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Objective: Neuronavigation and classification of craniopharyngiomas can guide

surgical approaches and prognostic information. The QST classification has been

developed according to the origin of craniopharyngiomas; however, accurate

preoperative automatic segmentation and the QST classification remain

challenging. This study aimed to establish a method to automatically segment

multiple structures in MRIs, detect craniopharyngiomas, and design a deep

learning model and a diagnostic scale for automatic QST preoperative classification.

Methods: We trained a deep learning network based on sagittal MRI to

automatically segment six tissues, including tumors, pituitary gland, sphenoid

sinus, brain, superior saddle cistern, and lateral ventricle. A deep learning model

with multiple inputs was designed to perform preoperative QST classification.

A scale was constructed by screening the images.

Results: The results were calculated based on the fivefold cross-validation

method. A total of 133 patients with craniopharyngioma were included, of

whom 29 (21.8%) were diagnosed with type Q, 22 (16.5%) with type S and 82

(61.7%) with type T. The automatic segmentation model achieved a tumor

segmentation Dice coefficient of 0.951 and a mean tissue segmentation Dice

coefficient of 0.8668 for all classes. The automatic classification model and

clinical scale achieved accuracies of 0.9098 and 0.8647, respectively, in

predicting the QST classification.

Conclusions: The automatic segmentation model can perform accurate multi-

structure segmentation based on MRI, which is conducive to clearing tumor

location and initiating intraoperative neuronavigation. The proposed automatic

classification model and clinical scale based on automatic segmentation results

achieve high accuracy in the QST classification, which is conducive to

developing surgical plans and predicting patient prognosis.
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Highlights

• A segmentation method was used to segment six tissues with a

mean Dice value of 0.8668.

• A classification model was used to predict the QST subtypes

with an accuracy of nasa 0.9098.

• A clinical scale to predict the QST subtypes with an accuracy

of 0.8647.
1 Introduction

Craniopharyngiomas (CPs) arise from tumors of the epithelial

cells of Rathke’s capsule and account for 2%–5% of primary

intraluminal tumors (1, 2). Despite being pathologically benign,

these tumors can be aggressive and locally affect important

structures, including the hypothalamic–pituitary axis, and cause

serious postoperative complications (3–5). The standardized

mortality ratio (SMR) decreased significantly after 2010, but an

SMR of 2.9 and serious complications still cannot be ignored (6).

At present, many studies classify CPs according to the impact

characteristics, but according to our research, only a small number

of current studies have compared the impact of different surgical

methods on different types of CPs, including the transcranial

approach (TCA) and the endoscopic endonasal approach (EEA)

(7–9). A recent study classified CPs into three types according to the

QST classification system based on the origin of the tumor: 1)

infrasellar/subdiaphragmatic CPs (Q-CPs), which arise from the

subdiaphragmatic infrasellar space with an enlarged pituitary fossa;

2) subarachnoidal CPs (S-CPs), which arise from the middle or

inferior segment of the stalk and tend to extend among cisterns; and

3) pars tuberalis CPs (T-CPs), which arise in the top of the pars

tuberalis, mainly extend upward, and occupy the third ventricular

compartment (10, 11).

The OST classification system advances our knowledge of the

morphological traits, growth patterns, and actual connections

between CPs and the hypothalamic–pituitary axis. Based on the

QST classification, the researchers found a relationship with

prognosis. They found that EEA in the Q-CPs increased the rate

of tumor resection and had a greater probability of visual

improvement, while TCA was recommended in the T-CPs with a

better prognosis for hypothalamic function (12–14). T-CPs were

also reported with sodium disturbance (15). Therefore, an accurate

diagnosis of the QST classification before surgery will be important

for surgeons in selecting the surgical approach to maximize

patients’ quality of life after surgery.

