.10%, 98.19%, and 97.87% (101). Furthermore, Kowalska’s

team used SERS to distinguish glioma. Their results revealed the

spectral regions of Try (1450, 1278 cm-1), protein (1300 cm-1), Phe,

and Amide-I (1005, 1654 cm-1) have the greatest influence on the

study, and the accuracy of discrimination was 96% (103).

Generally, visually distinguishing cancer from normal tissue is

nearly impossible. Yet, it is crucial to CNS tumor surgery since the

invasive cancer cells often remain after surgery, leading to disease

recurrence (182). To solve this problem, Jermyn et al. developed a

handheld RS probe technique for detecting brain tumor cells. This

study was conducted during surgery in vivo and demonstrated an

accurate discrimination of normal brain from dense cancer and

normal brain invaded by cancer with a specificity and sensitivity of

91% and 93% (104). Additionally, Leslie’s team evaluated the

diagnostic ability of RS based on pediatric samples. They performed

routine pathology tests and RS to distinguish untreated pediatric

medulloblastoma, glioma, and normal brain samples. The accuracy of

identification based on tissue level was 100% (105).

Due to its aggressiveness, GBM can cause death shortly after

diagnosis. Aguiar et al. built a model using PCA and Euclidean

distance scores to discriminate cancer tissue from normal tissue.

Characteristic Raman peaks were lipid/phospholipid cholesterols and

proteins. The sensitivity and specificity of in vitro diagnosis was 97.4%

and 100% (106). Furthermore, mutations in the isocitrate

dehydrogenase 1 (IDH1) gene are genetic causes of glioma, leading

to metabolic changes (183). Uckermann et al. showed increased

intensities in spectral bands related to DNA in IDH1 mutant

glioma, whereas bands related to lipids were decreased. Results

demonstrated that RS could be used in a simple, rapid, and safe

IDH1 gene mutation-detecting program (184). In addition, Ricci’s

team used Raman micro-spectroscopy to detect the stress response of

GBM cells that adhered to a silicon substrate and showed reductions

in Raman signals of cytochrome C, lipid, nucleic acid, and protein.

The results demonstrated the potential of RS in studying cell

processes, which can improve the treatment (107).
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Similar to osteosarcoma, the diagnosis of glioma mainly depends

on imageology examination. RS detection of glioma reduces the level

of complexity. Moreover, RS can be used for guidance during surgery

by characterizing tissue margins, leading to precise resection (185). It

needs no special staining or any preparation, making real-time

diagnosis possible. However, RS surely has a limited field of view.

In future, this limitation can be fixed by combining RS with

complementary imaging techniques (104).
4 Discussion and future perspectives

Pediatric cancers have significant differences compared to adult

cancers. Most adult cancers are epithelial, composed of many somatic

mutations, and are often influenced by environmental factors, such as

smoking. In contrast, pediatric cancers are generally natural and

possess few somatic mutations. Therefore, prevention and diagnosis

are not as effective as in adult cancers (11, 186). Early and accurate

diagnosis is crucial in pediatric cancers. Delayed diagnosis often leads

to advanced diseases, complications, and increased risk of death (187–

189). In some areas, the accuracy of diagnosis is limited by the lack of

equipment (190–192).

RS techniques are often compared to traditional techniques. It is

not meant to replace classic techniques but to fill the niches.

Imagological examinations and biopsies are indispensable in

pediatric cancer (193). They assist clinicians in making an accurate

diagnosis. Early diagnosis of pediatric cancer is crucial since it

influences the patient’s treatment and outcome. Although

histological biopsy is generally applicable and is considered the gold

diagnosis standard in many cancers (194), it is commonly applied

after observing tumor-like structures using imagological

examinations. Thus, histological biopsy cannot be applied for early

cancer screening. In addition, it requires complex operations, which

are highly destructive (195). In contrast, RS techniques are suitable for

early diagnosis. RS is able to discriminate cancer cells from normal

cells after profiling the characteristic Raman peaks. Whole blood,

plasma, bone marrow supernatant fluid, and tissue samples can be

used for diagnosis. Compared to laboratory tests in leukemia, RS is

time-saving and accurate. During osteosarcoma or glioma surgery,

precise information of margin offered by biopsies is time-consuming,

and imagological examinations are unable to distinguish cancer cells

from normal cells. Handheld RS techniques offer in vivo margin

information to help tumor resection. Histological accuracy is not

completely 100% as it depends on the professional level of clinicians

and medical equipment. A study demonstrated the 75% accuracy of

diagnosis of Burkitt lymphoma in Uganda. Most pathologists have

not received specific training in the differential characteristics of NHL

and HL due to limited resources (190). RS-based diagnostic models

can assist pathologists in achieving higher accuracies.