However, the preoperative identification of tumor types

requires accumulating clinical experience in large series, which is

an unavoidable limitation for most institutions. Furthermore, many

CP cases with different QST types have similar morphology, behave

similarly on conventional preoperative examination, and bring

difficulties for even experienced hands. Therefore, using new

image-based methods to accurately classify QST types of tumors

preoperatively is of great value to clinicians.
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Currently, methods based on radiomics and deep learning (or

machine learning) are increasingly used in neurosurgery and show

promising clinical application value, such as neuronavigation and

prognostic analysis (16–18). Previous studies have performed

structural segmentation for CPs or pathological classification (19,

20). However, there is still a lack of a multi-structure segmentation

method for CPs and a deep learning model based on the QST

classification, which significantly limits visual analysis and surgical

decision-making.
2 Materials and methods

An overall flowchart was built and illustrated in Figure 1,

including data acquisition, tumor segmentation, classification, and

performance analysis.
2.1 Participants

A total of 133 patients diagnosed with craniopharyngioma at

the Affiliated Hospital of Southern Medical University were

enrolled in this study. Surgeons designed different surgical plans

according to the size and location of the tumor, including

transsphenoidal surgery or craniotomy. According to the specific

criteria of the QST classification, the surgeons carefully evaluated

the origin of the tumor for each patient during surgery. The basic

clinical characteristics of patients were also collected in this study.

The study was reviewed and approved by the Ethics Committee of

the Affiliated Hospital of Southern Medical University.
2.2 Segmentation protocol of MRI

According to clinical experience, preoperative classifications are

established based on the sagittal view of MRI. In this study, we used

sagittal MRI scans as the main imaging data. All patients were

scanned by a 3.0-T scanner with a pixel size of 0.45 mm and a slice

thickness of 6 mm. To accurately localize and classify the tumor, we

manually labeled the T1-enhanced MRI images into seven classes,

including background:
0: Background, i.e., non-labeled component.

1: Tumor: containing all tumor components, such as enhanced

cyst walls and heterogeneous cysts.

2: Pituitary: considering that the pituitary stalk is relatively

small and difficult to label alone; the pituitary stalk and

pituitary gland were classified into the same category.

3: Sphenoid sinus, including the air space of the sphenoid sinus

and the bony structure (the dura surrounding the pituitary

fossa).

4: Brain: the normal brain structure, including the cerebrum,

cerebellum, and brainstem,
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Fron
5: Suprasellar cistern: a structure around the pituitary stalk,

above the pituitary gland, and below the brain, containing

the suprasellar cistern and the interpedal cistern. This

structure can be absent due to tumor compression.

6: Ventricle: lateral ventricles.
The annotations were made by three physicians with 7 years of

neuroimaging experience and verified by one physician with 20

years of neuroimaging experience.
2.3 Establishment of the automatic
segmentation model

Since the sagittal MRI has a large slice thickness, we

transformed the entire 3D MRI into several 2D slices for training.

However, the volumes of different tissues varied among CPs; for

example, the volume of the brain was thousands of times larger than

the volume of the pituitary. Excessive downsampling layers in

convolutional neural networks (CNNs) would lose positional

information on small volumes of tissues caused by such class

imbalance. Therefore, we adopted nnUNet as the backbone CNN

and proposed a feature-swapping layer to exchange the features of

different resolutions extracted in the encoder (Figure 2) (21). The

exchanged features can effectively integrate different levels of

semantic information for accurate segmentation of structures

with small volumes. The original MRI was input to training with
tiers in Oncology 03
fivefold cross-validation, deep supervision was used to increase the

stability of the training, and the Dice coefficient was used as the

judgment criterion for the separation accuracy.

Dice   coefficient =  
2 A ∩​ Bj j
Aj j + Bj j

where A and B represent the manual segmentation and deep

learning results, respectively. The training process for each fold

took approximately 15 h on an NVIDIA 3090 GPU with 24 GB of

random-access memory.
2.4 Feature extraction

Based on the results of automatic segmentation augmented with

minor modifications by experts, we performed feature extraction for

each patient, including the volume, location, and diameter of six

segmented tissues. In particular, according to the growth

characteristics of tumors classified by the QST classification, we

proposed several characteristics based on experts’ clinical views that

may be of important significance: the volume of tumors anterior to

the tuberculum sellae, the volume of tumors occupying the pituitary

fossa, the morphology of tumors (referring to regular pyramidal

structure or inverted pyramid structure, we used the relative location

of the maximum transverse diameter of the tumor to describe this

feature), the aspect ratio of tumors, the location of tumors relative to

the brain, and the location of tumors relative to the sellar region.
FIGURE 1

Flowchart of segmentation and classification. Four main steps are illustrated, including data acquisition, tumor segmentation, classification, and
performance analysis.
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2.5 Establishment of the
classification model

In this study, we presented a classification network to

integrate multimodal inputs (Figure 3). The inputs of the

classification network contained raw MRI data, autosegmented

images with manual modifications, and automatically extracted

clinical knowledge-based features. Since features with different

modalities cannot be concatenated directly, we first set up an

image feature extraction module based on the ResNet50

backbone. The sagittal slice with the largest tumor area of each

patient was selected. Segmentation results of sagittal slices were

fed into the classification network after one-hot coding.

Extracted features from the image feature extraction module

and clinical knowledge-based features were fed into the final

discriminator for classification, and the probability of each type
Frontiers in Oncology 04
of class was output. We adopted the three-class CrossEntropy

loss as the loss function. The classification network also applied

fivefold cross-validation for training, and each training took

approximately 2 h on an NVIDIA 3090 GPU with 24 GB of

random-access memory.
2.6 Scale establishment

Considering that deep learning depends on hardware support,

which limits clinical practice, we proposed a clinically practical scale

for the rapid QST classification of CPs. We selected easily accessible

features and analyzed the contribution and significance of each

feature to construct a clinical scale based on multivariate logistic

regression (22). The cutoff value of each feature was determined by

the maximum AUC value.
FIGURE 3

Automatic classification network structure for QST classification. The inputs of the classification network contained raw MRI data, autosegmented
images with manual modification, and automatically extracted clinical knowledge-based features. An image feature extraction module was proposed
based on the Resnet50 backbone. Extracted features from the image feature extraction module and clinical knowledge-based features were fed into
the final discriminator for classification, and the probability of each type was output.
FIGURE 2

Automatic segmentation network structure for craniopharyngiomas. The proposed model was based on the nnUNet backbone with deep
supervision. We proposed a feature-swapping layer to exchange the features of different resolutions. First, the input (MR image) was encoded to
features with different resolutions. After swapping features, the encoded features were decoded to the segmentation map as the final output.
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2.7 Statistical methods

SPSS software (version 25.0) was used for univariate and

multivariate logistic regression analyses and AUC value

calculation. We use ITK-snap (University of Pennsylvania,

www.itksnap.org) for the annotation of images, Python 3.7 for

the processing of data, and PyTorch (version 1.7.1) for the

construction of neural networks. Two-sided p-values<0.05 were

considered significant.
3 Results

3.1 Patient characteristics

A total of 133 patients from the Affiliated Hospital of Southern

Medical University were included in the study (Table 1). We

diagnosed all patients according to operational findings of the

tumor origin, including 29 (21.8%) patients with Q-CPs, 22

(16.5%) patients with S-CPs, and 82 (61.7%) patients with T-CPs.

Patients with Q-CPs were younger (age 18.8 ± 16.3 years) and had

smaller pituitary volumes (0.01 ± 0.01 cm3). Patients with T-CPs

were more likely to present with hydrocephalus on images (59 in 82,

72%). Headache and visual impairment were the main symptoms

among patients with three tumor types (63.2% and 69.2%,

respectively). The enrolled patients showed a large tumor volume

on MR images (21.9 ± 19.8 cm3).
3.2 Automatic segmentation results

Due to the use of fivefold cross-validation, an average of 106

patients were selected for the training set, and 27 patients were

selected for the testing set. The automatic segmentation achieved a

Dice coefficient of 0.951 for tumors, 0.724 for pituitary, 0.877 for

sphenoid sinuses, 0.974 for the brain, 0.737 for superior saddle

cisterns, and 0.938 for superior saddle cisterns lateral ventricles. The

average Dice coefficient of the six labeled classes was 0.8668. The
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high Dice coefficient of 0.951 for tumors indicates that our

automatic segmentation model had precise CP recognition ability,

which was the key for our subsequent work. The segmentation

results are shown in Figure 4.
3.3 Classification model results

According to the segmentation results of deep learning and

knowledge based on clinical experience, we automatically extracted

a total of 34 clinical features as follows: the length of three diameters

in three axes for six tissues (18 features), the volume of six tissues

(six features), the position of the tumor relative to the brain in three

axes (three features), the position of the tumor relative to the sellar

region in three axes (three features), the relative location of the

maximum transverse diameter of the tumor (one feature), the

tumor volume in the sellar region (one feature), the tumor

volume anterior to the sellar tubercle (one feature), and the

aspect ratio of the tumor (one feature). By using deep learning

extraction, we extracted 32 depth features; therefore, a total of 66

features were fused and input into the discriminator for learning.