Most studies are aimed at identifying cancer cells through

characteristic Raman bands. They were performed in vitro, using

samples and cells acquired from companies or patients. In vivo

experiments are rare in pediatric cancer diagnosis. They mainly

focused on evaluating therapy or guiding surgery. However, in vivo

application of RS is vital in pediatric cancers and is the future
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direction of RS studies. In addition to its application in diagnosis, RS

can reveal the deep interaction of drugs or biomolecules. Despite the

significant differences between pediatric and adult cancers, some

studies used samples from a wide age group of patients. This covers

most age groups, resulting in low accuracy or sensitivity of diagnosis

and misunderstanding of Raman fingerprints. There is a need to limit

the age range of patients. In addition, during clinical practice, samples

from patients always come with normal tissues. Thus, the accuracy,

specificity, and sensitivity of models in studies that focus on analyzing

100% pure cancer cells are limited in clinical applications. The

sensitivity and accuracy of RS in discriminating and classifying

tissues composed of mixed cells need to be assessed.

Deep learning based on a large amount of Raman spectra is also

popular nowadays. It provides a fast and accurate diagnosis of cancers.

Furthermore, it can predict the aggressiveness of cancer and make

better decisions for patients. However, it is essential to preprocess the

spectra data before inputting it into deep learning training. This is

important for selecting useful signals for deep learning and enhancing

spectral features. A study aimed to classify melanocytes and

melanoma by combining SERS with deep learning. Convolutional

neural networks were constructed for classification and demonstrated

an accuracy of over 98%. This study highlights the great potential of

combining RS and deep learning in clinical applications (196). Studies

have demonstrated that preprocessing of raw data can greatly affect

the outcome of diagnosis (49, 197). Additionally, researchers have

combined RS with other spectroscopies like IRS and FS to overcome

the disadvantages of RS. They can complement the shortcomings of

each other. IRS and RS were combined for oral cancer and breast

cancer diagnosis (198, 199). Furthermore, RS was used in

combination with Fourier Transform Infrared (FTIR) spectroscopy

to identify endometrial cancer and atypical hyperplasia (200). This

combination was also used in determining chemical changes in GBM

(201). Besides IRS, the combination of RS with FS has been applied for

breast cancer diagnosis (202).
5 Conclusion

Raman spectroscopy can provide molecular information on

pediatric cancers, which demonstrates its potential in clinical

applications of pediatric cancers. Raman fingerprints of different

pediatric cancer were established for diagnosis, and diagnostic

models were built and evaluated based on these characteristic

Raman bands. A decent accuracy, specificity, and sensitivity

indicate the potential role of RS in clinical diagnosis. As for

treatment, RS can detect in vivo cancer cells in tumor resection

margins and reveal interactions between drugs and cancer cells. In

summary, Raman has the ability to provide a rapid and accurate early

diagnosis of pediatric cancers, predict cancer prognosis, and

improve treatment.

In order to obtain higher resolution, faster results, and better

accuracy, it is necessary to develop enhanced Raman spectral

databases, suitable algorithms, and advanced instruments. More

studies on the applications of RS in pediatric cancer are needed to

make RS a stable, effective tool against pediatric cancers.
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Glossary

CNS central nervous system

RS Raman spectroscopy

SERS surfaced enhanced Raman spectroscopy

IRS infrared spectroscopy

FS fluorescence spectroscopy

PCA principal component analysis

HCA hierarchical cluster analysis

LDA linear discriminant analysis

PLS partial least squares

OS osteosarcoma

SEER Surveillance, Epidemiology, and End Results

VIM vimentin

EpCAM epithelial cell adhesion molecule

AUC area under curve

hFoB human fetal osteoblast

hMSC human bone marrow-derived mesenchymal stem cells

HA hydroxyapatite

MSC mesenchymal stomal cells

MMP2 matrix metalloproteinase 2

MMP9 matrix metalloproteinase 9

ECRT Extra Corporeal irradiation and Reimplantation Therapy

ALL acute lymphoblastic leukemia

AML acute myeloid leukemia

Tyr tyrosine

Trp tryptophan

Phe phenylalanine

BaP bezafibrate and medroxyprogesterone acetate

CML chronic myeloid leukemia

HDL High-density lipoprotein

LDL low-density lipoprotein

ADA adenosine deaminase

NHL Non-Hodgkin lymphoma

HL Hodgkin lymphoma

NK natural killer

MTX Methotrexate

IWGM-
MDS

International Working Group on Morphology of Myelodysplastic
Syndrome

DLBCL diffuse large B-cell lymphoma

Met melanoma

OPLS-DA orthogonal partial least squares discriminant analysis

(Continued)
F
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SVM support vector machine

kNN k-nearest neighbors

BCL B-cell lymphoma

TCL T-cell lymphoma

Met melanoma

PLS-DA k-nearest neighbors

CLL chronic lymphocytic leukemia

AsLS Asymmetric Least Squares analysis

LGG low-grade glioma

HGG high-grade glioma

GBM glioblastoma

IDH1 isocitrate dehydrogenase 1;
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