Similarly, a fivefold cross-validation was applied, with an average of

106 patients selected for the training set and 27 for the testing set.

Finally, we achieved a classification accuracy of 0.9098 on average.

Table 2 shows the results of the automatic classification model,

which showed high discriminatory ability for the Q and T types

(sensitivity of 0.9656 and 0.9634 and specificity of 0.9423 and

0.8824, respectively) but the poor discriminatory ability for the S

type (sensitivity of 0.6364, but specificity of 1.0).
3.4 Clinical scale results

To further simplify the clinical process and improve the

accuracy based on multivariate logistic regression, we selected

nine characteristics to construct a clinical scale for ease of clinical

measurement (Table 3). For each type of classification, the scores

ranged from 0 to 16. Using this scale, the classification was made by
TABLE 1 Characteristics of enrolled patients with QST classification.

Classification ALL Q S T

Number of patients 133 29 22 82

Male, (%) 77 (57.9) 14 (48.3) 11 (50.0) 52 (63.4)

Age, years 30.8 ± 20.4 18.8 ± 16.3 33.9 ± 17.2 34.2 ± 21.0

Course, months 38.6 ± 16.9 36.8 ± 13.3 34.6 ± 17.4 40.3 ± 17.9

Visual impairment, (%) 92 (69.2) 22 (75.9) 17 (77.3) 53 (64.6)

Headache, (%) 84 (63.2) 17 (58.6) 11 (50.0) 56 (68.3)

Hydrocephalus, (%) 81 (23.3) 14 (48.3) 8 (36.4) 59 (72.0)

Tumor volume, cm3 21.9 ± 19.8 24.2 ± 26.3 25.8 ± 26.2 20.0 ± 14.6

Pituitary volume, cm3 0.36 ± 0.30 0.01 ± 0.01 0.49 ± 0.30 0.45 ± 0.26
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choosing the class with the highest score among the three types. If

the scores were the same, the T type was preferentially diagnosed,

followed by the S type.

According to the scale, we found that the inability to visualize

the tumor was the most important characteristic for the diagnosis of

Q-CPs, and at the same time, Q-CP tumors had larger supero-

inferior diameters and smaller anteroposterior diameters, and their

location was anterior. Important features for the diagnosis of S-CPs

were having no significant ventricular dilatation, a large tumor

volume anterior to the sellar tubercle, a relatively anterior location,

a large aspect ratio, and the largest transverse diameter appearing

inferiorly. For the T-CPs, the pituitary needed to be visible, the

internal tumor volume in the saddle area was small, there was

significant ventricular dilatation, the tumor location was relatively

posterior, and the maximum transverse diameter appeared above.

As shown in Table 2, the diagnosis of the Q-CPs can reach a

high accuracy of 0.9549, while the accuracy of the S- and T-CPs is
Frontiers in Oncology 06
low (0.8947 and 0.8797). Similar to the classification model, the

sensitivity of the S-CPs was low according to this scale. Overall, the

proposed scale achieved an accuracy of 0.8647 for the classification

of three types of tumors.
4 Discussion

In this study, we proposed a notable multi-tissue segmentation

standard that can display six adjacent morphological structures of

CPs and established a multi-tissue automatic segmentation method

for CPs, which achieved a segmentation Dice coefficient of 0.951 for

tumors and an average Dice coefficient of 0.8526 for six tissues.

Based on the results of automatic segmentation, we proposed an

automatic classification model and a simple clinical scale for the

QST classification, which achieved accuracies of 0.9098 and

0.8647, respectively.
FIGURE 4

Segmentation result of craniopharyngioma with QST types. Three MRI with segmentations were shown, which were classified as Q (A, D, G), S (B, E, H), and
T (C, F, I) subtypes according to the QST classification system. The first row (A–C) shows the original contrast-enhanced T1 image; the second row (D–F)
shows the multitissue segmentations; and the third row (G–I) illustrates the QST classification system. The three columns are diagnosed as Q, S, and T
types, respectively.
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4.1 Classifications and surgical outcomes
of craniopharyngiomas

There are many kinds of CP classifications. Pascual classified

intraventricular craniopharyngiomas (IVCs) into strict IVC and

non-strict IVC and found that strict IVC had a worse prognosis (8).

Samii classified CPs into grades I–V according to the relationship

between the pituitary gland and adjacent structures and found that

patients who underwent total resection had a worse neuroendocrine

prognosis (9, 23). Kassam graded CPs according to their suprasellar

extension (I–IV) and concluded that more skilled endoscopists were

needed to expose the field of view and should also be familiar with

anatomical knowledge for larger tumors (7). Cao reported that EEA

should be considered the first choice for intrasuprasellar and

suprasellar types in a four-type craniopharyngioma classification

(24). Tang’s classification based on an endoscopic approach divided

craniopharyngiomas into the central type and peripheral type and

found that most of the central type had a poor stalk preservation

rate, while hypothalamus damage was more common in the

hypothalamic stalk type (one of the three subtypes of peripheral
Frontiers in Oncology 07
type) (11). Additionally, other classifications based on the

anatomical structure of the sellar region show that the

relationship between the tumor and these structures affects the

surgical approach and prognosis of the tumor (25–27). The QST

classification is based on the origin of the tumor, which can explain

the process of tumor growth and provide guidance for surgery, such

as stripping the site of origin. To some extent, it helps to select the

surgical approach, such as EEA for Q type and TCA for T type,

which will have a better prognosis of visual improvement and

hypothalamic function (12).
4.2 The accuracy of automatic
segmentation

Our proposed methods achieved a high Dice coefficient for CP

segmentation, while segmentation methods for CPs have not been

reported in previous studies. For one of the tumors in the sellar

region, relevant literature showed that they can achieve a Dice

coefficient of 0.940 for pituitary adenomas in CE-T1 and 0.742 for
TABLE 3 Clinical scale for fast classification of craniopharyngioma with QST types.

Type Q S T

component points component points component points

Pituitary not clearly seen 8 / clearly seen 6

Tumor diameter (antero-posterior) <3.5cm 3 / /

Tumor diameter (supero-inferior) >3.5cm 2 / /

Ventricle dilatation / No 5 Yes 3

Position of tumor relative to the brain Anterior 3 anterior 2 posterior 1

Location of the maximum transverse diameter / inferior 2 superior 2

Tumor volume in the pituitary fossa / / <2.1cm3 4

Tumor volume front of the tuberculum sellae / >0.8cm3 3 /

Aspect ratio / >1.1 4 /
NA, not applicable.
TABLE 2 Performance comparison between deep classification network and clinical scale.

Deep classification network Q S T 3type

Sensitivity 0.9656 0.6364 0.9634 NA

Specificity 0.9423 1 0.8824 NA

Youden index 0.9079 0.6364 0.8458 NA

Accuracy 0.9474 0.9398 0.9323 0.9098

Clinical scale Q S T 3type

Sensitivity 0.9656 0.7273 0.8659 NA

Specificity 0.9519 0.9279 0.902 NA

Youden index 0.9175 0.6552 0.7679 NA

Accuracy 0.9549 0.8947 0.8797 0.8647
if the scores are equal, the priority of the diagnosis is T>S>Q.
The range of the score is 0–16 for three types and type with maximum score is diagnosed as the final type.
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nasopharyngeal carcinoma in CT, reporting lower coefficient results

than ours (16, 28). Second, the segmentation accuracies of some

structures, such as the pituitary and suprasellar cistern, were low.

The reasons could be listed as follows: first, the smaller the tissue

volume, the more difficult it was to segment. As manual labeling

errors were inevitable, the impact of errors on small tissues was

more significant for the segmentation model than on large tissues.

Second, these tissues were located near the tumor and were

vulnerable to tumor compression. Even in some cases, we were

not able to observe pituitary tissue or the pituitary stalk from the

sagittal view, and the large deformation brought difficulties in the

segmentation process. Previous studies have shown that automatic

segmentation of the pituitary gland adjacent to pituitary tumors is

also difficult, with a low Dice coefficient of 0.6, indicating that

pituitary tissue is difficult to segment when there is tumor

compression (16). Overall, we achieved a segmentation Dice

coefficient of 0.951 for tumors and an average Dice coefficient of

0.8526 for all tissues, indicating that our model can perform

accurate segmentation for most clinical CPs.
4.3 Comparison of the extracted features
among QST types

We hoped to explain a tumor by its originating location and

growth characteristics. The origin of tumors of the QST types can

start from the middle lobe of the pituitary gland and proceed to the

mantle segment of the pituitary stalk sleeve to the top of the pars

tuberalis. The farther the distance between the pituitary gland and

the tumor, the lighter the compression of the pituitary. The tumor

compression that led to the pituitary of the Q type constituted the

most difficult case to distinguish, having a large tumor volume in

the pituitary fossa, whereas the pituitary of the T type was the easiest

to distinguish, with a small tumor volume in the pituitary fossa.

From the aspect of the growth direction, the pituitary fossa is

surrounded by bony structures with less deformation, resulting in

the Q-CPs pushing or breaking the saddle diaphragm and growing

upward. Therefore, S-CPs have a smaller anteroposterior diameter

and a larger supero-inferior diameter.

S-CPs originate from the arachnoid sleeve segment of the

pituitary stalk and are surrounded by a suprasellar cistern with

less pressure. It easily grows toward the suprasellar cistern with a

transverse growth pattern, resulting in a large anteroposterior

diameter and a positive pyramid-like structure. Therefore, S-CPs

with an anterior growth pattern can be characterized by a large

volume anterior to the pretuberculum sellae and are located

anteriorly relative to the brain.

T-CPs originate from the top of the pars tuberalis and the loose

segment of the arachnoid membrane, and they can easily invade the

floor of the third ventricle. With a multidirectional growth pattern,

T-CPs compress the lateral ventricle, resulting in ventricular

dilatation. T-type tumors with an irregular growth pattern show

an inverted pyramid-like structure, and they are located posteriorly

relative to the brain (29).
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4.3 Comparison of discriminatory abilities
among different types

The sensitivity and specificity of the Q type were relatively high,

while the sensitivity and Youden value of the S type were relatively

small. Considering the origin position being a bottom–up order

from Q type to T type, the S-CPs were in the middle position,

resulting in the invasion of the pituitary fossa and compression of

the ventricle, which was difficult to distinguish from S and T types.

Because of its central location of origin, the tumor can undergo

transverse growth, which is different from the Q and T types.

Therefore, a full understanding of the growth pattern of S-CPs

could be beneficial to increase diagnostic accuracy.
4.4 Limitations

The surgical records of many hospitals do not report the origin

of the tumor, greatly limiting the enrolled population size of

retrospective studies. At the same time, this also limits the ability

to retrospectively carry out multicenter studies. Second, the

included CPs were relatively large and caused significant

compression on the surrounding tissues. Moreover, large T-type

tumors originating from the top of the pars tuberalis can grow into

the pituitary fossa, which brings great difficulties to classification.

Third, many studies consider hypothalamus function as an

important prognostic factor, but we did not segment the

hypothalamus in the segmentation procedure, which brings

difficulties in the future analysis of hypothalamus function. In

future studies, we recommend documenting the location of the

origin of CPs in the surgical records to facilitate the study of the

QST classification at the clinic. At present, the total surgical

resection rate of CPs varies greatly among different regions, while

the postoperative mortality rate remains high in inexperienced

hospitals. Future research that uses innovative molecular imaging

methods may help us better understand the formation of tumors

and how they interact with the hypothalamic–pituitary axis.
5 Conclusion

We proposed a multi-structure segmentation method for

craniopharyngioma based on deep learning, which achieves a

Dice coefficient of 0.951 for segmenting tumors and an average

Dice coefficient of 0.8668 for six classes. The proposed segmentation

method can be used not only for three-dimensional reconstruction

but also for intraoperative navigation. Because the QST

classification is important for both preoperative surgical planning

and postoperative prediction, we also proposed a classification

model that can automatically classify tumors into three subtypes

based on the automatic segmentation method. This classification

achieved an accuracy of 0.9098. The clinical classification scale that

we proposed achieved an accuracy of 0.8647 using sagittal MRI.

Considering that an increasing number of studies have shown that
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deep learning greatly improves clinical work efficiency, we suggest

that the automatic segmentation and classification methods

designed in this study could be used as the primary method for

identifying craniopharyngiomas rather than subjective judgments

based on human experience.
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